Simple Example of Floating Point Numbers and Arithmetic

This example uses 3 digit rounded floating point operations.

We seek to evaluate

$$\frac{12.34 - .56789}{.00009876}$$

in floating point.

Step 1: Convert all of the operands to 3 digit rounded floating point numbers:

- $12.34 \rightarrow 12.3$
- $.56789 \rightarrow .568$
- $.00009876 \rightarrow .0000988$

(Notice the decimal point does not move – all we do is drop numbers after the third one.)

Step 2:

a. Do the subtraction **exactly**:

$$12.3 - .568 = 11.732$$

b. Convert to three digits:

$$11.732 \rightarrow 11.7$$

Step 3:

a. Do the division **exactly** (meaning with enough digits to know if there is rounding or not):

$$\frac{11.7}{.0000988} = 118421.05263157...$$

b. Convert to three digits:

$$118421.05263157... \rightarrow 118000.$$

Thus the result of computing $\frac{12.34 - .56789}{.00009876}$ in 3 digit rounded floating point is 118000. The exact answer is $119199.1697043337...$, thus the error is

$$118000 - 119199.1697043337... = -1199.1697043337...$$

and the (absolute) relative error is

$$\left|\frac{-1199.1697043337...}{119199.1697043337...}\right| = 0.010060232924217,$$

which is a little over 1%.