|. Lecture Notes



The Three Hour Tour Through Automata Theory

Read Supplementary Materials. The Three Hour Tour Through Automata Theory
Read Supplementary Materials. Review of Mathematical Concepts

Read K & S Chapter 1

Do Homework 1.

Let'sLook at Some Problems
int alpha, beta;
alpha=3;
beta= (2 +5)/ 10;
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

ya +/\o
£\
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) it does.

A Framework for Analyzing Problems
We need a single framework in which we can analyze a very diverse set of problems.
The framework we will use is L anguage Recognition

A language is a (possibly infinite) set of finite length strings over afinite al phabet.

L anguages
(1) 2={0,1,2,3,4,5,6,7,8,9}
L ={w O Z*: w represents an odd integer}
={w O z*: thelast character of wis1,3,5,7, or 9}
= (0010203040506070809)*
(103050709)
2 z={()}
L ={w O Z*: w has matched parentheses}
= the set of strings accepted by the grammar:
S~ (S)
S- SS
S-¢
(3) L ={w: wisasentence in English}
Examples: Mary hit the ball.
Colorless green ideas sleep furioudly.
The window needs fixed.
(4) L ={w: wisaC program that halts on all inputs}
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Encoding Output in the Input String

(5) Encoding multiplication as asingle input string
L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is
the product of the first two}
12x9=108 12=12 12x8=108
(6) Encoding prime decomposition
L ={w of the form: <integer1>/<integer2>,<integer3> ..., where integers 2 - n represent the prime decomposition of
integer 1.
15/3,5 2/2
M ore Languages

(7) Sorting as a language recognition task:
L ={w;#w,: [h=>1,
w, isof theforminty, int,, ... int,,
w, isof theformint,, int,, ... int,, and
W, contains the same objects as w; and w; is sorted}

Examples:
1,5,3,9,6#1,3,56,9 0 L
1,53,9,6#1,2,3,4,5,6,7 0L

(8) Database querying as a language recognition task:
L={d#q#a
d isan encoding of a database,
g isastring representing a query, and
aisthe correct result of applying qto d}
Example:
(name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876 )# (select name age=23) # (John) O L

The Traditional Problemsand their Language For mulations are Equivalent

By equivalent we mean:

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other
functions that can be built using a machine of equal or lesser power.

Consider the multiplication example:
L ={w of the form:
<integer>x<integer>=<integer>, where
<integer> is any well formed integer, and
the third integer is the product of the first two}

Given amultiplication machine, we can build the language recognition machine;

Given the language recognition machine, we can build a multiplication machine;
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A Framework for Describing Languages

Clearly, if we are going to work with languages, each one must have a finite description.

Finite Languages. Easy. Just list the elements of the language.
L ={June, July, August}

Infinite Languages. Need afinite description.
Grammars let us use recursion to do this.
Grammars1

(1) The Language of Matched Parentheses

(2) The Language of Odd Integers
S-1
S-3
S-5
S—>7
S-9
S-0S
S- 1S
S-2S
S-3S
S-4S
S-5S
S-6S
S-7S
S-8S
S-9S

Grammars3

(3) The Language of Simple Arithmetic Expressions

S - <exp>

<exp> - <number>

<exp> - (<exp>)

<exp> - - <exp>

<exp> — <exp> <op> <exp>

<op> - +|-[* |/

<number> - <digit>

<number> - <digit> <number>

<digit>-0|1]2|3]4]|5|6|7|8]9
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Grammars?2

S-0
S-AO
A-AD
A-D
D—>O
D-E
O—>1
0-3
O—>5
0-7
0-9
E- O
E- 2
E- 4
E- 6
E- 8



Top Down Parsing

Bottom Up Parsing

Lecture Notes 1

Grammars as Generators and Acceptors

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages
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Regular Grammars
Inaregular grammar, al rules must be of the form:
<one nonterminal> - <oneterminal> or ¢
or
<one nonterminal> - <one terminal><one nonterminal>

So, the following rules are okay:
So ¢
S-a
S- aS

But these are not:
S nd ab
S- SS
as s b
Regular Expressionsand L anguages

Regular expressions are formed from O and the charactersin the target alphabet, plus the operations of:
»  Concatenation: a3 means a followed by 3

e Or (SetUnion): al meansa Or (Union) 3

» Kleene*: a* means 0 or more occurrences of a concatenated together.

+ AtLeast 1: a" means 1 or more occurrences of o concatenated together.

e (): used to group the other operators

Examples:

(1) Odd integers:
(0010203040506070809)*(103050709)

(2) Iderntifiers:
(A-Z)"((A-2) O(0-9))*

(3) Matched Parentheses
Context Free Grammars

(1) The Language of Matched Parentheses
S-(9S)
S SS
So ¢

(2) The Language of Simple Arithmetic Expressions
S - <exp>
<exp> - <number>
<exp> - (<exp>)
<exp> - - <exp>
<exp> — <exp> <Op> <exp>
<op> - +|-|*|/
<number> - <digit>
<number> - <digit> <number>
<digit> - 0]1]2|3]|4|5|6]7|8]9
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Not All Languages are Context-Free

English: S - NP VP
NP - the NP1 |NP1
NP1 - ADJ NP1|N
N - boy | boys
VP -V |V NP
V - run|runs
What about “boys runs’

A much simpler example:

ab'c" n=1

Unrestricted Grammars

Example: A grammar to generate all strings of the form a'b’c", n>1

S - aBSc

S - aBc
Ba - aB
Bc - bc
Bb - bb
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The Language Hierarchy
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A Machine Hierarchy

Finite State M achines 1

An FSM to accept odd integers:

1,3,5,7,9

1,3,5,7,9

0,2,4,6,8
0,2,4,6,8

Finite State M achines 2
An FSM to accept identifiers:

|etter

Q /—m letter or digit

blank, delirmiter () delimiter or blank
anything

or digit
Pushdown Automata

A PDA to accept strings with balanced parentheses:

¢ I
i ‘@

Example: (())()
Stack:

Pushdown Automaton 2

A PDA to accept strings of the form w#w*®:

alla alal .

#ll
q

b/l b/b/ .
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A Nondeter ministic PDA

A PDA to accept strings of the form  ww?

alla alal .
ell
N )

bl/b b/b/ '

PDA 3

A PDA to accept strings of the form a'b"c"

Turing Machines

A Turing Machine to accept strings of the form a’b"c"

di/R

b,f//IR \
a,b,ef//L
c/flL

ad,eQ

Q,ef//IR

ef/IR
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A Two Tape Turing Machine
A Turing Machine to accept { w#w"}

|<>|EI alb alal# alalb aIEIlEIl

A Two Tape Turing Machine to do the same thing

Simulating k Tapeswith One
A multitrack tape:

Rl |olo

o|<c|ofe
ol|o|r|w
ol|o|o|o
o|v|o|w
olo|o|
e (=]
(N

Can be encoded on a single tape with an alphabet consisting of symbols corresponding to :

{{0,ab#,0} x{0,1} x
{0,ab#0} x{0,1}}

Example: 2nd square: (4,0,a,1))

Simulating a Turing M achine with a PDA with Two Stacks

olafblafa#lafaofa] | | [ | | |

]

a #
a a
b a
a b
0 a

Lecture Notes 1 The Three Hour Tour



The Universal Turing Machine
Encoding States, Symbols, and Transitions

Suppose the input machine M has 5 states, 4 tape symbols, and atransition of the form:
(s,a,9,b), which can be read as:

in state s, reading an a, go to state g, and write b.

We encode this transition as:
g000,a00,q010,a01

A series of transitions that describe an entire machine will look like
g000,200,q010,a01#g010,a00,q000,a00

The Universal Turing Machine
a awb

| a00a00a01 |

| # # # |

| qo00 |

Church's Thesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.

The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.

Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine. Thisisn't aformal
statement, so we can't proveit. But many different computational models have been proposed and they all turn out to be
equivalent.

Example: unrestricted grammars
A Machine Hierarchy

PDAs

Turing Machines
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Turing Machines

Where Does a Particular Problem Go?

Showing what it is -- generally by construction of:

e A grammar, or amachine

Showing what it isn't -- generally by contradiction, using:

e Counting
Example: a'b"

»  Closure properties

e Diagonalization

e Reduction

Regular Lanugages are Closed Under:
= Union

Concatenation

Kleene closure

Complementation

Reversa

Intersection

Context Free Languages are Closed Under:

=  Union

= Concatenation

= Kleene Closure

» Reversal

* Intersection with regular languages
Etc.
Lecture Notes 1
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Using Closure Properties

Example:
L ={a'™c" nzm or m# p} is not deterministic context-free.

Two theorems welll prove later:

Theorem 3.7.1: The class of deterministic context-free languagesis closed under complement.

Theorem 3.5.2: Theintersection of acontext-free language with aregular language is a context-free language.

If L were adeterministic CFL, then the complement of L (L") would be a deterministic CFL.

ButL' n a*b*c* = {a"c"}, which we know is not context-free, much less deterministic context-free. Thus a contradiction.
Diagonalization

The power set of the integersis not countable.
Imagine that there were some enumeration:

1 2 3 4 5
Set 1 1
Set 2 1 1
Set 3 1 1
Set 4 1
Set 5 1 1 1 1 1
But then we could create a new set
[ New Set | | | [1 | |

But this new set must necessarily be different from all the other setsin the supposedly complete enumeration. Yet it should be
included. Thus a contradiction.

More on Cantor

Of coursg, if were going to enumerate, we probably want to do it very systematically, e.g.,

1 2 3 4 5 6 7

Setl 1

Set2 1

Set 3 1 1

Set4 1

Set5 1 1

Set 6 1 1

Set7 1 1 1

Read the rows as bit vectors, but read them backwards. So Set 4is 100. Notice that thisisthe binary encoding of 4.
This enumeration will generate al finite sets of integers, and in fact the set of all finite sets of integersis countable.
But when will it generate the set that contains all the integers except 1?
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The Unsolvability of the Halting Problem

Suppose we could implement
HALTS(M ,x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x,x) then loop forever
else halt

So now what happens if we invoke TROUBLE(TROUBLE), which invokes
HALTS(TROUBLE, TROUBLE)

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |FHALTS saysthat TROUBLE loops, then TROUBLE
halts.

Viewing the Halting Problem as Diagonalization

First we need an enumeration of the set of all Turing Machines. We'l just use lexicographic order of the encodings we used as
inputs to the Universal Turing Machine. So now, what we claimisthat HALTS can compute the following table, where 1 means
the machine halts on the input:

11 12 13 TROUBLE 15
Machine 1 1
Machine 2 1 1
Machine 3
TROUBLE 1 1
Machine 5 1 1 1 1

But we've defined TROUBLE so that it will actually behave as:

| TROUBLE | | I 1 | 1 |

Or maybe HALT said that TROUBLE(TROUBLE) would halt. But then TROUBLE would loop.
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Decidability

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Can always say yes or no

Can enumerale e grammar.
say yes by enumerating and checki

Let's Revisit Some Problems

int alpha, beta;
alpha=3;
beta= (2 + 5) / 10;

(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

N

T 10

N

2 5

(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.

(5) Interpretation: Figure out what (if anything) useful it does.

Lecture Notes 1 The Three Hour Tour
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So What's L eft?
Formalize and Prove Things

Regular Languages and Finite State Machines
« FSMs
*  Nondeterminism
e State minimization
e Implementation
» Equivalence of regular expressions and FSMs
*  Properties of Regular Languages
Context-Free Languages and PDAS
« Equivalence of CFGs and nondeterministic PDAs
»  Properties of context-free languages
e Parsing and determinism
Turing Machines and Computability
e Recursive and recursively enumerable languages
» Extensions of Turing Machines
e Undecidable problems for Turing Machines and unrestricted grammars

Lecture Notes 1 The Three Hour Tour
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What Is a Language?
Do Homework 2.

Grammars, Languages, and M achines

Language
L
Accepts
Machine
Strings: the Building Blocks of Languages
An alphabet isafinite set of symbols: English alphabet: {A,B,C, ...

Binary alphabet: {0, 1}
A string over an alphabet is afinite sequence of symbols drawn from the al phabet.

English string: happynewyear
binary string: 1001101

We will generally omit “ " from strings unless doing so would lead to confusion.

The set of all possible strings over an alphabet X iswritten Z*.
binary string: 1001101 0 {0,1} *

The shortest string contains no characters. It is called the empty string and is written
The set of all possible strings over an alphabet X iswritten >*.
Moreon Strings

The length of a string is the number of symbolsin it.

le|=0
[1001101| =7
A string aisasubstring of astring b if aoccurs contiguously as part of b.
aaa isasubstring of aaabbbaaa
aaaaaa isnot asubstring of aaabbbaaa

Every string is a substring (although not a proper substring) of itself.

€ isasubstring of every string. Alternatively, we can match € anywhere.

Notice the analogy with sets here.

