M 340L - CS Homework Set 4 Solutions

1. Mark T(rue) or F(alse) for each of the following statements:

_T_a. The column space of A is the set of all vectors that can be written as Ax for some x.

__F_b. Elementary row operations on an augmented matrix can change the solution set of the associated linear system.

_T_c. If b is in the set spanned by the columns of A then the equation Ax = b is consistent.

__F_d. For an $n \times n$ system of linear equations, the Gaussian Elimination Algorithm with Partial Pivoting and Elimination Separated from Solving uses approximately $n^3/3$ floating point multiplications and $2n^3/3$ floating point additions/subtractions.

 T_e . the Gaussian Elimination Algorithm with Partial Pivoting has multipliers no larger than one in absolute value.

____T_f. A homogeneous equation is always consistent.

__F_g. The homogeneous equation Ax = 0 has the trivial solution if and only if the equation has at least one free variable.

__F_h. If x is a nontrivial solution of Ax = 0, then every entry in x is nonzero.

____T_i. The effect of adding *p* to a vector is to move the vector in a direction parallel to *p*.

_____T_j. The equation Ax = b is homogeneous if the zero vector is a solution.

2. a Find the general solutions of the systems Ax = 0 whose matrix is:

[1	-2	3	-6	5	0
0	0	0	1	4	-6
0	0	0	0	0	1
0	0	0	0	0	0

Thus
$$x_6 = 0/1 = 0$$
, x_5 is free, $x_4 = (0 - 4x_5 - (-6)x_6)/1 = -4x_5$, x_3 and x_2 are free, and
 $x_1 = (0 - (-2)x_2 - 3x_3 - (-6)x_4 - 5x_5)/1 = 2x_2 - 3x_3 + 6(-4x_5 + 6x_6) - 5x_5$
 $= 2x_2 - 3x_3 - 29x_5$.

b. Express this solution in parametric vector form.

$$x = \begin{bmatrix} 2x_2 - 3x_3 - 29x_5 \\ x_2 \\ x_3 \\ -4x_5 \\ x_5 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -29 \\ 0 \\ 0 \\ -4 \\ 1 \\ 0 \end{bmatrix}$$

3. Show that if Ax = b and Ay = 0, then for any scalar α , $A(x + \alpha y) = b$.

If
$$Ax = b$$
 and $Ay = 0$ then for any scalar α ,
 $A(x + \alpha y) = Ax + A\alpha y = b + \alpha Ay = b + \alpha 0 = b.$

4. Suppose you are to solve m different linear systems of n equations in n unknowns. All of the equations have the same matrix, however, they just differ in right hand sides. Estimate how many multiplications are required.

The elimination step on the matrix requires $\frac{n^3}{3}$ multiplications and each of the *m* different linear systems requires n^2 multiplications for a total of $\frac{n^3}{3} + mn^2$ multiplications.

5. Use the Gaussian Elimination with Partial Pivoting and Solution algorithm to solve

$$3x_1 + 5x_2 - 2x_3 = -16$$

$$-3x_1 - x_3 = -5$$

$$6x_1 + 2x_2 + 4x_3 = 8$$

Show what occupies storage in the A matrix and the ip array initially and after each major step of elimination.

A			ір
3	5	-2	?
-3	0	-1	?
6	2	4	?
6	2	4	3
-1/2	1	1	?
1/2	4	-4	?
6	2	Л	3
-1/2	4	-4	3
1/2	1/4	2	?
6	2	4	3
-1/2	4	-4	3
1/2	1/4	2	3

For the elimination applied to $b = \begin{bmatrix} -16 \\ -5 \\ 8 \end{bmatrix}$ we get it changing to $\begin{bmatrix} 8 \\ -5 \\ -16 \end{bmatrix}, \begin{bmatrix} 8 \\ -20 \\ -1 \end{bmatrix}, \begin{bmatrix} 8 \\ -20 \\ -1 \end{bmatrix}, \text{ and finally } \begin{bmatrix} 8 \\ -20 \\ 4 \end{bmatrix}.$ In the bottom loop we $b_3 = 4$ and $x_3 = \frac{4}{2} = 2$. Then we get $b_2 = -20 - (-4) \cdot 2 = -12$ so $x_2 = \frac{-12}{4} = -3$. Finally we get $b_1 = 8 - 2 \cdot (-3) - 4 \cdot 2 = 6$ so $x_1 = \frac{6}{6} = 1$. 6. Fill in the five blanks in the code for Gaussian Elimination with Partial Pivoting and Solution

```
for k = 1:n
           choose ip_k such that |A_{ip_k,k}| = \max\{|A_{i,k}|: i \ge k\}
           if A_{ip_k,k} = 0
                      warning ('Pivot in Gaussian Elimination is zero')
           end
           swap A_{k,k},...,A_{k,n} with A_{ip_k,k},...,A_{ip_k,n}
          for i = <u>k+1</u>:n
                      \overline{A_{i,k}} = \underline{A_{i,k}} / \underline{A_{k,k}}
                     for j = k+1:n
                                A_{i,j} = \underline{A_{i,j} - A_{i,k} A_{k,j}}
                      end
           end
end
for k = 1:n
           swap b_k with \underline{b}_{ip_k}
           for i = k+1:n
                      b_i = b_i - A_{i,k} b_k
           end
end
for i = n:-1:1
           for j = i+1:n
                     b_i = b_i - A_{i,j} x_j
           end
           x_i = \underline{b_i / A_{i,i}}
end
```