Orthogonality Property on Inner Product Spaces

Lemma: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), then $\|x - y\|^2 = \|x\|^2 - 2(x, y) + \|y\|^2$ for any elements $x, y \in S$.

Proof:

We have

$$||x - y||^{2} = (x - y, x - y)$$

= (x, x) - (x, y) - (y, x) + (y, y)
= ||x||^{2} - 2(x, y) + ||y||^{2}

ð

Theorem: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. An element g^* of *G* minimizes ||f - g|| over all elements $g \in G$ if and only if $(f - g^*, g) = 0$ for every $g \in G$.

Proof:

First we will prove that if $(f - g^*, g) = 0$ for every $g \in G$ then g^* of G minimizes ||f - g|| over all elements $g \in G$. Consider any $\tilde{g} \in G$, then

$$\|f - \tilde{g}\|^{2} = \|f - g^{*} - (\tilde{g} - g^{*})\|^{2}$$
$$= \|f - g^{*}\|^{2} - 2(f - g^{*}, \tilde{g} - g^{*}) + \|\tilde{g} - g^{*}\|^{2}$$

Since both \tilde{g} and g^* are elements of G, so is $\tilde{g} - g^*$, and by assumption $(f - g^*, \tilde{g} - g^*) = 0$. Furthermore, $\|\tilde{g} - g^*\|^2 \ge 0$, so we conclude that $\|f - \tilde{g}\|^2 \ge \|f - g^*\|^2$.

Now we will prove that if $(f - g^*, \hat{g}) \neq 0$ for some $\hat{g} \in G$ then g^* of G cannot minimize ||f - g|| over all elements $g \in G$. Without loss of generality, we assume $(f - g^*, \hat{g}) > 0$. (If $(f - g^*, \hat{g}) < 0$ then, since $(f - g^*, -\hat{g}) > 0$, the argument works with $-\hat{g}$ instead of \hat{g} .) Now consider the element $g^* + t\hat{g}$ of G for real values of t. We have

$$\begin{split} \left\| f - (g^* + t\widehat{g}) \right\|^2 &= \left\| f - g^* - t\widehat{g} \right\|^2 \\ &= \left\| f - g^* \right\|^2 - 2(f - g^*, t\widehat{g}) + \left\| t\widehat{g} \right\|^2 \\ &= \left\| f - g^* \right\|^2 - 2t(f - g^*, \widehat{g}) + t^2 \left\| \widehat{g} \right\|^2 \end{split}$$

The quantity $\frac{2(f-g^*,\hat{g})}{\|\hat{g}\|^2}$ is necessarily positive. Select a positive $t < \frac{2(f-g^*,\hat{g})}{\|\hat{g}\|^2}$. This implies that $t\|\hat{g}\|^2 < 2(f-g^*,\hat{g})$ and $t^2\|\hat{g}\|^2 < 2t(f-g^*,\hat{g})$ so $-2t(f-g^*,\hat{g}) + t^2\|\hat{g}\|^2 < 0$ and $\|f-(g^*+t\hat{g})\|^2 = \|f-g^*\|^2 - 2t(f-g^*,\hat{g}) + t^2\|\hat{g}\|^2 < \|f-g^*\|^2$

We conclude that g^* cannot minimize ||f - g|| over all elements $g \in G$. ŏ

Corollary: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. There exists a unique element g^* of *G* that minimizes $\|f - g\|$.

Proof:

We have previously proved that there exists some element g^* of G that minimizes ||f - g||over all elements $g \in G$. Suppose there is distinct element $\tilde{g} \in G$ so that $||f - \tilde{g}|| = ||f - g^*||$. From the theorem above, we know that $||f - \tilde{g}||^2 = ||f - g^*||^2 + ||\tilde{g} - g^*||^2$ but since $\tilde{g} \neq g^*$, we have $||\tilde{g} - g^*||^2 > 0$, so $||f - \tilde{g}||^2 > ||f - g^*||^2$ contrary to assumption. We conclude that there is a unique minimizer.