Lecture Notes 2 What is a Language?
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Operationson Strings

Concatenation: The concatenation of two strings x and y iswritten x || y, X4/, or xy and is the string formed by appending the
string y to the string x.

Iyl = Ix| + Iyl

If x=¢andy="food”, then xy =
If x="good” andy = “bye", then |xy| =

Note: x[8=¢elX =x for al strings x.

Replication: For each string w and each natural number i, the string W is defined recursively as
0

W =¢

w=wtw foreachi > 1
Like exponentiation, the replication operator has a high precedence.

Examples:

a=

(bye)* =

a0b3 —

String Rever sal

An inductive definition:
(1) If w|=0thenw®=w=¢
(2) If w|=1then Dal>: w=ula
(aisthe last character of w)
and
wR = am®
Example:
(abe)"” =
Moreon String Rever sal
Theorem: If w, x are strings, then (WX)® = x?m”
Example: (dogcat)® = (cat)(dog)" = tacgod
Proof (by induction on [x]):
Basis: [x| = 0. Thenx = ¢, and (WX)® = (WE)R = (W)" = el = eFR = X
Induction Hypothesis: If [x| < n, then ()R = xRW®

Induction Step: Let [x] = n+ 1. Then x = u afor some character aand |u| = n

W) = (w(u@)"

= (wm)@*° associativity
= al(wm)® definition of reversal
= an"mR induction hypothesis
= (Lé@)zw2 definition of reversal
=X W
dogcat
-

X
u

Q1
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Defining a Language
A languageisa (finite or infinite) set of finite length strings over afinite alphabet >.
Example: Let 2 ={a, b}
Some languages over >: [1, {€}, {a b}, {&, a, aa, asa, asaa, asaaa}
The language Z* contains an infinite number of strings, including: €, a, b, ab, ababaaa

Example L anguage Definitions
L={x0O{a b}*:al asprecede all b's}

L={x:0yO{a b}*:x=ya}

L={d,n=0}

L =a" (If we say nothing about the range of n, we will assumethat it is drawn from N, i.e., n>0.)

L ={x#y: x,y 0 {0-9}* and square(x) =y}

L={} =0 (the empty language—not to be confused with { €}, the language of the empty string)
Techniquesfor Defining L anguages

Languages are sets. Recall that, for sets, it makes sense to talk about enumerations and decision procedures. So, if we want
to provide a computationally effective definition of alanguage we could specify either a

» Language generator, which enumerates (lists) the elements of the language, or a
»  Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and
Falseif it isn't.

Example: Thelogical definition: L ={x: 0Oy O{a, b}* : x =ya} can beturned into either alanguage generator or a
language recognizer.

How Large are Languages?

e Thesmalest language over any alphabet is . [d]=0
» Thelargest language over any alphabet is >*. [Z*|="7
-IfZ=0thenx* ={¢} and [2*|=1
- If Z # 0 then |2*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the
integers as follows:
1. Enumerate all strings of length O, then length 1, then length 2, and so forth.
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb

»  Soall languages are either finite or countably infinite. Alternatively, all languages are countable.

Operationson Languages 1

Normal set operations: union, inter section, difference, complement...
Examples: 2 ={a, b} L, = strings with an even number of as

L, = stringswith no b's
Ll O L2:
Ll al L2 =
|_2 - Ll =
(Lz-Ly=
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Operations on Languages 2
Concatenation: (based on the definition of concatenation of strings)

If L, and L, are languages over Z, their concatenation L =L L,, sometimesL,(,, is
{wOX*:w=xyforsomexOL;andy 0Ly}

Examples:

L, = {cat, dog} L, ={apple, pear} L, L, ={catapple, catpear, dogapple, dogpear}
L1={an:n21} L2={a”:ns3} LiL,=

I dentities:

LO=0L=0 0L (anaogousto multiplication by 0)
L{e}={e}L =L 0OL (analogousto multiplication by 1)

Replicated concatenation:
L"=LOMO... M (ntimes)
L'=L
L°={¢g}
Example:
L ={dog, cat, fish}
LO={g}
L' ={dog, cat, fish}
L? = { dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish}
Concatenating L anguages Defined Using Variables

L,=a" ={d":n=0} L,=b"={b":n>0}
Lil,={a":n=0}{b":n=20} ={ a"b™:nm=0} (commonmistake: ) Zab" ={ a'b":n=0}

Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.
L=1"2"
L =ah"d"
Operationson Languages 3
Kleene Star (or Kleeneclosure): L* ={w O X* : w=w; W, ... wy for some k = 0 and some wy, Wy, ... w, 0L}
Alternative definition: L* =L°O L' OL*0 L3O ...
Note: 0L, e O L*
Example:
L ={dog, cat, fish}
* ={¢, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...}
Another useful definition: L*=L L* (L" isthe closure of L under concatenation)
Alternatively, L*= L' 0 L20 L3O ...
L"=L*-{g} if e0L

L"=L* if e0OL
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Regular Languages

Read Supplementary Materials. Regular Languages and Finite State Machines: Regular Languages
Do Homework 3.

Regular Grammars, L anguages, and M achines

Regular
Language

Regular Expression
or
Regular Grammar

Finite
State
M achine

“Pure” Regular Expressions

Theregular expressions over an aphabet Z are all strings over the alphabet ~ 00 {“(*, )", O, O, *} that can be obtained as
follows:

1. 0 and each member of X isaregular expression.
2. 1f a, B areregular expressions, then so is aff
3.1f a, B areregular expressions, then soisal .
4. If a isaregular expression, then soisa*.

5. If a isaregular expression, then so is (a).

6. Nothing else isaregular expression.

If ~ ={ab} thenthese are regular expressions: O, a, bab, allb, (aldb)*a*b*
So far, regular expressions are just (finite) strings over some alphabet, > 00 {“(*, )", O, O, *}.
Regular Expressions Define Languages

Regular expressions define languages via a semantic inter pretation function we'll call L:
1.L(O)=0andL(a)={a} foreachal >
2.1f a, B areregular expressions, then

L(ap) = L(o)@(B)

= al strings that can be formed by concatenating to some string from L (o) some string from L([3).

Note that if either a or B is 0, then itslanguage is [1, so there is nothing to concatenate and the result is (1.
3.1f a, B areregular expressions, then L(al ) =L(a) O L(B)
4. If a isaregular expression, then L(a*) = L(a)*
5.L((0)) =L(a)

A languageisregular if and only if it can be described by aregular expression.

A regular expression is always finite, but it may describe a (countably) infinite language.
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Regular Languages
An equivalent definition of the class of regular languages over an alphabet 3
The closure of the languages

{a} Dalx and O [1]
with respect to the functions:
e concatenation, 2]
e union, and [3]
e Kleene star. [4]

In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2],
[3], and [4].

“Closure” and “ Closed”
Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.
The functions are applied to members of the set, and if anything new arises, it’'s added to the set. The resulting set is called
the closure over the initial set and the functions. Note that the functions(s) may only be applied afinite number of times.

Examples:
The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.
Regular languages can be defined asthe closure of {a} DalX and [0 and the functions of concatenation, union, and
Kleene star.

We say aset isclosed over afunction if applying the function to arbitrary elementsin the set does not yield any new elements.

Examples:
The set of natural numbers N is closed under multiplication.
Regular languages are closed under intersection.

See Supplementary Material s—Review of Mathematical Concepts for more formal definitions of these terms.

Examples of Regular Languages
L( a*b* )=
L( (a0b) )=
L( (a0b)* )=
L( (aOb)*a*b*) =
L ={wO{ab}* : w|iseven}
L ={w O {ab}* : w contains an odd number of a's}

Augmenting Our Notation
It would be really useful to be able to write € in aregular expression.
Example: (a0 €) b (Optiona afollowed by b)

But we'd also like aminimal definition of what constitutes aregular expression. Why?

Observe that
0°={¢€} (since 0 occurrences of the elements of any set generates the empty string), so
O ={¢}

So, without changing the set of languages that can be defined, we can add € to our notation for regular expressions if we
specify that
L(e) ={&}
We're essentially treating € the same way that we treat the charactersin the alphabet.
Having done this, you'll probably find that you rarely need [0 in any regular expression.
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More Regular Expression Examples

L( (aa)O¢e )=

L( @O¢g* )=

L ={ wO{ab}* : thereisno more than one b}

L ={ wO{ab}* : notwo consecutive letters are the same}

Further Notational Extensions of Regular Expressions

« A fixed number of concatenations: a" means aoaa ...a (n times).

+ AtlLeast 1: a" means 1 or more occurrences of a concatenated together.

»  Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter)
Example: L = (A-Z2)"((A-Z2)0(0-9))*

« A replicated regular expression a", where n is a constant.
Example: L = (0 0 1)®

e Intersection: anf (we'll prove later that regular languages are closed under intersection)
Example: L = (&)* n (&)*

Operator Precedencein Regular Expressions

Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to:

1. Parsethestring

2. Assign ameaning to the parse tree

Parsing regular expressionsisalot like parsing arithmetic expressions. To do it, we must assign precedence to the operators:

Regular Arithmetic
Expressions Expressions
Highest Kleene star exponentiation
concatenation
. . multiplication
intersection
L owest union addition
ab* O cd* Xy?+ij?

Regular Expressionsand Grammars
Recall that grammars are language generators. A grammar isarecipe for creating stringsin alanguage.
Regular expressions are analogous to grammars, but with two special properties:

1. Thehavelimited power. They can be used to define only regular languages.
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules.

But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.
Specifically, any such grammar must be composed of rules that:

e havealeft hand side that is a single nonterminal
* havearight hand side that is€, or asingle terminal, or asingle terminal followed by a single nonterminal.
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Regular Grammar Example
L={w O {a b}* : jw|iseven}

((@a@) O (ab) O (ba) O (bb))* Notice how these rules correspond naturally to a FSM:
So¢ ~ ab
S afl /
L 1
T-a
T-b ab
T aS
T - bS

Generators and Recognizers

Generator Recognizer

\ Language /

Regular Languages

_—— “‘-\\\~

Regular Expressions
Regular Grammars ?
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Finite State Machines

Read K & S2.1
Do Homeworks 4 & 5.
Finite State M achines 1

A DFSM to accept odd integers:

Definition of a Deterministic Finite State M achine (DFSM)

M= (K, %, 9, s, F), where K isafinite set of states
2 isan alphabet
sO K istheinitial state
F O K isthe set of final states, and
o isthetransition function. It isfunction from (K x ) to K
i.e., each element of & maps from: a state, input symbol pair to a new state.

Informally, M acceptsastring w if M winds up in some state that is an element of F when it has finished reading w (if not, it
re ectsw).

The language accepted by M, denoted L (M), isthe set of all strings accepted by M.
Determinigtic finite state machines (DFSMs) are also called deterministic finite state automata (DFSAs or DFAS).
Computations Using FSM s

A computation of A FSM is a sequence of configurations, where a configuration is any element of K x2*.
Theyieldsrelation |-y:
(@ w) Fm (d, w) iff
e w=aw' for somesymbol all 2, and
- 0(@a=q
(Theyieldsrelation effectively runs M one step.)

[-w * isthereflexive, transitive closure of |-y.
(The [-»* relation runs M any number of steps.)

Formally, aFSM M acceptsastring w iff
(s w) [w * (q, €), for someq O F.

An Example Computation

A DFSM to accept odd integers:
On input 235, the configurations are:
(90, 235) i (90, 35)
I
I

Thus (90, 235) |-u+ (g1, €). (What does this mean?)
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Finite State M achines 2

A DFSM to accept $.50 in change:

M ore Examples

((28) 0 (ab) O (ba) T (bb))*

(b O €)(ab)*(all €)

M ore Examples
L1={wO{a b}* : every aisimmediately followed a b}

A regular expression for L1:

A DFSM for L1:

L2={w O{a, b}* : every a has a matching b somewhere before it}

A regular expression for L2:

A DFSM for L2:
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Another Example: Socket-based Network Communication

Client Server > ={Open, Req, Reply, Close}
open socket
send request
send reply L = Open (Req Reply)* (Reg [ €) Close
send request
send reply
M=
close socket

Definition of a Deterministic Finite State Transducer (DFST)

M=(K, Z, 0,9, s, F), where
K isafinite set of states
2 isaninput alphabet
Oisan output al phabet
sOK istheinitial state
F O K isthe set of final states, and
disthetransition function. It isfunction from

(K x 2) to (K x O*)

i.e., each element of d mapsfrom: astate, input symbol pair
to: anew state and zero or more output symbols (an output string)

M computes a function M (w) if, when it reads w, it outputs M(w).

Theorem: The output language of a deterministic finite state transducer (on final state) isregular.
A Simple Finite State Transducer

Convert 1'sto O'sand O'sto 1's (thisisn't just a finite state task -- it's a one state task)

1/0

0/1
An Odd Parity Generator

After every three bits, output afourth bit such that each group of four bits has odd parity.
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Nondeterministic Finite State Machines

ReadK & S2.2,2.3

Read Supplementary Materials. Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic
and Deterministic FSAs.

