M 340L - CS Homework Set 7 Solutions

1. Let
$$u = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$, $w = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$, $x = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Compute:

a.
$$w \cdot w = 3^2 + (-1)^2 + (-5)^2 = 35$$
.

b.
$$x \cdot w = 6 \cdot 3 + (-2) \cdot (-1) + 3 \cdot (-5) = 5$$
.

c.
$$\frac{x \cdot w}{w \cdot w} = \frac{5}{35} = \frac{1}{7}$$
.

d.
$$\frac{1}{u \cdot u} u = \frac{1}{(-1)^2 + 2^2} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1/5 \\ 2/5 \end{bmatrix}$$
.

e.
$$||x|| = \sqrt{6^2 + (-2)^2 + 3^2} = \sqrt{49} = 7$$
.

2. Find a unit vector in the direction $\begin{bmatrix} -6\\4\\-3 \end{bmatrix}$.

To normalize
$$\begin{bmatrix} -6\\4\\-3 \end{bmatrix}$$
, we have $\frac{1}{\sqrt{(-6)^2 + 4^2 + (-3)^2}} \begin{bmatrix} -6\\4\\-3 \end{bmatrix} = \frac{1}{\sqrt{61}} \begin{bmatrix} -6\\4\\-3 \end{bmatrix} = \begin{bmatrix} -6/\sqrt{61}\\4/\sqrt{61}\\-3/\sqrt{61} \end{bmatrix}$.

3. Find the distance between $u = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$ and $z = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$.

The distance between
$$u = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
 and $z = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$ is

$$||u-z|| = || \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix} - \begin{bmatrix} -4 \\ -1 \\ 8 || = || \begin{bmatrix} 4 \\ -4 \\ -6 || = \sqrt{4^2 + (-4)^2 + (-6)^2} = \sqrt{68}.$$

4. Answer true or false to the following. If false offer a simple counterexample.

a.
$$u \cdot v - v \cdot u = 0$$
.

True. We have commutatively of the dot product.

b. For any scalar c, ||cv|| = c ||v||.

False.
$$||-1[1]|| = ||[-1]|| = 1 \neq -1 = -1||[1]||$$
...

c. If $\|u\|^2 + \|v\|^2 = \|u + v\|^2$, then u and v are orthogonal.

True. We have $||u+v||^2 = ||u||^2 + 2u \cdot v + ||v||^2 = ||u||^2 + ||v||^2$, so $u \cdot v = 0$ and u and v are orthogonal.

d. For an $m \times n$ matrix A and $1 \le i \le m$, if x in the null space of A then x is orthogonal to A_i , the ith row of A.

True. If x in the null space of A then Ax = 0 but the ith component of Ax is $A_i \cdot x$, which is zero.

5. Verify the parallelogram law for vectors u and v in \mathbb{R}^n : $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.

We have
$$||u+v||^2 + ||u-v||^2 = ||u||^2 + 2u \cdot v + ||v||^2 + ||u||^2 - 2u \cdot v + ||v||^2 = 2||u||^2 + 2||v||^2$$
.

- **6.** Given vectors u and v in \mathbb{R}^n , consider vectors of the form $v+\alpha u$, for all scalars α .
 - a. Determine α so that $v+\alpha u$, is orthogonal to u.

For orthogonality, we want
$$0 = u \cdot (v + \alpha u) = u \cdot v + \alpha u \cdot u = u \cdot v + \alpha \|u\|^2$$
. Thus, $\alpha = -\frac{u \cdot v}{\|u\|^2}$, if $\|u\|^2 \neq 0$.

b. Under what circumstance is there no such α ?

The quantity $\alpha = -\frac{u \cdot v}{\|u\|^2}$ is not defined if $\|u\|^2 = 0$, (that is, if u = 0). However, in that case the vector $v + \alpha u$ is orthogonal to u for any α .