Grammars, Recursively Enumerable Languages, and Turing Machines

Recursively

Enumerable

Language

 L

 Unrestricted

 Grammar Accepts

Turing

Machine

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple

(V, (, R, S), where

· V is an alphabet,

· ((the set of terminals) is a subset of V,

· R (the set of rules) is a finite subset of

· (V* (V-() V*)
(V*,

context

N
context

(result

· S (the start symbol) is an element of V - (.

We define derivations just as we did for context-free grammars. No notion of a derivation tree, however.

The language generated by G is

{w ((* : S (G* w}

Unrestricted Grammars

Example: L = anbncn, n > 0
S (aBSc

S (aBc

Ba (aB
Bc (bc

Bb (bb

Another Example

L = {w ({a, b, c}+ : number of a's, b's and c's is the same}

S (ABCS

S (ABC

AB (BA

BC (CB

AC (CA

BA (AB

CA (AC

CB (BC

A (a

B (b

C (c

A Strong Procedural Feel

Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we're in a particular phase.

It's very common to have three main phases:

· Generate the right number of the various symbols.

· Move them around to get them in the right order.

· Clean up and get rid of nonterminals.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is recursively enumerable (i.e., it is semidecided by some Turing machine M).

Proof:

Only if (grammar (TM): by construction of a nondeterministic Turing machine.

If (TM (grammar): by construction of a grammar that mimics backward computations of M.

Proof that Grammar (Turing Machine

Given a grammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

(

a
b
a



(
0
1
0
0
0
0
 0
 
 

(
a
S
T
a
b


0
1
0
0
0
0
0

For each nondeterministic "incarnation":

· Tape 1 holds the input.

· Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep looking.

Proof that Turing Machine (Grammar

Suppose that M semidecides a language L (it halts when fed strings in L and loops otherwise). Then we can build M' that halts in the configuration (h, ().

We will define G so that it simulates M' backwards.

We will represent the configuration (q, (uaw) as

>uaqw<

M' goes from

(

a
b
b
a




 to

(









Then, if w (L, we require that our grammar produce a derivation of the form

S (G >h< (produces final state of M')

 (G* >abq< (some intermediate state of M')

 (G* >sw< (the initial state of M')

 (G w< (via a special rule to clean up >s)

 (G w (via a special rule to clean up <)

The Rules of G

S (>h<

>s ((
< ((
Rules that correspond to (:

If ((q, a) = (p, b) :

bp (aq

If ((q, a) = (p, () :

abp (aqb (b ((

ap< (aq<

If ((q, a) = (p, (), a (

pa (aq

If ((q, ) = (p, ()

pb (qb (b ((

p< (q<

A REALLY Simple Example

M' = (K, {a}, (, s, {h}), where

 (={
((s, ), (q, ()),

1

((q, a), (q, ()),

2

((q, ), (t, ()),

3

((t, a), (p, )),

4

((t, ), (h, )),

5

((p, ), (t, ())

6

L = a*

S (>h<

>s ((

< ((
(1)
q(s

aq (sa

q< (s<

(2)
aq (aq

aaq (aqa

aq< (aq<

(3)
t (q

ta (qa

t< (q<

(4)
p (at

(5)
h (t

(6)
t (p

ta (pa

t< (p<

Working It Out

S (>h<

1

>s ((

2

< ((

3

(1)
q(s

4

aq (sa

5

q< (s<
6

(2)
aq (aq

7

aaq (aqa

8

aq< (aq<

9

(3)
t (q

10

ta (qa

11

t< (q<

12

(4)
p (at

13

(5)
h (t

14

(6)
t (p

15

ta (pa

16

t< (p<

17

>saa<

1

>aqa<

2

>aaq<

2

>aaq<

3

>aat<

4

>ap<

6

>at<

4

>p<

6

>t<

5

>h<

S
(>h<

1

(>t<

14

(>p<

17

(>at<

13

(>ap<
17

(>aat<

13

(>aaq<
12

(>aaq<
9

(>aqa<
8

(>saa<

5

(aa<

2

(aa

3

An Alternative Proof

An alternative is to build a grammar G that simulates the forward operation of a Turing machine M:

The first (generate) part of G:

Creates all strings over (* of the form

w = ((Qs a1 a1 a2 a2 a3 a3 …

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:

 ((a 1 b 2 c c b 4 Q3 a 3

Examples of rules:

b b Q 4 (b 4 Q 4 (rewrite b as 4)

b 4 Q 3 (Q 3 b 4 (move left)

The third (cleanup) part of G erases the junk if M ever reaches h.

Example rule:

h a 1 (a # h (sweep # h to the right

erasing the working symbol)

Computing with Grammars

We say that G computes f if, for all w, v ((*,

SwS (G* v iff v = f(w)

Example:

S1S
(G* 11

S11S
(G* 111

f(x) = succ(x)

A function f is called grammatically computable iff there is a grammar G that computes it.

Theorem: A function f is recursive iff it is grammatically computable.

In other words, if a Turing machine can do it, so can a grammar.

Example of Computing with a Grammar

f(x) = 2x, where x is an integer represented in unary

G = ({S, 1}, {1}, R, S), where R =

S1 (11S

SS ((
Example:

Input:

S111S

Output:

L = {x + y = z: x, y, and z are unary numbers and z is the sum of x and y}

Give an unrestricted grammar to compute the function f(x) = y where x is a unary number and y is its binary equivalent

More on Functions:

Why Have We Been Using Recursive as a Synonym for Computable?