Do Homework 6.

Definition of a Nondeter ministic Finite State M achine (NDFSM/NFA)
M=(K, Z, A, s F), where

K isafinite set of states
> isan alphabet
sOK istheinitia state
F O K isthe set of final states, and
A isthetransitionrelation. Itisafinite subset of

(Kx(zD{e})) xK

i.e., each element of A contains:
aconfiguration (state, input symbol or €), and anew state.

M accepts a string w if there exists some path along which w drives M to some element of F.

The language accepted by M, denoted L (M), isthe set of all strings accepted by M, where computation is defined analogously to
DFSMs.

A Nondeterministic FSA
L={w : thereisasymbol gX not appearing in w}

Theideaisto guess (nondeterministically) which character will be the one that doesn't appear.

Another Nondeter ministic FSA
L,={w: aaoccursin w}

L,={x : bboccursinx}
L3={y :dLyor L2}

Ty ®Y
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Analyzing Nondeter ministic FSAs

Does this FSA accept: baaba
Remember: we just have to find one accepting path.

Nondeter ministic and Deter ministic FSAs
Clearly, { Languages accepted by a DFSA} [ { Languages accepted by a NDFSA}
(Just treat d as )
More interestingly, Theorem: For each NDFSA, thereis an equivalent DFSA.
Proof: By construction

b,c

a,cC

ab

Another Nondeter ministic Example
b* (b(alc)cOb(@db)(cOeg))*b
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A “Real” Example

* Found by enemy

Hide
—J Coast clear

ound by enemy

Brother
kills gnemy

Kill enemy

Dealing with € Transitions

E(Q ={pOK:(qw) [*m (p, w}. E(q) istheclosure of {g} under therelation {(p,r): thereisatransition (p, €, r) O A}

An algorithm to compute E(q):

Defining the Deterministic FSA

GivenaNDFSA M =(K, %, A, s, F),
weconstruct  M'=(K', Z, &, s, F), where
Kl - 2K

S =E(9)
F={QUK:Qn Fz0O}
0 (Qa=0{E():p0IKand(q,ap) DA
for some q O Q}
Example: computing &' for the missing letter machine
s= {d0,q, g2 g3}
o= { ({d0, 1, 92, g3}, & {92, q3}),
({90, 91, 92, 3}, b, {q1, q3}),
({90, g1, 92, g3}, ¢, {q1, g2}),
({al, 92}, a {g2}), {91, g2}, b, {q1}), ({dl, 92}, c,{ql, g2})
(g1, g3}, & {g3}), {aL, g3}, b, {g1, g3}), ({al, g3}, c, {ql})
({92, g3}, & {g2,g3}), {92, g3}, b, {g3}), ({02, g3}, c, {g2})
({a1}, b, {a1}), (a1}, c, {ql})
({92}, a {g2}), {92}, c. {g2})
(a3}, a {a3}), (a3}, b, {a3}) }
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An Algorithm for Constructing the Deterministic FSA
Compute the E(g)s:
Compute s = E(s)
3. Compute d"
0'(Q,a) =0{E(p):pdKand (g, a p) O A for someq O Q}
Compute K' = a subset of 2
5. ComputeF={QOK':QnF£0}

NP

e

An Example - The Or Machine
L,={w: aaoccursinw}
L,={x : bboccursinx}
Le={y :0OLjorL,}

b b ab

OO G

a
Another Example

b* (b(al c)cOb(@db)(cOe))*b
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Sometimes the Number of States Grows Exponentially

Example:  The missing letter machine, with [Z|=n
No. of states after O chars: 1 > a
n

No. of new states after 1 char: (n_J =n

ac
: a0 g /D
No. of new states after 2 chars: n—2 =n(n-1)/2 -

n

b,c

No. of new states after 3 chars: (n J =n(n-1)(n-2)/6 ab

-3
Total number of states after n chars; 2" &

What If The Original FSA is Deterministic?

Compute the E(g)s:

s =E(qO0) =

3. Compute &
({q0}, odd, {q1})
({q0}, even, {q0})
({1}, odd, {q1})
({ g1}, even, {q0})

4. K'={{q0}, {ql}}

5. F={{q1}}

M'=M

NP

135,79

Thereal meaning of “determinism”
A FSA isdeterministic if, for each input and state, there is at most one possible transition.
DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with e-transitions and implicit dead states), but the formalism allows nondeterminism,
in general.

Determinism implies uniquely defined machine behavior.
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Interpreters for Finite State Machines

Deterministic FSAsas Algorithms

Example: No more than oneb S s := get-next-symbol;
if s= end-of-file then accept;
elseif s=athengoto S

a ab elseif s=bthengoto T;
b b T: S:= get-next-symbol;
@ 3 @ U if s= end-of-file then accept;
U elseif s=athengoto T;

elseif s=bthengoto U;

Length of Program: |K| x (|Z| + 2) etc.
Time required to analyze string w: O(jw| x [Z])

We have to write new code for every new FSM.

Until accept or reject do:
A Deterministic FSA Interpreter

TosimulaeM = (K, Z, 3, s, F): Simulate the no more than one b machine on input: aabaa

ST =5,
Repeat
i := get-next-symbol;
if i # end-of-string then
ST :=&(ST, i)
Until i = end-of-string;
If ST O F then accept else regject

Nondeter ministic FSAs as Algorithms
Real computers are deterministic, so we have three choices if we want to execute a nondeterministic FSA:

1. Convert the NDFSA to adeterministic one:
«  Conversion can take time and space 2<.
e Timeto analyze string w: O(|w])

2. Simulate the behavior of the nondeterministic one by constructing sets of states"on the fly" during execution
*  No conversion cost
«  Timeto analyze string w: O(jw| x K?)

3. Do adepth-first search of all paths through the nondeterministic machine.
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A Nondeter ministic FSA Interpreter
TosimulateM = (K, Z, A, s, F):

SET ST;
ST :=E(s);
Repeat
i := get-next-symbol;
if i #end-of-string then
ST1:=0
For all g O ST do
For all r 0 A(q, i) do
ST1:=ST10E(n);
ST :=ST1,;

Until i = end-of-string;
If ST n F# O then accept else reject

A Deterministic Finite State Transducer Interpreter

TosimulaeM = (K, Z, O, §, s, F), given that:
Oy(state, symbol) returns a single new state
(i.e., M isdeterministic), and
O,(state, symbol) returns an element of O*, the
string to be output.

ST =5,
Repesat:
i ;= get-next-symbol;
if i# end-of-string then
write((ST, i));
ST := 3(ST, i)
Until i = end-of-string;
If ST O F then accept elsereject
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Equivalence of Regular Languages and FSMs

ReadK & S2.4
Read Supplementary Materials. Regular Languages and Finite State Machines: Generating Regular Expressions from Finite
State Machines.

Do Homework 8.
Equivalence of Regular Languagesand FSMs

Theorem: The set of languages expressible using regular expressions (the regular languages) equals the class of languages
recognizable by finite state machines. Alternatively, alanguageisregular if and only if it is accepted by afinite state machine.

Proof Strategies
Possible Proof Strategies for showing that two sets, a and b are equal (also for iff):

1. Start with a and apply valid transformation operators until b is produced.

Example:
Prove:
An(BOC=(AnB)OANC
An(BOC) =BOC)NnA commutativity

=(BnA)O(CnA) distributivity
=(AnB)O(ANCQC) commutativity

2. Do two separate proofs: (1) a= b, and (2) b =a, possibly using totally different techniques. In this case, we show first (by
construction) that for every regular expression there is a corresponding FSM. Then we show, by induction on the number of
states, that for every FSM, there is a corresponding regular expression.

For Every Regular Expression Thereisa Corresponding FSM

Well show this by construction.

Example:

a*(b O g)a

Review - Regular Expressions

The regular expressions over an aphabet >* are all strings over the alphabet > [0 {(, ), O, [, *} that can be obtained as follows:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is af.
3.1f a, B areregular expressions, thensoisap .
4. If a isaregular expression, then soisa*.
5. If a isaregular expression, then so is (a).
6. Nothing elseis aregular expression.

We also allow € and o™, etc. but these are just shorthands for 0* and aa*, etc. so they do not need to be considered for
completeness.
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For Every Regular Expression Thereisa Corresponding FSM

Formalizing the Construction: The class of regular languages is the smallest class of languages that contains [0 and each of the
singleton strings drawn from Z, and that is closed under

e Union

»  Concatenation, and

* Kleenestar

Clearly we can construct an FSM for any finite language, and thus for O and all the singleton strings. If we could show that the
class of languages accepted by FSMsis also closed under the operations of union, concatenation, and Kleene star, then we could
recursively construct, for any regular expression, the corresponding FSM, starting with the singleton strings and building up the
machine as required by the operations used to express the regular expression.

FSMsfor Primitive Regular Expressions

AnFSM for O; An FSM for € (O*):

An FSM for asingle element of

Closure of FSMsUnder Union

To create a FSM that accepts the union of the languages accepted by machines M1 and M2:
1. Create anew start state, and, from it, add e-transitions to the start states of M1 and M2.

Closure of FSM s Under Concatenation

To create a FSM that accepts the concatenation of the languages accepted by machines M1 and M2:
1. StatwithM1.

2. Fromevery final state of M1, create an e-transition to the start state of M2.

3. Thefinal states are the final states of M2.
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Closure of FSMsUnder Kleene Star

To create an FSM that accepts the Kleene star of the language accepted by machine M1:
Start with M1.

Create a new start state SO and make it afinal state (so that we can accept €).
Create an e-transition from SO to the start state of M 1.

Create e-transitions from all of M1'sfinal states back to its start state.

Make all of M1'sfinal statesfinal.

SAE I A

Note: we need a new start state, SO, because the start state of the new machine must be afinal state, and this may not be true of
M1's start state.

Closure of FSMs Under Complementation
To create an FSM that accepts the complement of the language accepted by machine M 1.

1. Make M1 deterministic.
2. Reversefina and nonfinal states.

A Complementation Example

il X(@®@

Closure of FSM s Under |nter section

L1nL2= .

Write thisin terms of operations we have already proved closure for:

e Union
»  Concatenation
e Kleenestar
e Complementation
An Example

(b O ab*a)*ab*
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For Every FSM Thereisa Corresponding Regular Expression

Pr oof:

(1) Thereisatrivial regular expression that describes the strings that can be recognized in going from one state to itself ({€} plus
any other single characters for which there are loops) or from one state to another directly (i.e., without passing through any other
states), namely all the single characters for which there are transitions.

(2) Using (1) asthe base case, we can build up aregular expression for an entire FSM by induction on the number assigned to
possible intermediate states we can pass through. By adding them in only one at atime, we always get simple regular
expressions, which can then be combined using union, concatenation, and Kleene star.

Key ldeasin the Proof

Idea 1: Number the states and, at each induction step, increase by one the states that can serve as intermediate states.

Idea 2: To get from state | to state J without passing through any intermediate state numbered greater than K, a machine may

either:

1. Gofrom to Jwithout passing through any state numbered greater than K-1 (which we'll take as the induction hypothesis), or

2. Gofroml to K, then from K to K any number of times, then from K to J, in each case without passing through any
intermediate states numbered greater than K-1 (the induction hypothesis, again).

So well start with no intermediate states allowed, then add them in one at atime, each time building up the regular expression

with operations under which regular languages are closed.

The Formula

Adding in state k as an intermediate state we can use to go fromii to j, described using paths that don't use k:

(O—(—O

R@,j, k) =R(i,j,k-1) /* what you could do without k

R(, k, k-1) - /* go from i to the new intermediate state without using k or higher

R(k, k, k-1)* /* then go from the new intermediate state back to itself as many times as you want
R(k, j, k-1) /* then go from the new intermediate state to j without using k or higher

Solution: [J R(s,q,N) OqOF
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An Example of the Induction

g

a a a

O—O0—0—0
_/ A/

Going through no intermediate states:

(1,1,0) =¢ (1,20 =a (1,3,00=0 (2,30 =a (330)=¢0b (34,0)=a
Allow 1 as an intermediate state:

Allow 2 as an intermediate state:
(1,3,2=(4,3,1)0(1,2 12,2, D)*(2,3,1)
= 0O O a e* a
= aa
Allow 3 as an intermediate state:
(1,3,3)=(4,3,2 0(1,3,2)(3,3,2*(3, 3,2
aa 0O a (¢0b* (¢0Ob)
aab*
(14,4,20(1,3,2)(3,3,2*3,4,2
0 a (0b* a

(1,4,3)

O
:
Q

An Easier Way - See Packet
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(2) Remove states and arcs and replace with arcs labelled with larger and larger regular expressions. States can be removed in
any order, but don’t remove either the start or final state.

