
Gauss’s Algorithm Meets Floating Point Arithmetic

Consider solving the linear system:

1 2

1 2

.001 1

0

x x

x x

 (0.1)

using Gauss’s algorithm. If w e multiply the first equation by 1000 and add it to the

second equation, w e obtain the equivalent system:

1 2

2

.001 1

1001 1000

x x

x

 (0.2)

from w hich w e obtain

 2

1000
.999000999000...

1001
x (0.3)

and

 2

1

1000
1

1 1 1001 .999000999000...
.001 .001

x
x (0.4)

Now , let’s apply the same algorithm but do all of the arithmetic in three decimal digit
rounding floating point arithmetic. (I w ill not specify overflow or underflow levels

here to emphasize the fact that neither overflow nor underflow is relevant to the diffi-
culties. Nevertheless, w e need to make the modest assumption that .001 does not un-

derflow and 1000 does not overflow .) When w e calculate the coefficient of 2x in the

second equation w hen w e are eliminating 1x w e get

1

(1 1) (1 1000) 1000
.001

fl fl

 (0.5)

instead of 1001 . When w e calculate the right hand side value for the second equation,

w e get

1

(0 1) (0 1000) 1000
.001

fl fl

 (0.6)

- thus no error at all.

Finally , applying back substitution in floating point, w e obtain…

 2

1000
() 1
1000

x fl (0.7)

and

 2
1

1 1 1 1
() () 0

.001 .001

x
x fl fl

 (0.8)

Thus, 2x is calculated quite accurately but 1x has 100% error. Clearly the calculation

of 1x suffered catastrophic cancellation error: the value of 2x of 1 is quite accurate but

not perfect and the subtraction of this from one in the calculation of 1x reveals this

slight inaccuracy .

One might pose the question “Y es, the computed solution – at least its first component

– is inaccurate, but does the computed solution come close to satisfying the original
equations?”. We find that

1 2

1 2

.001 1

1 0

x x

x x

 (0.9)

so the first equation is satisfied but the second has a huge difference. Simply put, the

calculated solution (0,1) stinks in every possible fashion.

If w e view this in a backw ard error fashion, w e recognize that the original linear sy s-

tem (0.1) has been replaced by a different system, namely :

1 2

1 2

.001 1

0 0

x x

x x

 (0.10)

since the original coefficient of one in the 2,2 position w as negligible w ith respect to

1000 w hen the first step of the algorithm w as applied. The pair (0,1) is the exact solu-
tion of this new system (0.10) - but (0.10) is not close to the original system (0.1) – that

is: w e have not solved a close problem.

So w here is the difficulty?

The difficulty is that the error made w hen w e updated the 2,2 position in step (0.5)

w as small relative to the numbers involved (i.e., an error of 1 relative to 1001) but that
error of 1 is huge compared to the original components of the matrix. In fact, 1 is the

largest component of the original matrix in absolute value. So a change by 1 renders

us w ith a very different problem to solve – namely (0,10). What caused this w as the
major increase in the size of numbers w ith w hich w e w ere dealing follow ing the use of

the tiny value .001 for the pivot. Since the reciprocal of the pivot becomes a multiplier,
tiny pivots lead to huge numbers being introduced into the transformed matrix. This

suggests that w e might avoid such problems by choosing larger pivots.

To see the effect of this idea, w e w ill apply the Gaussian algorithm to the system in

(1.1) in the same floating point environment – except that w e w ill reverse the order of
the tw o equations. Now the value of –1 w ill be the pivot instead of .001. The new sy s-

tem is:

1 2

1 2

0

.001 1

x x

x x

 (0.11)

When w e calculate the coefficient of 2x in the second equation w hen w e are eliminat-

ing 1x w e get

.001

(1 1) (1 .001) 1
1

fl fl

 (0.12)

instead of 1.001 . When w e calculate the right hand side value for the second equation,

w e get

.001

(1 0) (1 0) 1
1

fl fl

 (0.13)

- thus no error at all. Finally , applying back substitution, w e obtain…

 2

1
() 1
1

x fl (0.14)

and

2
1

0 1 0 1
() () 1

1 1

x
x fl fl (0.15)

If w e compare the computed solution (1,1) w ith the exact solution
1000 1000

(,)
1001 1001

w e see

that each component has a relative accuracy of about 310 - an excellent result for a

computing environment w ith unit rounding precision of 35 10 .

In a backw ards error sense the second computed solution is the exact solution to the
problem:

1 2

1 2

0

0 1

x x

x x
 (0.16)

w hich is

1 2

1 2

0 1

0

x x

x x
 (0.17)

w ith the row s reversed. If w e compare this to the original system (0,1), w e see that the

difference is of size .001 in the 1,1 element. Since the other entries of the matrix are

of size one, this difference is tiny given the particular floating point environment. The

new solution even does a good job of satisfying the original equations, since

1 2

1 2

.001 1.001 1

0

x x

x x
 (0.18)

So w hat changed?

In the second process the error that w as made in updating the 2,2 coefficient w as

.001 relative to 1.001 – exactly the same relative error as w e had w ith the first process

w hen w e had an error of 1 in 1001. But relative to the other numbers in the matrix an

error of .001 is tiny and an error of 1 is huge. As said above, the effect of the small

pivot is to magnify the size of the numbers being used so that errors small relative to

them are actually large w ith respect to the original coefficients. Large pivots reduce

this effect of artificial magnification.

Lastly , let me pose three claims regarding inaccuracies caused by floating point imple-

mentations of the Gaussian algorithm:

1. The errors are associated w ith solving large systems.
2. The errors are associated w ith making a large number of floating point errors.

3. The errors are associated w ith solving linear systems w ith nearly singular ma-

trices (i.e., having row s nearly linearly dependent).

As our example show s, all three are nonsense. We got 100% error in the largest com-

ponent of the solution w hen the system w as small (i.e. , tw o equations in tw o un-

know ns), had a single floating point error (i.e., the update of the 2,2 component on-

ly), and w as far being singular. A ll inaccuracies can be traced to the single cause: a
small pivot.

