Gaussian Elimination Algorithm
with Partial Pivoting and Elimination Separated from Solving

Forward Elimination Applied to Matrix

for \(k = 1:n \)
choose \(ip_k \) such that \(|A_{ip_k,k}| = \max\{|A_{i,k}| : i \geq k \} \)
if \(A_{ip_k,k} = 0 \)
warning ('Pivot in Gaussian Elimination is zero')
and maybe get out of here
end
swap \(A_{k,k}, \ldots, A_{k,n} \) with \(A_{ip_k,k}, \ldots, A_{ip_k,n} \)
for \(i = k+1:n \)
\(A_{i,k} = A_{i,k} / A_{k,k} \)
for \(j = k+1:n \)
\(A_{i,j} = A_{i,j} - A_{i,k} A_{k,j} \)
end
end

This results in the upper triangle of the eliminated system in the upper triangle of \(A \), the multipliers in the strict lower triangle of \(A \), and the swapping information in the \(ip \) array.

Solving
notice no appearance of \(b \) until now

for \(k = 1:n \)
swap \(b_k \) with \(b_{ip_k} \)
for \(i = k+1:n \)
\(b_i = b_i - A_{i,k} b_k \)
end

for \(i = n:-1:1 \)
for \(j = i+1:n \)
\(b_i = b_i - A_{i,j} x_j \)
end
\(x_i = b_i / A_{i,i} \)
end

and the output is the solution \(x \).