(Notice that the removal of state 3 resulted in two new paths because there were two incoming paths to 3 from another state and 1
outgoing path to another state, so 2x1 =2.) Thetwo pathsfrom 2 to 1 should be coalesced by unioning their regular expressions

(not shown).
Ncl) € IabDaaa*bDba*b

(ab O aaa*b O ba*b)*(a O €)
RO O

Thus, the equivalent regular expression is:
(ab O aaa*b O ba*b)*(a O €)

Using Regular Expressionsin the Real World (PERL)
M atching floating point numbers:

-2 ([0-9]+(\.[0-9]*)? | \.[0-9]+)

Matching | P addr esses:

([0-9]+ (\. [0-9]+) {3})

Finding doubled words:

\< ([A-ZaZ]+) \s+\1\>

From Friedl, J., Mastering Regular Expressions, O’ Reilly,1997.

Note that some of these constructs are more powerful than regular expressions.
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Regular Grammar s and Nondeter ministic FSAs

Any regular language can be defined by aregular grammar, in which all rules
* havealeft hand side that is a single nonterminal

e havearight hand side that is €, asingle terminal, a single nonterminal, or a single terminal followed by a single nonterminal .
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) 0 (ba) U (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

: ab I
ab

An Algorithm to Generate the NDFSM from a Regular Grammar

1. Create anonterminal for each state in the NDFSM.
2. sisthe start state.
3. |If thereareany rules of theform X — w, for somew(X , then create an additional state labeled #.
4. For eachrule of theform X - w'Y, add atransition from X to Y labeledw (w0 X [ €).
5. For eachrule of theform X — w, add atransition from X to # labeled w (w O ).
6. For eachrule of theform X - ¢, mark state X final.
7. Mark state # final.
Example 1 - Even Length Strings
S-¢ T a
S ar T->b
S- bT T aS
Example 2 - One Character Missing
So¢ A - bA C-aC
S- aB A 5 CcA C - bC
S aC A - ¢ Coe
S - bA B - aB
S - bC B - cB
S~ cCcA B¢
S-cB
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An Algorithm to Generate a Regular Grammar from an NDFSM

1. Create anonterminal for each state in the NDFSM.

2. The start state becomes the starting nonterminal

3. For eachtransition &(T, a) = U, make arule of theform T - aU.
4. For eachfinal state T, makearule of theform T - «.

Example:

Conversion Algorithms between Regular Language For malisms

Regular
Grammar

|

NFSM

(NFA)
Regular /

Expression

DFSM
(DFA)
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Languages That Are and Are Not Regular

ReadL & S25,2.6
Read Supplementary Materials. Regular Languages and Finite State Machines: The Pumping Lemma for Regular Languages.
Do Homework 9.

Deciding Whether a L anguage is Regular

Theorem: There exist languages that are not regular.
Lemma: There are an uncountable number of languages.
Proof of Lemma:

Let: 3 beafinite, nonempty alphabet, e.g., {a b, c}.

Then Z* contains all finite strings over X.
eg., {€& a b, c, aa ab, bc, abc, bba, bbaa, bbbaac}

>* iscountably infinite, because its elements can be enumerated one at atime, shortest first.

Any language L over X isasubset of 2*, eg., L1={a aa, asa, asaa, aaaaa, ...}
L2 = {ab, abb, abbb, abbbb, abbbbb, ...}
The set of all possible languages is thus the power set of *.

The power set of any countably infinite set is not countable. So there are an uncountable number of languages over >*.

Some L anguages Are Not Regular
Theorem: There exist languages that are not regular.
Proof:
(1) There are a countably infinite number of regular languages. This true because every description of aregular language is of
finite length, so there is a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.

Thus there are more languages than there are regular languages. So there must exist some language that is not regular.
Showing That a L anguage is Regular

Techniques for showing that alanguage L isregular:

Show that L has afinite number of elements.

Exhibit aregular expression for L.

Exhibit a FSA for L.

Exhibit aregular grammar for L.

Describe L as afunction of one or more other regular languages and the operators 1[I, n, *, -, =. We use here the fact that
the regular languages are closed under all these operations.

Define additional operators and prove that the regular languages are closed under them. Then use these operators asin 5.

arwONE

o

Example
Let>={0,1,2, ... 9}
Let L O X* bethe set of decimal representations for nonnegative integers (with no leading 0's) divisible by 2 or 3.

L, = decimal representations of nonnegative integers without leading 0's.
L;=00{1,2,...9}{0-9}*
So L, isregular.

L, = decimal representations of nonnegative integers without leading O's divisible by 2

L,=Lin 2*{0, 2 4,6, 8}
So L,isregular.
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Example, Continued
Ls=L;anddivisibleby 3

Recall that anumber isdivisible by 3 if and only if the sum of itsdigitsis divisible by 3. We can build a FSM to determine that
and accept the language L z,, Which is composed of strings of digits that sum to a multiple of 3.

L3:Llﬂ L3a

Flna“y, L=L,0Ls
Another Example

>={0-9}
L ={w: wisthe socia security number of aliving US resident}
Finiteness - Theoretical vs. Practical

Any finite language isregular. The size of the language doesn't matter.

Parity < Soc. Sec. >#
Checking Checking

But, from an implementation point of view, it very well may.
When isan FSA a good way to encode the facts about a language?
What are our alternatives?

FSA's are good at |ooking for repeating patterns. They don't bring much to the table when the language is just a set of unrelated
strings.

Showing that a Language is Not Regular
The argument, “I can't find aregular expression or aFSM”, won't fly. (But a proof that there cannot exist aFSM is ok.)
Instead, we need to use two fundamental properties shared by regular languages:

1. Wecanonly use afinite amount of memory to record essential properties.
Example:
a'b"is not regular

2. Theonly way to generate/accept an infinite language with a finite description is to use Kleene star (in regular expressions) or
cycles (in automata). This forces some kind of simple repetitive cycle within the strings.
Example:
ab*a generates aba, abba, abbba, abbbba, etc.
Example:
{d":n=1isaprime number} isnot regular.
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Exploiting the Repetitive Property

%)b%)aga>©b>(:>

If aFSM of n states accepts any string of length = n, how many strings does it accept?

L = bab*ab n

Xy*z must bein L.
So L includes: baab, babab, babbab, babbbbbbbbbbab
The Pumping Lemma for Regular Languages

If L isregular, then
ON = 1, such that
O stringsw O L, where jw| = N,
0x,y,z,suchthat  w=xyz
and Xy|< N,
and yZ£E,
and O0g=0,xy%zisinL.

Example: L = a'b"

aaaaaaaaaabbbbbbbbbb
X y z
ON=1 CdlitN
O long strings w We pick one
0x,y, z Weshow nox, y, z

Example: a"'b" is not Regular
N is the number from the pumping lemma (or one more, if N is odd).

Choose w = aV2p/2

. (Sincethisiswhat it takes to be “long enough”: |w|= N)
1 2
aaaaaaaaaalbbbbbbbbbb

X y z

We show that thereis no x, y, z with the required properties:
yl<N,
Y #E,
O0g=0,xy%zisinL.

Three cases to consider:
« yfalsinregion1:

» yfalsacrossregions1and 2:

« yfalsinregion3:
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Example: a"b" is not Regular

Second try:
Choose w to be be a*b". (Since we get to choose any win L.)
1 2
aaaaaaaaaa|bbbbbbbbbb
X y | z

We show that thereis no x, y, z with the required properties:
xyl< N,
YZE,
0g=0,xy%isinL.

Since [xy] < N,y must beinregion 1. Soy = &’ for someg= 1. Pumpingin or out (any g but 1) will violate the constraint that the
number of @ s hasto equal the number of b's.

A Complete Proof Using the Pumping Lemma
Proof that L = {a""} is not regular:

Suppose L isregular. Since L isregular, we can apply the pumping lemmato L. Let N be the number from the pumping lemma
for L. Choosew = a"b". Notethat w 0 L and jw|= N. From the pumping lemma, there exists some x, y, z where xyz = w and
IXy|<N, y#e, and0g=0,xy%z OL. Becausexy|< N,y =a (yisal a's). Wechoose q =2 and xy%z = &"*¥b". Becausely|>
0, then xy?z 0 L (the string has more a'sthan b's). Thus for all possible x, y, z: xyz = w, [fy, xy% O L. Contradiction. [0 L is
not regular.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

You get to choose w. Make it asingle string that depends only on N. Choose w so that it makes your proof easier.
Y ou may end up with various cases with different q values that reach a contradiction. Y ou have to show that all possible cases
lead to a contradiction.

Proof of the Pumping Lemma

Since L isregular it is accepted by some DFSA, M. Let N be the number of statesin M. Let w beastring in L of length N or
more.

N

aaaaaaaaaabbbbbbbbbb
Xy

Xy

Then, inthefirst N steps of the computation of M onw, M must visit N+1 states. But there are only N different states, so it must
have visited the same state more than once. Thusit must have looped at least once. Well call the portion of w that corresponds
totheloopy. Butif it can loop once, it can loop an infinite number of times. Thus:

» M can recognize xy% for all values of g = 0.

e y # ¢ (sincethere wasaloop of length at least one)

* |xy|< N (since we found y within the first N steps of the computation)
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Another Pumping Example
L = {w=ab": K > J} (moreb'sthan as)
Choosew = a'b™*"*
N

aaaaaaaaaabbbbbbbbbbb
X y 2

We are guaranteed to pump only as, since |xy| < N. So there exists a number of copies of y that will cause there to be more a's
than b's, thus violating the claim that the pumped string isin L.

A Slightly Different Example of Pumping
L = {w=ab" : J> K} (moreasthan b's)

Choosew = a¥pN

N
aaaaaaaaaabbbbbbbbbbb
X Yy z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat areinL.

What can we do?

Another Slightly Different Example of Pumping

L = {w=ab":J=K}

Choosew = a¥*pVN
N
aaaaaaaaaabbbbbbbbbbb
X y z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat arein L.

If we pump out, thenif y isjust athen we still have astringinL.

What can we do?
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Another Pumping Example

L = abad"
Choose w = aba“bM
N
a_b@aaaaaaaabbbbbbbbbbb
Xy z

What are the choices for (x, y):
(€, @)

(¢, ab)

(¢, aba")

(a b)

(a ba')

(aba*, a")

What if L isRegular?
Given alanguage L that is regular, pumping will work: L = (ab)* Choose w = (ab)"

There must exist an x, y, and z wherey is pumpable.

abababab ababab abababababab
X y z
Suppose y = ababab Then, foralq=0, xy%zOL

Note that this does not prove that L isregular. It just failsto prove that it is not.
Using Closure Properties

Once we have some languages that we can prove are not regular, such as a'b", we can use the closure properties of regular
languages to show that other languages are also not regular.

Example: > ={a b}
L ={w: w contains an equal humber of asand b's}
a*b* isregular. So, if L isregular, thenL; =L n a*b* isregular.
But L, isprecisely a'b". So L isnot regular.
Don’t Try to Use Closure Backwards

One Closure Theorem:
If Lyand L, areregular, thensois Lz=1L;n Ly
But what if L3z and L, are regular? What can we say about L,?

|_3 = Ll al L2.

A
Example: ab=abn a'b"
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A Harder Example of Pumping

z={a}
L ={w=a": K isaprime number} [X| + [z] is prime.
x| + ly| + |z| is prime.
N [X| + 2ly| + [z] is prime.
aaaaaaaaaaaaa [X| + 3ly|] + [z is prime, and so forth.
X y z

Distribution of [x| + qly| + |z|:
I I

Distribution of primes:
|1
I

But the Prime Number Theorem tells us that the primes " spread out”, i.e., that the number of primes not exceeding x is
asymptotic to x/In x.

Note that when q = [x| + [z], [xy%2| = (ly| + L)x(jx| + |z]), which is composite (non-prime) if both factors are > 1. If you're careful
about how you choose N in a pumping lemma proof, you can make this true for both factors.

Automata Theory is Just the Scaffolding

Our results so far give ustools to:
e Show alanguageisregular by:
e Showing that it has a finite number of elements,
» Providing aregular expression that definesit,
e Constructing a FSA that acceptsit, or
»  Exploiting closure properties
e Show alanguage is not regular by:
»  Using the pumping lemma, or
«  Exploiting closure properties.

But to use these tools effectively, we may also need domain knowledge (e.g., the Prime Number Theorem).
M ore Examples

>={0,1,2,3,4,5,6,7}

L ={w =theoctal representation of a number that isdivisible by 7}

Example elements of L:
7,16 (14), 43 (35), 61 (49), 223 (147)

M ore Examples
Z={W,H,QE, S T, B (measure bar)}
L = {w = w represents a song written in 4/4 time}

Example element of L:
WBWBHHBHQQBHHBQEEQEEB
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M ore Examples
>={0-9}
L ={w =isaprime Fermat number}
The Fermat numbers are defined by
F = 22n+1, n=1,23, ..

