M 340L-CS Material

from Lay, David C. Linear Algebra and Its Applications (4th Edition) Pearson.

Chapter 1 Linear Equations in Linear Algebra

1.1 Systems of Linear Equations

- 1.2 Row Reduction and Echelon Forms
- 1.3 Vector Equations
- 1.4 The Matrix Equation Ax = b
- 1.5 Solution Sets of Linear Systems
- 1.7 Linear Independence
- 1.8 Introduction to Linear Transformations
- 1.9 The Matrix of a Linear Transformation

Chapter 2 Matrix Algebra

- 2.1 Matrix Operations
- 2.2 The Inverse of a Matrix
- 2.3 Characterizations of Invertible Matrices
- 2.4 Partitioned Matrices
- 2.8 Subspaces of Rⁿ
- 2.9 Dimension and Rank

Chapter 3 Determinants

3.1 Introduction to Determinants

Chapter 4 Vector Spaces

- 4.1 Vector Spaces and Subspaces
- 4.2 Null Spaces, Column Spaces, and Linear Transformations
- 4.3 Linearly Independent Sets; Bases
- 4.5 The Dimension of a Vector Space

4.6 Rank

Chapter 5 Eigenvalues and Eigenvectors

5.1 Eigenvectors and Eigenvalues
5.2 The Characteristic Equation
5.3 Diagonalization
5.4 Eigenvectors and Linear Transformations
5.5 Complex Eigenvalues
5.8 Instation Engineering for Eigenvalues

5.8 Iterative Estimates for Eigenvalues

Chapter 6 Orthogonality and Least Squares

- 6.1 Inner Product, Length, and Orthogonality
- 6.2 Orthogonal Sets
- 6.3 Orthogonal Projections
- 6.4 The Gram-Schmidt Process
- 6.5 Least-Squares Problems