1	10							
2	10							
3	15		Final Examination	Name				
4	5							
5	10			M2401_CS				
6	10			M340L-CS				
7	20							
8	10							
9	20							
10	25							
11	10							
12	10							
13	15							
Total	170							

- 1. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
- 2. Do not submit the scratch sheets. However, all of the work necessary to obtain the solution should be on these sheets.
- 3. Comment on all errors and omissions and enclose the

comments in boxes

1. [10] Find a vector
$$z$$
 that is perpendicular to $\begin{bmatrix} -4 \\ 2 \\ 1 \\ 0 \\ -2 \end{bmatrix}$ and has norm equal to two.

2. [10] Suppose that just prior to the second step of Gaussian elimination (with partial pivot selection) applied to a matrix A, we have in storage:

A									
2	5	3	-1						
1/2	-4	0	9						
-1/3	2	8	5						
0	-8	12	8						

ip
4
?
?
?

What is found in A and ip immediately after the completion of the second step?

3. [15] Find the inverse of $\begin{bmatrix} 3 & 1 & 2 \\ -3 & -3 & -1 \\ 6 & 2 & 3 \end{bmatrix}$ or show that no inverse exists.

- **4. [5]** Find two linearly independent vectors in the null space of $\begin{bmatrix} 2 & 4 & -2 \\ 1 & 2 & -1 \\ -3 & -6 & 3 \end{bmatrix}$.

5. [10] Given $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 2 & 2 \end{bmatrix}$, use the Gram Schmidt algorithm to express A = QR, where $Q^TQ = I$

and R is upper triangular.

6. [10] Suppose that applying the Gram-Schmidt algorithm to
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \\ -2 & -1 \\ 0 & 1 \end{bmatrix}$$
 results in $A = QR$,

where
$$Q = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 2/\sqrt{5} \\ -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{5} \end{bmatrix}$$
 and $R = \begin{bmatrix} 2\sqrt{2} & \sqrt{2} \\ 0 & \sqrt{5} \end{bmatrix}$. (The matrix Q satisfies $Q^T Q = I$.)

Determine
$$x^*$$
 that minimizes $||Ax - b||$ over all $x \in \mathbb{R}^2$, where $b = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -4 \end{bmatrix}$.

Hint: A smart student would now test $A^{T}r$, where $r = Ax^{*}-b$.

7. [20] Identify which of the follow mark either "Yes" or "No" in the multiplication". For each answer of "	columns "Closed	d under a	addition" and "(Closed under sca	alar	
	Closed under addition		Closed under scalar multiplication			
a. The set of four by four matrices A such that $A_{4,1} = A_{1,4} = 0$.						
b. The set of functions $f:[0,1] \rightarrow [0]$ the set of functions mapping the int non-negative values).						
c. The set of ordered triples of real numbers (a,b,c) so that $ a-1 \le 1$, and $ c-1 \le 1$.	$b-1 \leq 1$,					
d. The set of ordered pairs of						

e. The set of four by four matrices all of whose elements are non-negative.

real numbers (a,b) so that $ab \ge 0$.

8. [10] Answer true or false:

- ____ a. If the problem HAx = Hb has a solution x, then the problem Ax = b has the same solution x, for any matrix H (for which HA and Hb are defined.)
- _____b. Let matrix A have rows $\begin{bmatrix} A_{1,.} \\ \vdots \\ A_{n,.} \end{bmatrix}$ and the problem Ax = b has a solution x, then

 $b = x_1 A_{1...} + ... + x_n A_{n...}$

- ____ c. If $p(\lambda) = \det(A \lambda I)$ then the roots of $p(\lambda) = 0$ must contain all of the eigenvalues of A, and with the same multiplicity.
- _____ **d.** If $BAB^{-1} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$ for an invertible matrix B then the eigenvalues of A must be

a,d, and f.

_____e. If A is a 3×2 matrix, then the transformation $x\mapsto Ax$ cannot be one-to-one.

NOTE: Scale all eigenvectors so the maximum element is 1.

- **9. [20] a.** Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. What are its eigenvalues and eigenvectors?
- **b.** Let $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 + \varepsilon \end{bmatrix}$. What are its eigenvalues and eigenvectors? (Your answers should be in terms of the perturbation parameter ε .)

- c. Describe the effect of the perturbation ε on eigenvalues and eigenvectors of A. Comment on the linear independence of the eigenvectors of B.
- **d.** Let $C = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. What are its eigenvalues and eigenvectors? (Choose linearly independent eigenvectors.)
- e. Let $D = \begin{bmatrix} 2 & \varepsilon \\ 0 & 2 \end{bmatrix}$. What are its eigenvalues and eigenvectors?
- **f.** Describe the effect of the perturbation ε on eigenvalues and eigenvectors of C.

10. [25] Prove:

a. Using the definition of an inverse, prove for any invertible matrix A, that $(A^{-1})^T = (A^T)^{-1}$.

b. Prove that if λ is an eigenvalue of an invertible matrix A, then λ^2 is an eigenvalue of A^2 .

c. For given n by n matrices A and B (where B is non-singular) if λ is an eigenvalue of A with associated eigenvector v then λ is an eigenvalue of BAB^{-1} with associated eigenvector Bv.

d. Prove that if A is not invertible then then 0 is an eigenvalue of A.

e. Prove that if $y^T x = 0$, for all x, then y = 0.

- 11. [10] Consider the parameterized matrix $A(\alpha) = \begin{bmatrix} 3 & \alpha \\ 7 & 2 \end{bmatrix}$.
- **a.** For what real values of α does $A(\alpha)$ have two real and distinct eigenvalues?

b. For what real values of α does $A(\alpha)$ have one real eigenvalue of multiplicity two?

c. For what real values of α does $A(\alpha)$ have two eigenvalues that are not real?

12. [10] Find an eigenvalue and corresponding eigenvector of the n by n lower triangular matrix

$$A = \begin{bmatrix} a_{1,1} & 0 & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ a_{n,1} & a_{n,2} & \cdots & \cdots & a_{n,n} \end{bmatrix}$$

(Hint Problem 13 can easily be solved without finding the power of ANY matrix.)

13. [15] a. Find the eigenvalues of
$$E = \begin{bmatrix} 3 & 4 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

b. Find corresponding eigenvectors of E.

c. Assume if $Ex = \lambda x$ then for any integer $k, E^k x = \lambda^k x$. Find the eigenvalues of $\overline{E} = E^3 - 4E + 2I - 2E^{-1}$.

d. Find corresponding eigenvectors of \overline{E} .