Determination of 
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The purpose of this problem is to get experience with MATLAB by writing a short section of code to compute a sequence of approximations to 
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.

Model: We recognize 
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 as the ratio of the circumference of a circle to its diameter.  We can approximate the circumference of the circle by the perimeter of regular polygons by a an increasingly large number of sides.  Since these perimeters converge to the circumference of the circle, the ratios of the perimeters to the limiting circle's diameter should provide a sequence with limit equal to 
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.  Assume the circle has a radius of one (i.e., a "unit circle") and thus a diameter of 2.  Let 
[image: image5.wmf]p

n

represent the perimeter of a regular polygon with 
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sides that is inscribed in the unit circle.  We claim:
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sides that is inscribed in the unit circle (call this length 
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) then 
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.  Simple geometry for the inscribed square tells us that 
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.  Our idea is to use the value of 
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 to determine 
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, the side of the inscribed regular octagon, then to use that to get 
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, the side of the inscribed regular hexadecagon, and so on. The general step is to use 
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to obtain 
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Consider the following depiction of the inscribed polygon with 
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sides. The side of the polygon of 
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 sides is indicated and is obtained by bisecting the arc subtended by the side of length 
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Noticing the two right triangles and applying the Pythagorean Theorem twice, we have:


[image: image20.wmf](

)

1

2

1

2

2

-

+

F

H

G

I

K

J

=

x

s

n


and
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Solving for x in the first equation, we have 
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Thus
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and by substituting this into the second equation above, we finally obtain:
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Remembering that 
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, we can remove the variables representing the sides and express everything in terms of the polygon perimeters:
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that is
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and recalling that 
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 is the sequence of quantities that converges to 
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, let is use the label 
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 for this approximation to 
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, and finally we obtain the recurrence relation that
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for 
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which we start with 
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, which is the approximation to 
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 based upon the inscribed square.

Problem: Write a short section of Matlab code that uses the recurrence above to produce 
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.  Make sure you use the "format long e" command to see all of the digits.
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