Primitive Recursive Functions

Define a set of basic functions:

· zerok (n1, n2, … nk) = 0

· identityk,j (n1, n2, … nk) = nj
· successor(n) = n + 1

Combining functions:

· Composition of g with h1, h2, … hk is

g(h1(), h2(), … hk())

· Primitive recursion of f in terms of g and h:

f(n1,n2,…nk, 0) = g(n1,n2,…nk)

f(n1,n2,…nk,m+1) = h(n1,n2,…nk, m, f(n1, n2,…nk,m))

Example:

plus(n, 0) = n

plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivially true: All primitive recursive functions are Turing computable.

What about the other way: Not all Turing computable functions are primitive recursive.

Proof:

Lexicographically enumerate the unary primitive recursive functions, f0, f1, f2, f3, ….

Define g(n) = fn(n) + 1.

G is clearly computable, but it is not on the list. Suppose it were fm for some m. Then

fm(m) = fm(m) + 1, which is absurd.

	
	0
	1
	2
	3
	4

	f0
	
	
	
	
	

	f1
	
	
	
	
	

	f2
	
	
	
	
	

	f3
	
	
	
	27
	

	f4
	
	
	
	
	

Suppose g is f3. Then g(3) = 27 + 1.

Functions that Aren't Primitive Recursive

Example:
Ackermann's function:

A(0, y) = y + 1

A(x + 1, 0) = A(x, 1)

A(x + 1, y + 1) = A(x, A(x + 1, y))

	
	0
	1
	2
	3
	4

	0
	1
	2
	3
	4
	5

	1
	2
	3
	4
	5
	6

	2
	3
	5
	7
	9
	11

	3
	5
	13
	29
	61
	125

	4
	13
	65533
	265536-3 *
	
[image: image1.wmf]2

3

2

65536

-

 #
	
[image: image2.wmf]2

3

2

2

65536

-

 %

* 19,729 digits

105940 digits

%
[image: image3.wmf]10

10

5939

 digits

1017 seconds since big bang

1087 protons and neutrons

10-23 light seconds = width

of proton or neutron

Thus writing digits at the speed of light on all protons and neutrons in the universe starting at the big bang would have produced 10127 digits.

Recursive Functions

A function is (-recursive if it can be obtained from the basic functions using the operations of:

· Composition,

· Recursive definition, and

· Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is a function f of k arguments defined as:

f(n1,n2,…nk) = the least m such at g(n1,n2,…nk,m)=1,

if such an m exists,

 0 otherwise

A function g is minimalizable iff for every n1,n2,…nk, there is an m such that g(n1,n2,…nk,m)=1.

Theorem:

A function is (-recursive iff it is recursive (i.e., computable by a Turing machine).

Partial Recursive Functions

Consider the following function f:

 f(n) =
1 if TM(n) halts on a blank tape

0 otherwise

The domain of f is the natural numbers. Is f recursive?

domain

range

Functions and Machines

Partial Recursive

Functions

Recursive

Functions

Primitive Recursive

Functions

Turing Machines
Languages and Machines

Recursively Enumerable

Languages

Recursive

Languages

Context-Free

Languages

Deterministic

Context-Free

Languages

Regular

Languages

FSMs
DPDAs

NDPDAs
Turing Machines
Is There Anything In Between CFGs and Unrestricted Grammars?

Answer: yes, various things have been proposed.

Context-Sensitive Grammars and Languages:

A grammar G is context sensitive if all productions are of the form

x (y

and |x| (|y|

In other words, there are no length-reducing rules.

A language is context sensitive if there exists a context-sensitive grammar for it.

Examples:

L = anbncn, n > 0

L = {w ({a, b, c}+ : number of a's, b's and c's is

the same}

Context-Sensitive Languages are Recursive

The basic idea: To decide if a string w is in L, start generating strings systematically, shortest first. If you generate w, accept. If you get to strings that are longer than w, reject.

Linear Bounded Automata - A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k times the length of the input.

Example:

L = {anbncn : n (0}

(aabbcc

 a’ a,b’ b,c’

 >R a a’ R b b’ R c c’ L

 ,b’,c’ c,a’,c’, ,a,b’,a’
 b,c

b’,c’ R a,b,c,a’ n

 
 y

Context-Sensitive Languages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar G. We build a machine B with a two track tape. On input w, B keeps w on the first tape. On the second tape, it nondeterministically constructs all derivations of G. The key is that as soon as any derivation becomes longer than |w| we stop, since we know it can never get any shorter and thus match w. There is also a proof that from any lba we can construct a context-sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.

Languages and Machines

Recursively Enumerable

Languages

Recursive

Languages

Context-Sensitive

Languages

Context-Free

Languages

Deterministic

Context-Free

Languages

Regular

Languages

FSMs
DPDAs

NDPDAs
Linear Bounded Automata
Turing Machines
The Chomsky Hierarchy

Recursively Enumerable

Languages

Context-Sensitive

Languages

Context-Free

Languages

Regular

 Type 0 Type 1
 Type 2
 (Type 3)

Languages

FSMs
PDAs
Linear Bounded Automata

Turing Machines
_986750055

_986751216

_986750054