Example elements of L:
F.=5,F,=17,F;= 257, F, = 65,537

Another Example
>={0-9* =}
L={w=a*b=c: a,b,c0{0-9}" and int(a) * int(b) = int(c)}

The Bottom Line
A languageisregular if:

OR
The Bottom Line (Examples)

*  The set of decimal representations for nonnegative * Theset of strings over {a, b} that contain an equal

integers divisible by 2 or 3 number of asand b's.
e Thesocia security numbers of living US residents. e The octal representations of numbers that are divisible
»  Parity checking by 7
. af‘b” * Thesongsin4/4time
« db*wherek>j *  The set of prime Fermat numbers

« dwherekisprime

Decision Procedures

A decision procedureis an agorithm that answers a question (usually “yes’ or “no”) and terminates. The whole idea of a
decision procedure itself raises a new class of questions. In particular, we can now ask,

1. Isthere adecision procedure for question X?
2. What isthat procedure?
3. How efficient is the best such procedure?

Clearly, if we jump immediately to an answer to question 2, we have our answer to question 1. But sometimes it makes sense to
answer question 1 first. For onething, it tells us whether to bother looking for answers to questions 2 and 3.

Examples of Question 1:
Isthere a decision procedure, given aregular expression E and astring S, for determining whether Sisin L(E)?

Isthere a decision procedure, given a Turing machine T and an input string S, for determining whether T halts on S?
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Decision Proceduresfor Regular Languages
Let M be adeterministic FSA. Thereis a decision procedure to determine whether:

e wOL(M) for somefixed w
e L(M)isempty

« L(M)isfinite

e L(M)isinfinite

Let M, and M, be two deterministic FSAs. Thereis a decision procedure to determine whether M, and M, are equivalent. Let L,
and L, be the languages accepted by M; and M,. Then the language

L :(Llﬂ_'Lz)D(_'Llﬂ L2)
= (Li-L) O (L2-Ly)

must beregular. L isempty iff Ly = L,. Thereisadecision procedure to determine whether L is empty and thus whether L, = L,
and thus whether M, and M, are equivalent.
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A Review of Equivalence Relations

Do Homework 7.
A Review of Equivalence Relations
A relation R is an equivalence relation if it is: reflexive, symmetric, and transitive.
Example: R = the reflexive, symmetric, transitive closure of:
(Bob, Bill), (Bob, Butch), (Butch, Bud),

(Jim, Joe), (Joe, John), (Joe, Jared),
(Tim, Tom), (Tom, Tad)

An equivalence relation on anonempty set A creates a partition of A. We write the elements of the partition as[a], [&], ...

Example:

Another Equivalence Relation
Example: R = the reflexive, symmetric, transitive closure of:
(apple, pear), (pear, banana), (pear, peach),

(peas, mushrooms), (peas, onions), (peas, zucchini)
(bread, rice), (rice, potatoes), (rice, pasta)

Partition:
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State Minimization for DFAs

ReadK & S2.7
Do Homework 10.

State Minimization

Consider:

I's this a minimal machine?

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can't easily find the unreachable states directly. But we can find the reachable ones and determine the unreachable ones from
there. An algorithm for finding the reachable states:

2
@

a b

©
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Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and thus one is redundant) if all stringsin 2* have the same fate, regardless of
which of the two states the machine isin. But how can wetell this?

The simple case:

b a
ab

Two states have identical sets of transitions out.

Getting Rid of Redundant States
The harder case:

The outcomes are the same, even though the states aren't.
Finding an Algorithm for Minimization
Capture the notion of equivalence classes of strings with respect to alanguage.
Capture the (weaker) notion of equivalence classes of strings with respect to alanguage and a particular FSA.
Prove that we can always find a deterministic FSA with a number of states equal to the number of equivalence classes of strings.
Describe an agorithm for finding that deterministic FSA.
Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent with respect to alanguage L if, no matter what is tacked on to them
on theright, either they will both bein L or neither will. Why isthis the right notion? Because it corresponds naturally to what
the states of arecognizing FSM have to remember.
Example:

(1) a b b a b

(2 b a b a b

SupposeL ={w O {ab}* : w|iseven}. Are (1) and (2) equivalent?

Suppose L ={w O {ab}* : every aisimmediately followed by b}. Are (1) and (2) equivaent?
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Defining Equivalence for Strings

If two strings are equivalent with respect to L, wewritex = y. Formally, x =_ y if, 0z 00 2*,
xzOLiffyzOL.
Notice that = is an equivalence relation.

Example:
Z={a b}
L ={wOZXZ* : every aisimmediately followed by b }
€ aa bbb
a bb baa
b aba
aab

The equivalence classes of = :

[z | isthe number of equivalence classes of =.

Another Example of =_

Z={a b}
L={wOZX*: |w|iseven}
€ bb aabb
a aba bbaa
b aab aabaa
aa bbb
baa

The equivalence classes of = :

Yet Another Example of =

z ={a b}

L = aab*a
€ ba aabb
a bb aabaa
b asa aabbba
aa aba aabbaa
ab aab

bab

The equivalence classes of = :

An Example of = Where All Elementsof L Are Not in the Same Equivalence Class

Z={a b}
L ={w O {a, b}* : no two adjacent characters are the same}
€ bb aabaa
a aba aabbba
b aab aabbaa
aa baa
aabb

The equivalence classes of = :
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Is|= | Always Finite?

Z={ab}

L=4dab"
€ aa acaa
a aba acooa
b aca

The equivalence classes of = :
Bringing FSMsinto the Picture
=_isanidea relation.

What if we now consider what happens to strings when they are being processed by areal FSM?

()

> ={a b} L={wOZXZ*: jw|iseven}

Define ~y to relate pairs of strings that drive M from s to the same state.

Formally, if M isadeterministic FSM, then x ~y y if thereis some state qin M such that (s, x) |- ' (g, €) and (s, y) | w (q, €).

Noticethat M is an equivalence relation.

An Example of ~M

)

> ={a b} L={wOZX*: |w|iseven}

€ bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa
The equivalence classes of ~: [~ml=
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Z={a b}

3
a
b
aa

The equivalence classes of ~:

~. [e, aa bb, asbb, bbag]

L={w0OZx*:|w|]iseven}

o

Ancther Example of ~M

fwl

bb
aba

bbb

The Relationship Between = and ~y

iseven

[, b, aba, agb, bbb, baa, agbag] jw] is odd

~u, 3 State machine:
ql: [g, aa, bb, aabb, bbaa]
g2: [a, aba, baa, aabaa] (ab 0 ball aall bb)*a

q3: [b, agb, bbb]

~u, 2 State machine;
gl: [, aa, bb, aabb, bbaa]
g2: [a, b, aba, aab, bbb, baa, aabaa] |w|is odd

= [even length]

I

(3 state)

M [even length]

[

i

seven

=0

|~ml =

(ab 0 ba aa ] bb)*b

i

ina

seven

~u isarefinement of =.

The Refinement

[odd length]

N\

odd endi ng:l

odd ending
inb

An equivalence relation R is a refinement of another one Siff

XRy - xSy

In other words, R makes all the same distinctions S does, plus possibly more.

IRI= S|
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~v isa Refinement of =.
Theorem: For any deterministic finite automaton M and any stringsx, y [0 2*, if X ~y y, then x = y.
Proof: If x ~y y, then x and y drive m to the same state g. From @, any continuation string w will drive M to some stater. Thus
xw and yw both drive M tor. Either risafinal state, in which case they both accept, or it is not, in which case they both reject.
But thisis exactly the definition of = .

Corallary: v |2 =L |-

Going the Other Way
When is this true?

If X = mythenx —yy.
Finding the Minimal FSM for L
What's the smallest number of states we can get away with in a machine to accept L?
Example: L={wOZXZ*: jw|iseven}

The equivalence classes of = :

Minimal number of statesfor M(L) =
Thisfollows directly from the theorem that says that, for any machine M that acceptsL, |~y| must be at least aslarge as =, |.
Can we aways find a machine with this minimal number of states?

The Myhill-Nerode Theorem

Theorem: Let L be aregular language. Then thereis a deterministic FSA that accepts L and that has precisely |z | states.
Proof: (by construction)
M= K states, corresponding to the equivalence classes of =, .

s=[g], the equivalence class of € under =,.

F={[x]:xOL}

O([x], a) = [xal

For this construction to prove the theorem, we must show:

1. Kisfinite
2. diswell defined, i.e., 8([X], @ = [xd] isindependent of x.
3. L=L(M)
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The Proof
(1) K isfinite.
Since L isregular, there must exist amachine M, with |~y| finite. We know that
Il Z =
Thus |=_ | isfinite.
(2) diswell defined.
Thisisassured by the definition of =_, which groups together precisely those strings that have the same fate with respect to L.

The Proof, Continued
) L=L(M)
Suppose we knew that ([x], y) Fu* ([xy], €).
Now let [X] be[€] and let sbeastringin >*.
Then

(€], o) [u* ([S], €)

M will accept sif [g] O F.
By the definition of F, [s] O Fiff al stringsin[s] areinL.
So M accepts precisely the stringsin L.

The Proof, Continued

Lemma: ([x], y) Fv* ([xy], €)
By induction on |y|:
Trivia if ly]=0.
Suppose true for ly| = n.
Show truefor |y| = n+1
Lety =y'a, for some character a. Then,

lyl=n
(X1, ya) Im* ([xy], & (induction hypothesis)
(Ixy'] @ Fv* ([xy'd, €) (definition of &)
(€1, y'a) Fw* ([xy'dl, €) (trans. of |w*)
(X1, y) Fw* ([xy], €) (definition of y)

Another Version of the Myhill-Nerode Theorem

Theorem: A language isregular iff |= | isfinite.

Example:
Consider: L=ab"
a, aa, ada, adaa, asaaa . ..
Equivalence classes:
Pr oof:

Regular - |+ | isfinite: If L isregular, then there exists an accepting machine M with afinite number of statesN. We know that
N = [z |. Thus|=_|isfinite.

|= | isfinite - regular: If |z |isfinite, then the standard DFSA M, acceptsL. Since L isaccepted by aFSA, itisregular.
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Constructing the Minimal DFA from =_

z={ab}
L ={w O {a b}* : no two adjacent characters are the same}

The equivalence classes of = :

1: [€] €

2: [a, ba, aba, baba, ababa, ...] (big )(ab)*a
3: [b, ab, bab, abab, ...] (ad )(ba)*b
4: [bb, aa, bba, bbb, ...] the rest

»  Equivalence classes become states
o Start stateis[e]
e Fina dtatesare al equivalence classesin L

© 0([x], @) =[xd]

Using Myhill-Nerode to Prove that L isnot Regular
L={a": nisprime}

Consider: €
a

aa
aaa
acaa

Equivalence classes:

So Where Do We Stand?
1. Weknow that for any regular language L there exists a minimal accepting machine M, .
2. Weknow that |K| of M equals [=|.
3.  Weknow how to construct M, from=,.
But is this good enough?

Consider:
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Constructing a Minimal FSA Without Knowing =_
We want to take as input any DFSA M' that accepts L, and output a minimal, equivalent DFSA M.

What we need is adefinition for "equivalent”, i.e., mergeable states.

Define g = p iff for al stringsw O 2*, either w drives M to an accepting state from both g and p or it drives M to arejecting state
from both g and p.

Example:
> ={a b} L={wOZx*: |w|]iseven}

Constructing = asthe Limit of a Sequence of Approximating Equivalence Relations =,

(Where nisthe length of the input strings that have been considered so far)

WEe'll consider input strings, starting with €, and increasing in length by 1 at each iteration. Well start by way overgrouping
states. Then we'll split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical.

Initially, =, has only two equivalence classes: [F] and [K - F], since on input €, there are only two possible outcomes, accept or
reject.

Next consider strings of length 1, i.e., each element of 2. Split any equivalence classes of =, that don't behave identically on all
inputs. Notethat in all cases, =, isarefinement of = ;.

Continue, until no splitting occurs, computing =, from =,,5.
Constructing =, Continued
More precisely, for any two statespand q 0 K andany n= 1, q =, p iff:

1. q=,1p, AND
2. foradlalZ, d(p, a) =, 0(q, a
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The Construction Algorithm
The equivalence classes of = are F and K-F.
Repeat forn=1,2,3 ...
For each equivalence class C of =, do
For each pair of elementsp and qin C do
For eachain X do
Seeif &(p, &) =n-13(q, )
If there are any differences in the behavior of p and g, then split them and create a new equivalence
class.
Until =, ==,,. =isthisanswer. Then use these equivalence classes to coal esce states.

An Example

Z={ab}
b A
O —©
b a
a bj
a a
4 b O e b 6

ab
S =
El =
==

Another Example

(a*b*)*

Minimal machine:
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Another Example
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) O (ba) T (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

Anocther Example, Continued

Minimize:

ab

"(T

ab ab

Minima machine:
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Summary of Regular Languages and Finite State Machines

Grammars, Languages, and M achines

Language

Accepts
Machine
Regular Grammars, L anguages, and M achines

Most interesting languages are infinite. So we can't write them down. But we can write down finite grammars and finite
machine specifications, and we can define algorithms for mapping between and among them.

Grammars M achines
Regular 4 )  Nondeterministic
Expressions FSAs

Deterministic
FSAs
Regular
Grammars
Minimal
DFSAs

What Does“Finite State” Really Mean?
There are two kinds of finite state problems:
e Thosein which:
e Some history matters.
* Only afinite amount of history matters. In particular, it's often the case that we don't care what order things

occurred in.
Examples:
e Parity

* Money in avending machine
*  Seat belt buzzer
* Those that are characterized by patterns.

Examples:
e Switching circuits:
» Telephone
* Railroad

» Trafficlights
e Lexicd anaysis
° grep
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Context-Free Grammars

ReadK & S3.1

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Context-Free Grammars

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars.
Do Homework 11.

Context-Free Grammar s, Languages, and Pushdown Automata

Context-Free
Language

Context-Free
Grammar

Accepts

Pushdown
Automaton

Grammar s Define L anguages
Think of grammars as either generators or acceptors.

Example: L ={w O{a b}* : |w|iseven}

Regular Expression Regular Grammar
S-¢
(aal &b O ba O bb)* S ar
T- a
T nd b
T - as
T - bS
Derivation choose aa S
(Generate) choose ab a '(
yields £
4T
b
aaahb a aab
Parse (Accept) use corresponding FSM
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Derivation is Not Necessarily Unique

Example: L ={w O{a, b}* : thereisat least one a}

Regular Expression Regular Grammar
(ad by*a(al b)* S-a
S - bS
choose afrom (a O b) S- aS
choose afrom (a O b) S ar
choose a T-a
T — b
choose a T ar
choose afrom (a O b) T - bT
choose afrom (a O b)
S S
is a1
s AT
a a

M or e Powerful Grammars
Regular grammars must always produce strings one character at atime, moving left to right.
But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

S .. aBa S_.aB
B¢ VS. B - a

Example2: L =ab*d"

S-B

S - aSa

B¢

B - bB
Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars
Remove all restrictions on the form of the right hand sides.
S - abDeFGab

Keep requirement for single non-terminal on left hand side.

S-

butnot ASB -~ or aSbh - or ab -

Examples: balanced parentheses an"
S-¢ S - aSh
S SS So ¢
S-(9
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Context-Free Grammars

A context-free grammar G isaquadruple (V, Z, R, S), where:

eV istherule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in stringsin
the language) and terminals,

e 2 (theset of terminals) isasubset of V,
e R (theset of rules) isafinite subset of (V - Z) x V*,
e S(thestart symbol) isan element of V - X.

X =g Y isabinary relation where x, y 0 V* such that x = aAB and y = ax3 for somerule A X inR.
Any sequence of the form
Wop =g W1 =>cWo =g ... =Wy

eg., (9= (S9=((99
iscalled aderivation in G. Eachw; iscalled asentingl form.

Thelanguage generated by Gis {w O Z* : S=g* w}
A language L iscontext freeif L = L(G) for some context-free grammar G.

Example Derivations

G=(W, 2, R,S), where

W={S 05,
={a b},
R= {S-a
S . aS,
S . ash}
S S
a_ _S a S b
&S b &5 b
a a s
/Sib s
a a

Another Example - Unequal a'sand b's

L={a™: n#m} S- A [* more asthan b's
S-B /* more b'sthan a's
G=(W, Z,R,S), where A-a
W={ab,S A, B}, A - aA
z={a b}, A - aAb
R= B-b
B - Bb
B - aBb
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English

S - NP VP the boys run

NP - the NP1 |NP1 big boys run

NP1 - ADJ NP1|N the youngest boy runs

ADJ - big | youngest | oldest

N - boy | boys the youngest oldest boy runs
VP -V |V NP the boy run

V - run|runs i : .
Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions
The Language of Simple Arithmetic Expressions

G=(V,Z, R, E), where
V={+%*IidT,F E},

> ={+*,id},
R={ E-id
E-E+E
E-E*E}
E E
E + E /E|\ * E
||d E/’I‘\E E + E ||d
| | | |
id id id id
id + (id * id) (id + id) * id

Arithmetic Expressions -- A Better Way

The Language of Simple Arithmetic Expressions

G=(V, Z, R, E), where Examples:
V={+%*¢),id T, FE},
={+"*()id}, id+id*id
R={ E-E+T
E-T
T-T*F
T.F id*id*id
F- (B
F - id }
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BNF
Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars.
Main idea: give descriptive names to nonterminals and put them in angle brackets.

Example: arithmetic expressions:
(expression)y — {expression) + (term)
(expressiony - (term)
(term)y — (term) * (factor)
(term) - (factor)
(factor) — ({expression))
(factor) - (id)

The Language of Boolean L ogic

{ E-E=EL
E_ElL
El - E1OE2
El - E2
E2 - E2JE3
E2 - E3
E3 - - E4
E3 - E4
E4 - (E)
E4 - id }

Boolean Logicisn't Regular

Suppose it were regular. Then thereisan N as specified in the pumping theorem.
Let w be astring of length 2N + 1 + 2|id| of the form:

w= (_(_(_(’\](_(id)))))):id

Xy
y = (“for somek > 0 because [xy| < N.

Then the string that isidentical to w except that it has k additional ('s at the beginning would also be in the language. But it can't
be because the parentheses would be mismatched. So the language is not regular.
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All Regular Languages Are Context Free

(1) Every regular language can be described by aregular grammar. We know this because we can derive aregular grammar from
any FSM (aswell asvice versa). Regular grammars are special cases of context-free grammars.

ab

ab
(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM isa PDA that doesn't bother
with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and € and each single character in X are clearly
context free.
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Read K & S3.2

Parse Trees

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Derivations and Parse Trees.

Do Homework 12.

Regular languages:

Parse Trees

We care about recognizing patterns and taking appropriate actions.

Example: A parity checker

Context free languages:

We care about structure.

E - id
E-E+E
E-E*E

Structure

— T,

id E * E
id id
id + (id * id)

Par se Trees Capture Essential Structure

E + E /I\ * E
id E * E E + E id
id id id id
id + (id * id) (id + id) * id
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Parse Treesare Just Trees
/o «
\ height
nodes —p K /C\
) ) i / e
| |

yield

r oot

Leaves are all labeled with terminals or €.

Other nodes are labeled with nonterminals.

A path is asequence of nodes, starting at the root, ending at a leaf, and following branches in the tree.
The length of the yield of any tree T with height H and branching factor (fanout) B is<

Derivations
To capture structure, we must capture the path we took through the grammar. Derivations do that.
So ¢
S SS
S-(9
1 2 3 4 5 6
S=S85=(95=((9)S= (0)S= (NS = (0)0
S=S85= (5= ((9)S= ((9)(9 = (NS = ()0
1 2 3 5 4 6
S
/\
S S
— [ T — T
( S ) ( S )
/I\ |
( ? ) £
€
Alternative Derivations
So ¢
S- SS
S- (9

S=S5=(9S=((9)S= (0)S= (0)S = (D))
S=S5=S55= S(9S= ((9))S= S(()S= S(O)S) = HA0)0= (10

S S
( S ) ( S ) S S ( S )
T | | I\ |
( |S ) 3 e ( |S ) €
€ (S)
's
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Ordering Derivations
Consider two derivations:

1 2 3 4 5 6 7
S=S5=(9S=((9)S= (0)s= (XS = (D)0

S=S5=(95=((9)S= (NS = (XS = (N0

1 2 3 4 5 6 7

We can write these, or any, derivation as We say that D, precedes D,, written D;1< Dy, if:
Di=Xi 2> X =2>X3=> ... = Xy e D;and D, arethe samelength > 1, and
D=Xi = X' =X = ... =X, e Thereissomeinteger k, 1 <k <n, such that:

o forali#k, x=x
*  Xg1=Xk1=UAVBwW:u,v,wdV*,
andA,BOV-Z
*  Xc=uyvBw,whereA - yOR
e X =UAvzw whereB - zOR
* X1 = X1 = UyVZW
Comparing Several Derivations
Consider three derivations:
1 2 3 4 5 6 7
(D) S=S5=(9S=((9)S= S =S =(0)0

(2)S=S5=(9S=((ONS=((NO) = ((zs) =(0)0
(3)S=S5=(9S=((9)S=((NO) = (N0 =(0)0

D1<D2
D2<D3
But D1 does not precede D3.
All three seem similar though. We can define similarity:
D, issimilar to D, iff the pair (D1, D,) isin the reflexive, symmetric, transitive closure of <.
Note: similar is an equivalence class.
In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule
applications.
Par se Trees Capture Similarity
1 2 3 4 5 6 7
(1) S=55=(9s=(9)s= ([0S =S =(D0

(2) S=S5=(9S=((9)S= (OO 3((23) =00
(3) S=S5=(9S= ((9)S= (NS =((5N0 =(0)0

D1<D2
D2< D3

All three derivations are similar to each other. This parse tree describes this equivalence class of the similarity relation:

S
/\
S S
_— [ _— [
( S ) ( )
/I\ |
( ? ) €
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The Maximal Element of <

e S —

There's one derivation in this equivalence class that precedes all othersin the class.
We call thisthe leftmost derivation. Thereis a corresponding rightmost derivation.

The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost
(rightmost) derivation.

Another Example
E-id
E-E+E
E-E*E

(1) E= E+E = E+E*E = E+E*id = E+id*id = id+id*id
(2 E= E*E = E*id = E+E*id = E+id*id = id+id*id

E E

/l\ /I\
E + E E * E
| PN SN |
id E * E E + E id

| | | |

id id id id
id + [id * id] [id + id] * id

Ambiguity

A grammar G for alanguage L isambiguousif there exist stringsin L for which G can generate more than one parse tree (note
that we don't care about the number of derivations).

The following grammar for arithmetic expressions is ambiguous:
E-id
E-E+E
E-E*E

Often, when this happens, we can find a different, unambiguous grammar to describe L.
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Resolving Ambiguity in the Grammar

G=(V, Z, R, E), where Parse : id+id*id
V={+%*¢(),id T, F E},
z={+x () id},
R={ E-E+T
E-T
TT*F
T-F
F- (B
F-id }

Another Example
The following grammar for the language of matched parentheses is ambiguous:

S-¢
S - SS
S~ (9
S
(/,S\) (/'S\) S/\
N |
( S ) €

Resolving the Ambiguity with a Different Grammar

One problem is the € production.

A different grammar for the language of balanced parentheses:

S-¢

S

S. S é

$5-5S% 1

SHE)SO Sl/\81
S -

()
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A General Techniquefor Eliminating &

If Gisany context-free grammar for alanguage L and € [0 L then we can construct an alternative grammar G' for L by:

1.

Find the set N of nullable variables:
A variable V isnullableif either:
thereisarule
@V ¢
or thereisarule
(2)V - PQR...suchthat P, Q, R, ... are all nullable
So begin with N containing all the variables that satisfy (1). Evaluate al other variables with respect to (2). Continue until
no new variables can be added to N.
For every rule of the form
P - aQp for someQinN, add arule

P-aB
Delete dl rules of the form
V - ¢
Sometimes Eliminating Ambiguity Isn't Possible
S - NP VP The boys hit the ball with the bat.

NP - the NP1|NP1|NP2
NP1 - ADJ NP1|N
NP2 - NP1 PP
ADJ - big|youngest | oldest . )
N - boy | boys|ball | bat | autograph The boys hit the ball with the autograph.
VP -V |V NP
VP - VPPP
V - hit| hits
PP — with NP
Why It's Not Possible
We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want. Any grammar that is
capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in
the context-free framework.
Example: Our simple English grammar
[[The boys] [hit [the ball] [with [the bat]]]]
[[The boyg] [hit [the ball] [with [the autograph]]]]
There is no grammar that describes L that is not ambiguous.
Example: L ={a'b"c™ O {db"c™}

S~ SIS

S, - Sic|A Now consider the strings a'b"c"

A - aAb|e

S, - aS)B They have two distinct derivations
B - bBc|e

Inherent Ambiguity of CFLs

A context free language with the property that all grammars that generate it are ambiguous is inher ently ambiguous.

L ={a'"c"} O {ah™c™} isinherently ambiguous.

Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an
unambiguous grammar.

Examples: Arithmetic Expressions
Balanced Parentheses

Whenever we design practical languages, it isimportant that they not be inherently ambiguous.
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Pushdown Automata

Read K & S3.3.

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.
Do Homework 13.

Recognizing Context-Free L anguages

Two notions of recognition:
(1) Say yesor no, just like with FSMs
(2) Say yesor no, AND
if yes, describe the structure

Just Recognizing
We need adevice similar to an FSM except that it needs more power.

Theinsight: Precisely what it needsis a stack, which givesit an unlimited amount of memory with arestricted structure.
[T qqODDD [T OD

t

( ' Finite
( | State
( Controller
T (
(

Definition of a Pushdown Automaton

M=(K,Z,T,A,s F),where
K isafinite set of states
> istheinput aphabet
I" isthe stack alphabet
sOK istheinitial state
F O K isthe set of final states, and
Aisthetransition relation. It isafinite subset of

(K x (Z0O{g}) x r* ) X ( K x T )
state  inputor € string of symbolsto pop State string of symbolsto
I from top of stack I I push on top of stack I

M accepts astring w iff
(s W, €) [v* (p,g,g)  forsomestatep OF
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A PDA for Balanced Brackets

b i ) U
e ‘@

M=(K,Z T, A, s F), where:
K={s} the states
Z={[.1} the input al phabet
r={[} the stack alphabet
F={s}

A contains:

(s[.8).(s[))
(s1.0). (s¢)

I mportant:
This does not mean that the stack is empty.

An Example of Accepting
. v

A contains:
(1] (s [.€). (s )
[2] ((s1.1) (s 8)
input="[[[1[11]
trans dtate unread input stack
s [CLI01]] €
1 S [[1011] [
1 s [1011] ([
1 S 11111 [[[
2 s [11] [[
1 s 111 ([
2 s 11 [l
2 s ] [
2 S € €
An Example of Rejecting
W [
W ‘@
A contains:
(1] (s [.€). (s )
(2] (s 1.1) (s ¢)
input="[[]1]]
trans state unread input stack
s [[11] €
1 s [111] [
1 s 111 ([
2 s 1] [
2 S ] €
none! S ] €

Werein s, afina state, but we cannot accept because the input string is not empty. So we reject.
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A PDA for a™b"

First we notice:

«  Well usethe stack to count the as.

e Thistime, al stringsin L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the
regular language a*b*.

A PDA for wewR

A PDA to accept strings of the form wew"™:

alla alal .
c//
N >

bi/lb b/b/ .

M=(K,Z,T,A,s F),where

K={sf} the states
>={ab,c} the input al phabet
r={a b} the stack alphabet
F={f} the final states

A contains:

((sa¢)(sa)
((s,b,€), (s b))
((s,ce), (f, €)
((f, a a), (f, €)
((f, b, b), (f, )
An Example of Accepting

§a alal .
b//b b/b/ '
A contains:

[1] (s ac¢),(sa)
[2] ((s b, €), (s b))
3] (s c.e), (f, €)
[4] ((f, a a), (f, )
(9] ((f, b, b), (f, &)

input= bacab

trans state unread input stack
S bacab €
2 S acab b

1 S cab ab

3 f ab ab
5 f b b
6 f € €
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L =ww

A Nondeter ministic PDA

S-¢
S . aSa
S - bSb

A PDA to accept strings of the form ww":

alla

bi/b

M=(K,ZTI,A, s F), where:

(1]
(2]
(3]

trans

none

trans

A DDOOTWNPREBE

K={sf}

Z={abc}

r={ab}

F={f}

A contains:
(s aeg),(sa)
((s, b, €), (s b))
((s & ¢), (f, €)
((f, & a), (f, &)
((f, b, b), (f, )

alla

bi/lb

(s a¢),(sa)
((s b, €), (s b))
(s &9, (f,€)

w

ell }

b/b/ .

the states

the input al phabet
the stack alphabet
thefinal states

An Example of Accepting

e

ell }

b/b/ '

[4]
(5]

input: aabbaa

State
S

s
f
f

State

—~ = = =) N N

Lecture Notes 14

unread input stack
aabbaa €
abbaa a
abbaa a
bbaa €
unread input stack
aabbaa €
abbaa a
bbaa aa
baa baa
baa baa
aa aa
a a
3 €
Pushdown Automata

((f. a a), (f, &)
((f, b, b), (f, €))



L={a"™": m<n}
A context-free grammar for L:
So ¢
S- Sb /* more b's
S nd a&)
A PDA to accept L:

o
f b/a/ b/s/
@ b/e/

y Q

—1
N

Accepting Mismatches

L ={ad""m# n; m, n>0}

o
f b/al A
1 '

e |f stack and input are empty, halt and reject.

e If input isempty but stack is not (m > n) (accept):

elal
elal
U

e |f stack isempty but input is not (m < n) (accept):

blal \ elal
" 2

g
)

b/al

v
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Eliminating Nondeter minism

A PDA isdeterminigtic if, for each input and state, there is at most one possible transition. Determinism implies uniquely
defined machine behavior.

b/a/Q elal
blal \ glal
" 2

bl/
b/l
e Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.

alla s/a/
ellz
elzl
b/z/

b/l

e Jumping to the stack clearing state 3:
Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character

(e.g. 9
L ={a""c’: nm,p=0and (n# mor m# p)}

S - NC /* n# m, then arbitrary c's C-¢g|cC /* add any number of c's
S- QP /* arbitrary as, thenp# m P- B /* moreb'sthan c's
N - A /* more asthan b's P-C [* more c'sthan b's
N - B /* more b'sthan a's B'-b
Ao a B' - bB'
A - aA B' - bB'c
A - aAb C - c|Cc
B-b C - Cc
B - Bb C' - bCc
B - aBb Q- ¢elaQ /* prefix with any number of a's

L ={a"h"c’: nm,p=0and (n#mor m#p)}

b,c
clear and accept
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Another Deterministic CFL
L={a'""} O{b"a}

A CFG for L: A NDPDA for L:

A DPDA for L:

Moreon PDAs
What about a PDA to accept strings of the form ww?
Every FSM is(Trivially) a PDA

GivenanFSM M = (K, Z, A, s, F)
and elements of A of the form

( P, i q )
old state, input, new state

We construct aPDA M'= (K, Z, T, A, s, F)
wherel =0 /* stack alphabet
and
each transition (p,i,q)  becomes

(C P i € ) ( a € ) )
old state, input, don't look at stack new state don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA
Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:
1. Addanew state at the beginning that pushes # onto the stack.

2. Addanew fina state and atransition to it that can be taken if the input string is empty and the top of the stack is #.
Converting the balanced parentheses machine:

" (( \@
e ©:

The new machine is nondeterministic:

() ()
0

The stack will be: #

&
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E_E+T
E-T
ToT*F
T-F
F- (B
F - id

What About PDA'sfor Interesting L anguages?

Arithmetic Expressions

“ elelE @

S

—
1) (2&E), (2 E+T)
(2 (2.¢E),@2T)
(B) (2&T), (2T
4 (2&T),(2F)
®) (2&F). (2 (F)
(6) (2.&F) (2id)
(7) (2.id,id), (2,€)
® (2(()(2e
©) (2).)). 29
(10) (2, +, +), (2. )
(11 (2% 7). (28

Example:
atb*c

But what we really want to do with languages like thisisto extract structure.

Regular Languages

e regular expressions
- Or -

e regular grammars

*  recognize

+ =DFSAs
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Comparing Regular and Context-Free L anguages

Context-Free Languages

»  context-free grammars

e pase
« =NDPDAs
Pushdown Automata



Pushdown Automata and Context-Free Grammars

gg guf;‘plsai:ﬁtary Materials. Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAS.
Do Homework 14.
PDAs and Context-Free Grammars
Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.
Recall: context-free languages are languages that can be defined with context-free grammars.
Restate theorem: Can describe with context-free grammar = Can accept by PDA

Going One Way

L emma: Each context-free language is accepted by some PDA.
Proof (by construction by “top-down parse” conversion agorithm):

Theidea: Let the stack do the work.

Example: Arithmetic expressions

E-E+T
E-T
T-T*F & elelE
O ©
F- (B)
F-id -/
Q) (2,‘8,E),75+T) (7) (2,id,id), (2,¢€)
(@ (2¢E),(2T) ® 2(()(29
) (2, T), (2, T*F) © (2)) )29
4 (2,¢,T),2F (10) (2, +, 4), (2, ¢)
) (2.¢F),(2 () (11) (2,*,%), (2,¢)

6) (2,¢ F), (2,id)
The Top-down Parse Conversion Algorithm

GivenG=(V,Z,R,9)
Construct M such that L(M) = L(G)

M=({p, g}, %V, A p, {q}), where A contains:

(D) ((p. & €), (0, 9)
push the start symbol on the stack

(2 (9, &, A), (g, x)) for each rule A — xinR
replace left hand side with right hand side

(3) ((9, & a), (g, €)) foreacha O >
read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Lecture Notes 15 Pushdown Automata and Context-Free Languages



Example of the Algorithm

L ={adb*ad}

L
(2
3
(4)
©)

WImnLwOnm
Ll
2"

oM wWNPERO

!

o ™M

- bB
input =aabbaa 7
trans state unread input
aabbaa
aabbaa
aabbaa
abbaa
abbaa
bbaa
bbaa
bbaa
baa
baa
aa
aa
a
€

OO0OOPRNOINOINOOWO WO
D 00000000000 00T

Another Example
L={adb"c’d": m+n=p+q}

0
(@D} S - axd 1
(2 S-T 2
©)] S- U 3
(4) T - alc 4
(5) TV 5
(6) U - bud 6
@) Uu-V 7
(8) V - bVe 8
9 V o€ 9
10
11
input=aabcdd 12
13

(P& €), (a5

(0, & 9),(a, €

(0, & S), (a, B)

(0, & S), (g, aS9)

(0, & B), (a, €

(a, € B), (g, bB)

(9,2 a),(q,€)

(0, b, b), (a, €)

stack

€
S
aSa
Sa
aSaa
Saa
Baa
bBaa
Baa
bBaa
Baa
aa
a
€

(P, & €), (@S

(0, & S), (g, asd)

(0, & 9), (a,T)

(0, & S), (qU)

(0, & T), (g, arc)

(A& T),(q,V)

(a, & V), (g, bud)

(a,& V), (q,V)

(a,&, V), (q,bVe

(0, & V), (g, €)

(9, & a), (g, €)

(q, b, b), (a, &)

(0, ¢,0),(a ¢

(g, d, d), (a, €

The Other Way—Build a PDA Directly

L={db"c’d": m+n=p+q}

1) S - axd (6)
2 S-T (7
©) S-u 8
(4) T - alc (9
(5) TV

bila

C/B/‘ dial
al dial

input=aabcdd
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U - bud
Uu-V
V - bVc
V - ¢

b//a c/
elel elel ': : elel '
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Notice Nondeter minism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial
languages.
Example: L =ab"

A grammar for L is: A machine M for L is:
0) ((p.& ). (a, )

[1]S - aSb (1) ((9,¢,S), (g, aSh))

[21S - ¢ 2 (a,¢,9),(q,8)

() ((a,a a), (q, €))
4) ((9, b, b), (g, €))
But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same
configuration. A PDA isnondeter ministicif it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way
Lemma: If alanguage is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar).
Proof (by construction)

Example: L = {wew®:w O {a, b}*}

A contains:
/ alal . (s a¢),(sa)
cll ) @ (s b, ¢), (s b))
s ((s ¢ 9, (f,¢€)
((f, a a), (f, €))
bi/b bib/ ((f, b, b), (f, €))

M=({s f},{a b c},{a b}, A s{f}) where:

First Step: MakeM Simple
A PDA M issimpleiff:
1. thereare no transitions into the start state, and

2. whenever ((g, X, B), (p, y) isatransition of M and g is not the start state, then3 O T, and |y| < 2.

Step 1. Add s and f":

alela alal
@s/s/; ol £1Z/
ble/b bib/

Step 2:
Q) Assurethat |B| < 1.

2 Assurethat |y| < 2.
(©)] Assurethat |B| = 1.
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Making M Simple

alela alal
@8/8/; ol 0
ble/ bib/

M=({sf,s,f}, {ab,c} {ab Z}, A ss{f}), A=
(s, & €), (s 2)
(s a¢),(sa) (s & 2), (s a2)
((s & a), (s, a)
((s & b), (s an))
((s b, €), (s b)) (s b, 2), (s, bZ))
((s b, a), (s, ba))
((s, b, b), (s, bb))
(s c 9, (f,¢) ((sc 2),(f,2)
((sca),(f,a)
((s,c,b), (f, b))
((f, & a), (f, €) ((f,a a), (f, €)
((f, b, b), (f, €)) ((f, b, b), (f, €))
((f,&,2), (', &)

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.

Example: abcba
S[1]
I
<s, Z,>][2]
a <s, g f>[4] <f, Z,1>[g]
/
b <s b, f>[5] <f, a, > [6] 5 \<f‘,s,f‘> [10]
/\ [
c <f, b, f>[7] a <f g >[9] €
I
b <f, g >[9] €

€

If the nonterminal <s;, X, s,> =* w, then the PDA startsin state s, with (at least) X on the stack and after consuming w and
popping the X off the stack, it ends up in state s,.

