Four Corollaries to the Orthogonality Property on Inner Product Spaces

Theorem: L et S be an inner product space with norm \|.|. induod by the inner product (...), G be a finite dimensional subspace of S , and f an element of S . A n element g * of G minimizes $\|f-g\|$ over all elements $g \in G$ if and only if $\left(f-g^{*}, g\right)=0$ for every $g \in G$.

Corollary 1: Let S be an inner product space with norm \|.\|. induced by the inner product (...), G be a finite dimensional subspace of S , and f an element of S . A n element g^{*} of G minimizes $\|f-g\|$ over all elements $g \in G$ if and only if $(f, g)=\left(g^{*}, g\right)$ for every $g \in G$.

Proof: From the linearity of the inner product, we have $\left(f-g^{*}, g\right)=0$ if and only if $(f, g)=\left(g^{*}, g\right)$.

Corollary 2: L et S be an inner product space with norm \|.\| induoed by the inner product (...), G be a finite dimensional subspace of S , and f an element of S . Let $<g_{1}, g_{2}, \ldots, g_{n}>$ bea basis for G. A n dement g^{*} of G minimizes $\|f-g\|$ over all elements $g \in G$ if and only if $\left(f, g_{i}\right)=\left(g^{*}, g_{i}\right)$ for $i=1,2, \ldots, n$.

Proof: Obviously, if $(f, g)=\left(g^{*}, g\right)$ for every $g \in G$ then $\left(f, g_{i}\right)=\left(g^{*}, g_{i}\right)$ for $i=1,2, \ldots, n$. Now assume $\left(f, g_{i}\right)=\left(g^{*}, g_{i}\right)$ for $i=1,2, \ldots, n$, where $<g_{1}, g_{2}, \ldots, g_{n}>$ is a basis for G. Any $g \in G$ can be written as a linear combination of the basis elements: $g=\sum_{j=1}^{n} a_{j} g_{j}$, but then we have:

$$
(f, g)=\left(f, \sum_{j=1}^{n} a_{j} g_{j}\right)=\sum_{j=1}^{n} a_{j}\left(f, g_{j}\right)=\sum_{j=1}^{n} a_{j}\left(g^{*}, g_{j}\right)=\left(g^{*}, \sum_{j=1}^{n} a_{j} g_{j}\right)=\left(g^{*}, g\right) .
$$

Corollary 3: Let S be an inner product space with norm |.|| induoed by the inner product (...), G be a finite dimensional subspace of S , and f an element of S . Let $<g_{1}, g_{2}, \ldots, g_{n}>$ be a basis for G. A n element g^{*} of G with expansion $\sum_{j=1}^{n} a_{j}^{*} g_{j}$ minimizes $\|f-g\|$ over all elements $g \in G$ if and only if $\sum_{j=1}^{n} a_{j}^{*}\left(g_{j}, g_{i}\right)=\left(f, g_{i}\right)$ for $i=1,2, \ldots, n$.

Proof: Since $g^{*}=\sum_{j=1}^{n} a_{j}^{*} g_{j}$, for $\mathrm{i}=1, \ldots, \mathrm{n}$, by linearity of the inner product then condition $\left(g^{*}, g_{i}\right)=\left(f, g_{i}\right)$ is equivalent to $\sum_{j=1}^{n} a_{j}^{*}\left(g_{j}, g_{i}\right)=\left(f, g_{i}\right)$.

Definition: A set $\left\{\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{n}\right\}$ of elements of an inner product space is orthogonal if and only if for $\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n}$ and $\mathrm{i} \neq \mathrm{j}\left(\tilde{\mathrm{g}}_{\mathrm{i}}, \tilde{g}_{\mathrm{j}}\right)=0$. A set $\left\{\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{n}\right\}$ of elements of an inner product space is orthonormal if and only if it is orthogonal and each element has unit norm.

Corollary 4: Let S be an inner product space with norm \|.\| induced by the inner product (...), G be a finite dimensional subspace of S , and f an element of S . L et $<\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{n}>$ be an orthonormal basis for G. The element $g^{*}=\sum_{j=1}^{n}\left(f, \tilde{g}_{j}\right) \tilde{g}_{j}$ of G minimizes $\|f-g\|$ over all elements $g \in G$.

Proof: From Corollary 3 we have that g^{*}, the minimizer of $\|f-g\|$ over G, with expansion satisfies $\sum_{j=1}^{n} a_{j}^{*}\left(\tilde{g}_{j}, \tilde{g}_{i}\right)=\left(f, \tilde{g}_{i}\right)$ for $i=1,2, \ldots, n$. But if $<\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{n}>$ is an orthonormal basis for G, then $\sum_{j=1}^{n} a_{j}^{*}\left(\tilde{g}_{j}, \tilde{g}_{i}\right)=a_{i}^{*}\left(\tilde{g}_{i}, \tilde{g}_{i}\right)=a_{i}^{*}=\left(f, \tilde{g}_{i}\right)$.

The expression $g^{*}=\sum_{j=1}^{n}\left(f, \tilde{g}_{j}\right) \tilde{g}_{j}$ in terms of an orthonormal basis is sometimes termed a Fourier ex pansion and the coefficients $\left(f, \tilde{g}_{j}\right)$ termed Fourier coefficients. If the orthogonal basis is not necessarily orthonormal, the Fourier expansion takes the form $g^{*}=\sum_{j=1}^{n} \frac{\left(f, \tilde{g}_{j}\right)}{\left(\tilde{g}_{j}, \tilde{g}_{j}\right)} \tilde{g}_{j}$.

