Gram-Schmidt Orthonormalization of a Matrix and Solution of the Least Squares Problem

We assume we are given an $m \times n$ matrix A, where $n \le m$, whose columns are a_1, \ldots, a_n . We seek to express these columns as linear combinations of orthonormal columns q_1, \ldots, q_n . Letting Q be the matrix with these columns, this results in A = QR, where

 q_1, \dots, q_n , the columns of Q, are orthonormal (so $Q^T Q = I$), R is an $n \times n$ upper triangular matrix.

1. The algorithm uses these two procedures:

(norm, u) = normalize (u): inputs vector u, outputs norm = ||u||, and overwrites the original u with $\frac{1}{norm}u$.

(c, v) = projectn (u, v): inputs vectors u and v (where ||u|| = 1), computes $c = u^T v$, and overwrite the original v with v-cu

$$Q = A$$

$$(r_{i,1}, q_1) = normalize(q_1)$$
for $j = 2:n$
for $i = 1: j - 1$

$$(r_{i,j}, q_j) = projectn(q_i, q_j)$$

$$(r_{j,j}, q_j) = normalize(q_j)$$

2. To solve the least squares problem:

Determine x^* that minimizes ||Ax-b|| over all $x \in \mathbb{R}^n$.

a. Calculation of $c = Q^T b$

for
$$i = 1: n$$

(c_i, b) = projectn(q_i, b)

b. Solve upper triangular system for the Least Squares solution x^*

solve $Rx^* = c$