1. 1. Calculate the determinants of
 a. \[
 \begin{bmatrix} 3 & 6 \\ -1 & 4 \end{bmatrix}
 \]
 b. \[
 \begin{bmatrix} 2 & 2 & 4 \\ -2 & 0 & 3 \\ 4 & 3 & -1 \end{bmatrix}
 \]

2. The expansion of a 3 x 3 determinant can be remembered by the following device. Add a copy of the first two columns to the right of the matrix, and compute the determinant adding the products along the northwest-to-southeast diagonals and subtracting the products along the northeast-to-southwest diagonals:

 \[
 \begin{bmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & b & i & g & b \end{bmatrix}
 \]

 Use this method to compute the determinants:
 a. \[
 \begin{bmatrix} 0 & 5 & 1 \\ 4 & -3 & 0 \\ 2 & 4 & 1 \end{bmatrix}
 \]
 b. \[
 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 1 \\ 3 & 4 & 2 \end{bmatrix}
 \]

3. Prove that for an invertible matrix \(A \), \(\det(A^{-1}) = 1/\det(A) \). (Hint: Remember \(AA^{-1} = I \).)

4. Answer true or false to the following. If false offer a counterexample.
 a. If the columns of \(A \) are linearly dependent, then \(\det(A) = 0 \).

 b. \(\det(A + B) = \det(A)\det(B) \).

 c. The determinant of \(A \) is the product of the diagonal entries in \(A \).

 d. If \(\det(A) \) is zero, then two rows or two columns are the same, or a row or a column is zero.
5. Answer true or false to the following. If false offer a counterexample.

a. If \(Ax = \lambda x \) for some scalar \(\lambda \), then \(x \) is an eigenvector of \(A \).

b. If \(v_1 \) and \(v_2 \) are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

c. The eigenvalues of a matrix are on its main diagonal.

6. For each of these matrices,
 - find the characteristic polynomial \(p(\lambda) = \det(A - \lambda I) \).
 - factor it to get the eigenvalues: \(\lambda_1, \lambda_2, \ldots, \lambda_n \).
 - for \(i = 1, \ldots, n \): find \(x^i \) the eigenvector corresponding \(\lambda_i \); (that is, find a vector \(x^i \) in the nullspace of \(A - \lambda_i I \)).
 - Scale all eigenvectors so the largest component is +1.

 a. \(A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \).

 b. \(A = \begin{bmatrix} 8 & -12 & 0 \\ -3 & 9 & -3 \\ -5 & 3 & 3 \end{bmatrix} \).

7. Two eigenvectors of an upper triangular matrix:

Let \(U = \begin{bmatrix} a & b & \cdots \\ 0 & c & \cdots \\ 0 & 0 & \ddots \end{bmatrix} \) be \(n \) by \(n \) and upper triangular. Assume \(a \neq c \).

 a. Show that the eigenvector corresponding to the eigenvalue \(a \) is \(e_1 \) (i.e the first column of the \(n \) by \(n \) identity matrix).

 b. Show that the eigenvector corresponding to the eigenvalue \(c \) is \(\begin{bmatrix} b/(c-a) \\ 1 \\ 0 \\ \vdots \end{bmatrix} \).