
Gram-Schmidt Orthonalization and a least squares problem: 
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, Use the Modified Gram-Schmidt algorithm to express  A QR , 

where the 3 x 2 matrix Q has orthonormal columns and the 2 x 2 matrix R is upper-triangular. 

 

b.  Compute Tc Q b as specified by the algorithm.  

 

c. Solve the least squares problem min
x

Ax b  by solving * .Rx c  .  

 

Numerical Solution 
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, the Modified Gram-Schmidt algorithm computes 
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c.  By solving * ,Rx c we obtain the least squares solution  
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Algebraic Solution 
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, the Modified Gram-Schmidt algorithm computes 
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c.  By solving * ,Rx c we obtain the least squares solution  
15/14

*  .
6/7

x
 

  
 

  

 

 


