Four Corollaries to the Orthogonality Property on Inner Product Spaces

Theorem: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. An element g^* of *G* minimizes ||f - g|| over all elements $g \in G$ if and only if $(f - g^*, g) = 0$ for every $g \in G$.

Corollary 1: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. An element g^* of *G* minimizes ||f - g|| over all elements $g \in G$ if and only if $(f,g) = (g^*, g)$ for every $g \in G$.

Proof: From the linearity of the inner product, we have $(f - g^*, g) = 0$ if and only if $(f, g) = (g^*, g)$.

Corollary 2: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. Let $\langle g_1, g_2, ..., g_n \rangle$ be a basis for *G*. An element g^* of *G* minimizes ||f - g|| over all elements $g \in G$ if and only if $(f, g_i) = (g^*, g_i)$ for i = 1, 2, ..., n.

Proof: Obviously, if $(f,g) = (g^*, g)$ for every $g \in G$ then $(f, g_i) = (g^*, g_i)$ for i = 1, 2, ..., n. Now assume $(f, g_i) = (g^*, g_i)$ for i = 1, 2, ..., n, where $\langle g_1, g_2, ..., g_n \rangle$ is a basis for *G*. Any $g \in G$ can be written as a linear combination of the basis elements: $g = \sum_{j=1}^n a_j g_j$, but then we have:

$$(f,g) = (f,\sum_{j=1}^{n} a_j g_j) = \sum_{j=1}^{n} a_j (f,g_j) = \sum_{j=1}^{n} a_j (g^*,g_j) = (g^*,\sum_{j=1}^{n} a_j g_j) = (g^*,g).$$

Corollary 3: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. Let $< g_1, g_2, ..., g_n >$ be a basis for *G*. An element g^* of *G* with expansion $\sum_{j=1}^n a_j^* g_j$ minimizes $\|f - g\|$ over all elements $g \in G$ if and only if $\sum_{j=1}^n a_j^* (g_j, g_i) = (f, g_i)$ for i = 1, 2, ..., n.

Proof: Since $g^* = \sum_{j=1}^n a_j^* g_j$, for i = 1, ..., n, by linearity of the inner product then condition $(g^*, g_i) = (f, g_i)$ is equivalent to $\sum_{j=1}^n a_j^* (g_j, g_i) = (f, g_i)$.

Definition: A set $\{\tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_n\}$ of elements of an inner product space is *orthogonal* if and only if for i, j = 1, ..., n and $i \neq j$ (\tilde{g}_i, \tilde{g}_j) = 0. A set $\{\tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_n\}$ of elements of an inner product space is *orthonormal* if and only if it is orthogonal and each element has unit norm.

Corollary 4: Let *S* be an inner product space with norm $\|.\|$ induced by the inner product (.,.), *G* be a finite dimensional subspace of *S*, and *f* an element of *S*. Let $\langle \tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_n \rangle$ be an orthonormal

basis for *G*. The element $g^* = \sum_{j=1}^n (f, \tilde{g}_j) \tilde{g}_j$ of *G* minimizes ||f - g|| over all elements $g \in G$. **Proof:** From Corollary 3 we have that g^* , the minimizer of ||f - g|| over *G*, with expansion satisfies $\sum_{j=1}^n a_j^*(\tilde{g}_j, \tilde{g}_i) = (f, \tilde{g}_i)$ for i = 1, 2, ..., n. But if $\langle \tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_n \rangle$ is an orthonormal basis for *G*, then $\sum_{j=1}^n a_j^*(\tilde{g}_j, \tilde{g}_i) = a_i^*(\tilde{g}_i, \tilde{g}_i) = a_i^* = (f, \tilde{g}_i)$.

The expression $g^* = \sum_{j=1}^{n} (f, \tilde{g}_j) \tilde{g}_j$ in terms of an orthonormal basis is sometimes termed a *Fourier expansion* and the coefficients (f, \tilde{g}_j) termed *Fourier coefficients*. If the orthogonal basis is not necessarily orthonormal, the Fourier expansion takes the form

$$g^* = \sum_{j=1}^n \frac{(f, \tilde{g}_j)}{(\tilde{g}_j, \tilde{g}_j)} \tilde{g}_j \,.$$