Start with the rule:
S - <s, Z, "> where sisthe start state, f’ isthe (introduced) final state and Z is the stack bottom symbol.

Transitions ((sy, & X), (S, Y X)) become a set of rules:
<s, X, 0> - a<s, Y, r><r, X,g> foradX O {e},OqrdK

Transitions ((sy, & X), (S, Y)) becomes a set of rules:
<s, X, > > a<s, Y,q> foraOzO{e},0gOK

Transitions ((s1, & X), (S, €)) become arule:
<s, X,s> - a foraldZO{e}
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Creating Productions from Transitions

S <sZf> (1]
((s.& ). (s 2)
((s, & 2), (s, a2)) <s Z,f> 5 a<s, g f><f, Z, > [2]
<s, Z,s> > a<s a f><f, Z, s> [x]
<s Z,f> 5 a<s,a, s<s,Z, > [x]
<§,Z,8> > a<s, a,$<s,Z,f> [x]
<s, Z,8> - a<s,a f><f, Z, s> [x]

((s & a), (s ad) <s g f> - a<s g f><f, af> (3]
((s & b), (s ab))

((s, b, 2), (s, b2))

((s, b, a), (s, ba)) <s a f> - b<s b, f><f, a > [4]
((s, b, b), (s, bb))

((s.c 2. (f, 2)

((Sr Cv a)! (f, a)) <S, a, f> - C <f, a‘l f>

((s, c, b), (f, b)) <s b, f> - c<f, b, f> [5]

((f, a, a), (f, €)) <f,a f> - a<f, ¢ > [6]

((f, b, b), (f, €)) <f, b, f> - b<f, ¢ > [7]

((f, &, 2), (f', &) <f,Z,f> 5 e<f' g "> [8]
<f, g, f> - ¢ [9]
<f'g, > ¢ [10]

Comparing Regular and Context-Free L anguages

Regular Languages Context-Free Languages

e  regular exprs. »  context-free grammars
e or

e regular grammars

e recognize s pase

e« =DFSAs e =NDPDAs
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Grammars and Normal Forms

Read K & S3.7.
Recognizing Context-Free L anguages

Two notions of recognition:

(1) Say yesor no, just like with FSMs

(2) Say yesor no, AND

if yes, describe the structure

a + b * c
Now it's time to worry about extracting structure (and doing so efficiently).
Optimizing Context-Free Languages

For regular languages:
Computation = operation of FSMs. So,
Optimization = Operations on FSMs:
Conversion to deterministic FSM s
Minimization of FSMs
For context-free languages:
Computation = operation of parsers. So,
Optimization = Operationson languages
Operations on grammars
Parser design

Before We Start: Operationson Grammars

There are lots of ways to transform grammars so that they are more useful for a particular purpose.

the basic idea:

1. Apply transformation 1 to G to get of undesirable property 1. Show that the language generated by G is unchanged.
2. Apply transformation 2 to G to get rid of undesirable property 2. Show that the language generated by G is unchanged AND

that undesirable property 1 has not been reintroduced.
3. Continue until the grammar isin the desired form.

Examples:

e Getting rid of € rules (nullable rules)

e Getting rid of sets of rules with acommon initial terminal, e.g.,
° A—>aB,A—>aCbeC0meA—>aD,D—>B|C

»  Conversion to normal forms
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Normal Forms

If you want to design algorithms, it is often useful to have alimited number of input forms that you have to deal with.
Normal forms are designed to do just that. Various ones have been developed for various purposes.
Examples:
» Clauseform for logical expressions to be used in resolution theorem proving
« Disunctive normal form for database queries so that they can be entered in a query by example grid.
*  Various normal formsfor grammars to support specific parsing techniques.

Clause Form for Logical Expressions
[x : [Roman(x) Oknow(x, Marcus)] — [hate(x, Caesar) O (Oy : [ : hate(y, z) - thinkcrazy(x, y))]

becomes

= Roman(x) 00 -know(x, Marcus) [1 hate(x, Caesar) (1 - hate(y, z) Othinkcrazy(x, z)

Digunctive Normal Form for Queries

(category = fruit or category = vegetable)
and
(supplier = A or supplier = B)

becomes
(category = fruit and supplier = A) or
(category = fruit and supplier = B) or
(category = vegetable and supplier = A) or

(category = vegetable and supplier = B)

Category Supplier Price
fruit A
fruit B
vegetable A
vegetable B

Normal Formsfor Grammars

Two of the most common are:

e Chomsky Normal Form, in which all rules are of one of the following two forms:
e X - awherealdZ, or
e X - BC,whereB and C are nonterminasin G

*  Greibach Normal Form, in which all rules are of the following form:
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals

If L isacontext-free language that does not contain €, then if G isagrammar for L, G can be rewritten into both of these normal
forms.
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What Are Normal Forms Good For?
Examples:
e Chomsky Normal Form:
X - awherealZ, or
e X - BC,whereB and C are nonterminalsin G
¢ The branching factor is precisely 2. Tree building algorithms can take advantage of that.

*  Greibach Normal Form
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals
¢ Precisely one nonterminal is generated for each rule application. This means that we can put a bound on the number of rule
applications in any successful derivation.
Conversion to Chomsky Normal Form

Let G be agrammar for the context-free language L wheree O L.
We construct G', an equivalent grammar in Chomsky Normal Form by:

0. Initialy, let G' = G.
1 Remove from G' all € productions:
1.1 If thereisarule A — aBp and B isnullable, add therule A - aff and deletetheruleB - e.
Example:
S nd aA
A - B|CD
B¢
B - a
C - BD
D b b
D-c¢
Conversion to Chomsky Normal Form
2. Remove from G' al unit productions (rules of the form A — B, where B is a nonterminal):
2.1. Remove from G' all unit productions of theform A - A.

2.2 For al nonterminals A, find all nonterminals B such that A =* B, A # B.
2.3. Create G" and add to it all rulesin G' that are not unit productions.
24. For all A and B satisfying 3.2, add to G"
A - yl|y2]|...whereB - yl]|y2]isinG".
25. Set G'to G".
Example: Ao a
A-B
A - EF
B-A
B - CD
B-C
C nd ab
At this point, al rules whose right hand sides have length 1 are in Chomsky Normal Form.
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Conversion to Chomsky Normal Form

3. Remove from G' al productions P whose right hand sides have length greater than 1 and include aterminal (e.g., A -
aB or A - BaC):
3.1 Create a new nonterminal T, for each terminal ain .
3.2. Modify each production P by substituting T, for each terminal a.
3.3. Addto G, for each T, therule T, - a

Example:
A - aB
A - BaC
A - BbC

Ta- a
Tp- b
Conversion to Chomsky Normal Form

4. Remove from G' al productions P whose right hand sides have length greater than 2 (e.g., A - BCDE)
4.1. For each P of theform A — N;N5N3N4...N,,, n > 2, create new nonterminals M,, M3, ... M1
4.2, Replace Pwith therule A - N;M,.
4.3. Add therules Ms > NoMs, M3 — N3My, ... M1 —» NN,

Example:
A - BCDE (n=4)

A - BM,

M, — C M,
M — DE
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Top Down Parsing

Read K & S3.8.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2.
Do Homework 15.

Parsing
Two basic approaches:
Top Down
E = E = E
E/I+\T I/!u\ T

|

id
Bottom Up

E

/\

E

|

T T

| |

F F F
o | | |
id+id = id + id = id + id
A Simple Parsing Example

A simple top-down parser for arithmetic expressions, given the grammar
[1] E-E+T
[2] E-T
[3] T-T*F
[4] T-F
(5] F- (B
[6] F-id
[7] F - id(E)
A PDA that does a top down parse;
0) (1, &¢), (26 (7) (2,¢F), (2,id(E)
(1) (2,&E), (2 E+T) (8) (2,id,id), (2, &)
(2 (2&E),(2T) 9 @G(()2e
Q) (2¢&T1),(2TF (10)(2,).) ). (2 ¢)
4 (2,¢,T),2F (11) (2, +,4), (2,¢)
(5) (2’ g, F)! (21 (E) ) (12) (2, *, *), (2, S)

(6) (2. F), (2id)
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Example: id+id* id(id)

Stack:

The leftmost derivation of the string. Why?

EDE+T=>T+ToF+T=2id+T>

How Does It Work?

What Does It Produce?

id+T*F=id+F*F=id+id*F=

id+id* id(E) = id +id * id(T) =
id+id* id(F) = id +id * id(id)

T———m

o

0) (L&), (2E)
(1) (2,&E), (2, E+T)
(2 (2.&E),(@2T)
() (2,&,T),(2, T*F)
(4) (2,&T).(2F) —
) (2.&F), 2 (E) ]
(6) (2.¢F), (2id)
(7) (2, F), (2,id(E)
(8) (2.id,id), (2,¢)
9 @G()(@e
(10) (2,),) ). (2. ¢)
(11) (2, +,4), (2,¢)
(12) 2,%,%). (2. ¢)
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But the Process Isn't Deterministic

nondeterministic

nondeterministic

nondeterministic
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Is Nondeter minism A Problem?
Yes.

In the case of regular languages, we could cope with nondeterminism in either of two ways:

e Create an equivaent deterministic recognizer (FSM)

e Simulate the nondeterministic FSM in a number of steps that was till linear in the length of the input string.

For context-free languages, however,

«  Thebest straightforward general agorithm for recognizing a string is O(n®) and the best (very complicated) algorithm is
based on a reduction to matrix multiplication, which may get close to O(n?).

Wed really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string.

Islt Possibleto Eliminate Nondeter minism?
Inthiscase: Yes
In genera: No

Some definitions:

« A PDA M isdeterministicif it has no two transitions such that for some (state, input, stack sequence) the two transitions
could both be taken.

* AlanguagelL isdeterministic context-freeif L$ = L(M) for some deterministic PDA M.
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.

Proof: Later.
Adding a Terminator to the Language

We define the class of deterministic context-free languages with respect to aterminator ($) because we want that class to be as
large as possible.

Theorem: Every deterministic CFL (asjust defined) is a context-free language.

Pr oof:

Without the terminator ($), many seemingly deterministic cflsaren't. Example:
a J{ab":n>0}

Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm
3) M odify the grammar

Lecture Notes 17 Top Down Parsing



M odifying the Parsing Algorithm
What if we add the ability to look one character ahead in the input string?
Example: id+id* id(id)
N

EDE+T=>T+ToF+T=2id+T>
id+T*F=id+F*F=id+id*F

Considering transitions:

) (2&F) (2 (F)
6) (2.¢&F), (2 id)

(7) (2,&,F), (2,id(E))

If we add to the state an indication of what character is next, we have:

®) (&R 2 ()
(6) (2.id,& P), (2 id)

(7) (2,id, &, F), (2,id(E))
M odifying the L anguage

So we've solved part of the problem. But what do we do when we come to the end of the input? What will be the state indicator
then?

The solution is to modify the language. Instead of building a machine to accept L, we will build a machine to accept L$.

Using L ookahead

(0) (1, &,¢), (2, E)) _
[1] E-E+T (1) (2, €, E), (2, E+T)
[2] E-T ) (2,¢,E), (2, T)
[3] T.T*F () (2,&T),2,TFH ~ |
[4] T-F 4 (2,5, 71), (2P
(5] F - (E) G2 (&R, @E) —)
6] F-id (6) (2,id, ¢, F), (2, id)
[7] F — id(E) (7) (2,id, &, F),(2, id(E))

®) (2,id,id), 2,6)
@ E(()2¢
(10)(2,),) ). (2 &)
(11) (2, +, 4), (2, €)
(12) (2,%,%),(2,¢)

For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol
on the stack isF.
Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm

. Add one character look ahead
3) M odify the grammar
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M odifying the Grammar

Getting rid of identical first symbols:

[6] F-id (6) (2,id, €, F),(2, id)
[7] F - id(E) (7) (2,id, €, F),(2, id(E))
Replace with:

[6] F-idA (6) (2,id, &, F), (2,id A)
[7] Ao e (™ 2,2 & A), (2¢)
(8] A - (B (8) (2 (& A) (2 (B)

The general rule for left factoring:

Whenever A - of;
A - GBZ
A - aBn
areruleswith a # € and n = 2, then replace them by the rules:
A > aA’
A" - By
A S B
A~ Bn

M odifying the Grammar

Getting rid of left recursion:

[1] E-E+T D) (2, E), (2, E+T)
[2] E-T (@ (2,¢E),2T)
The problem:

E

E + T
Replace with:
[1] E-TE 1) (2,¢,E),2TE)
[2] E-+TFE 2 (2, E),(2,+TE)
[3] E'-c¢ (3) (2,& E),(2¢)
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Getting Rid of Left Recursion

The general rule for eliminating left recursion:

If G contains the following rules: Replace them with:
A - Aoy A S oA
A - Aa, ... A S 0A L.
A - Aoz A' S A
A - