M 340L - CS
 Homew ork Set 4 Solutions

1. Mark T (rue) or F (alse) for each of the following statements:
__T_a. The column space of A is the set of all vectors that can be written as $A x$ for some x.
__F_b. Elementary row operations on an augmented matrix can change the solution set of the associated linear system.
__T_c. If b is in the set spanned by the columns of A then the equation $A x=b$ is consistent.
__F_d. For an $n \times n$ system of linear equations, the Gaussian Elimination Algorithm with Partial Pivoting and Elimination Separated from Solving uses approximately $n^{3} / 3$ floating point multiplications and $2 n^{3} / 3$ floating point additions/subtractions.
__T_e. the Gaussian Elimination Algorithm with Partial Pivoting has multipliers no larger than one in absolute value.
__T_f. A homogeneous equation is alw ays consistent.
__F_g. The homogeneous equation $A x=0$ has the trivial solution if and only if the equation has at least one free variable.
__F_h. If x is a nontrivial solution of $A x=0$, then every entry in x is nonzero.
__T_i. The effect of adding p to a vector is to move the vector in a direction parallel to p.
_ T_j. The equation $A x=b$ is homogeneous if the zero vector is a solution.
2. a Find the general solutions of the systems $A x=0$ whose matrix is:

$$
\left[\begin{array}{cccccc}
1 & -2 & 3 & -6 & 5 & 0 \\
0 & 0 & 0 & 1 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus $x_{6}=0 / 1=0, x_{5}$ is free, $x_{4}=\left(0-4 x_{5}-(-6) x_{6}\right) / 1=-4 x_{5}, x_{3}$ and x_{2} are free, and $x_{1}=\left(0-(-2) x_{2}-3 x_{3}-(-6) x_{4}-5 x_{5}\right) / 1=2 x_{2}-3 x_{3}+6\left(-4 x_{5}+6 x_{6}\right)-5 x_{5}$
$=2 x_{2}-3 x_{3}-29 x_{5}$.
b. Express this solution in parametric vector form.

$$
x=\left[\begin{array}{c}
2 x_{2}-3 x_{3}-29 x_{5} \\
x_{2} \\
x_{3} \\
-4 x_{5} \\
x_{5} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-29 \\
0 \\
0 \\
-4 \\
1 \\
0
\end{array}\right] .
$$

3. Show that if $A x=b$ and $A y=0$, then for any scalar $\alpha, A(x+\alpha y)=b$.

If $A x=b$ and $A y=0$ then for any scalar α,

$$
A(x+\alpha y)=A x+A \alpha y=b+\alpha A y=b+\alpha 0=b
$$

4. Suppose you are to solve m different linear systems of n equations in n unknowns. All of the equations have the same matrix, how ever, they just differ in right hand sides. Estimate how many multiplications are required.

The elimination step on the matrix requires $\frac{n^{3}}{3}$ multiplications and each of the m different linear systems requires n^{2} multiplications for a total of $\frac{n^{3}}{3}+m n^{2}$ multiplications.
5. Use the Gaussian Elimination with Partial Pivoting and Solution algorithm to solve

$$
\begin{aligned}
3 x_{1}+5 x_{2}-2 x_{3} & =-16 \\
-3 x_{1}-x_{3} & =-5 \\
6 x_{1}+2 x_{2}+4 x_{3} & =8
\end{aligned}
$$

Show what occupies storage in the A matrix and the ip array initially and after each major step of elimination.
A
ip

3	5	-2
-3	0	-1
6	2	4

$?$
$?$
$?$

6	2	4	3
-1/2	1	1	?
1/2	4	-4	?

6	2	4
$-1 / 2$	4	-4
$1 / 2$	$1 / 4$	2

3
3
$?$

6	2	4	3
$-1 / 2$	4	-4	3
$1 / 2$	$1 / 4$	2	3

For the elimination applied to $b=\left[\begin{array}{c}-16 \\ -5 \\ 8\end{array}\right]$ we get it changing to

$$
\left[\begin{array}{c}
8 \\
-5 \\
-16
\end{array}\right],\left[\begin{array}{c}
8 \\
-1 \\
-20
\end{array}\right],\left[\begin{array}{c}
8 \\
-20 \\
-1
\end{array}\right] \text {, and finally }\left[\begin{array}{c}
8 \\
-20 \\
4
\end{array}\right] . \text { In the bottom loop we } b_{3}=4 \text { and } x_{3}=\frac{4}{2}=2 \text {. }
$$

Then we get $b_{2}=-20-(-4) \cdot 2=-12$ so $x_{2}=\frac{-12}{4}=-3$. Finally we get $b_{1}=8-2 \cdot(-3)-4 \cdot 2=6$ so $x_{1}=\frac{6}{6}=1$.
6. Fill in the five blanks in the code for Gaussian Elimination with Partial Pivoting and Solution

```
for k = 1:n
    choose ip}\mp@subsup{p}{k}{}\mathrm{ such that }|\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{}|=\operatorname{max}{|\mp@subsup{A}{i,k}{}|:i\geqk
    if }\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{}=
                warning ('Pivot in Gaussian Elimination is zero')
        end
    swap A}\mp@subsup{A}{k,k}{},\ldots,\mp@subsup{A}{k,n}{}\mathrm{ with }\mp@subsup{A}{i\mp@subsup{p}{k}{},k}{},\ldots,\mp@subsup{A}{i\mp@subsup{p}{k}{},n}{
        fori=k+1:n
            A}\mp@subsup{A}{i,k}{}=\mp@subsup{A}{i,k}{}/\mp@subsup{A}{k,k}{
        for j=k+1:n
                A}\mp@subsup{A}{i,j}{}=\underline{\mp@subsup{A}{i,j}{\prime}}-\mp@subsup{A}{i,k}{}\mp@subsup{A}{k,j}{
            end
    end
end
for k=1:n
    swap bk
    for i=k+1:n
        b}=\mp@subsup{b}{i}{}-\mp@subsup{A}{i,k}{}\mp@subsup{b}{k}{
    end
end
for i=n:-1:1
    for j=i+1:n
        bi= bi}-\mp@subsup{A}{i,j}{}\mp@subsup{x}{j}{
    end
    xi= b
end
```

