M 340L - CS

Homew ork Set 8

1. Let $u^{1}=\left[\begin{array}{c}3 \\ -3 \\ 0\end{array}\right], u^{2}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right], u^{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right], b=\left[\begin{array}{c}5 \\ -3 \\ 1\end{array}\right]$.
a. Form the matrix $U=\left[\begin{array}{lll}u^{1} & u^{2} & u^{3}\end{array}\right]$ and confirm that the columns of U are orthogonal by computing $U^{T} U$.
b. Express b as a linear combination of u^{1}, u^{2} and u^{3}. (That is, solve $U x=b$. Be clever about using U^{T} to do this.)
2. Let $u^{1}=\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right], u^{2}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right]$
a. Form the matrix $U=\left[\begin{array}{ll}u^{1} & u^{2}\end{array}\right]$ and confirm that the columns of U are orthogonal by computing $U^{T} U$.
b. Normalize the columns and confirm that $U^{T} U=I$.
3. A nsw er true or false to the follow ing. If false offer a simple counterexample.
a. Every orthogonal set in \mathbb{R}^{n} is linearly independent.
b. If a set $S=\left\{u^{1}, u^{2}, \ldots, u^{k}\right\}$ has the property that $u^{i} \cdot u^{j}=0$ whenever $i \neq j$, then S is an orthonormal set.
4. Show that if U is a square matrix whose columns are orthonormal then $U^{T}=U^{-1}$.
5. Show that if U is an $m \times n$ orthogonal matrix then for all $x \in \mathbb{R}^{n},\|U x\|=\|x\|$. (This is not hard: work out $\|U x\|^{2}$. This can be stated as "A n orthogonal transformation preserves length.".)
6. Consider this mathematical (and not necessarily computer) procedure:
[$\left.\alpha, v^{\prime}\right]=$ project $[u, v]$
Inputs vectors u and v, computes and returns $\alpha=u \cdot v / u \cdot u$ and $v^{\prime}=v-\alpha u$.
Now, let $u^{1}=\left[\begin{array}{c}3 \\ -3 \\ 0\end{array}\right], u^{2}=\left[\begin{array}{c}-1 \\ 5 \\ -1\end{array}\right], u^{3}=\left[\begin{array}{c}9 \\ -3 \\ 3\end{array}\right]$.
a. Perform $\left[r_{1,2}, u_{2}^{\prime}\right]=$ project $\left[u_{1}, u_{2}\right]$. (That is, subtract the projection of u_{2} onto the subspace spanned by u_{1}.)
b. Perform $\left[r_{1,3}, u_{3}{ }^{\prime}\right]=$ project $\left[u_{1}, u_{3}\right]$.(That is, subtract the projection of u_{3} onto the subspace spanned by u_{1}.)
c. Perform $\left[r_{2,3}, u_{3}{ }^{\prime \prime}\right]=$ project $\left[u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right]$.(That is, subtract the projection of $u_{3}{ }^{\prime}$ onto the subspace spanned by u_{1}.)
d. Compute $A=\left[\begin{array}{lll}u_{1} & u_{2}{ }^{\prime} & u_{3}{ }^{\prime \prime}\end{array}\right]\left[\begin{array}{ccc}1 & r_{1,2} & r_{1,3} \\ 0 & 1 & r_{2,3} \\ 0 & 0 & 1\end{array}\right]$. (Compare to U in Problem 1. Y ou have just used the Gram-Schmidt Algorithm to orthogonalize - but not orthonormalize vectors. That is, the normalizations are not done.)
7. Prove that if $y^{T} x=0$, for all x, then $y=0$. (Hint: Consider $x=y$, in particular.)
8. Prove that if $Q^{T} Q=I$, then if x is perpendicular to y, then $Q x$ is perpendicular to $Q y$.
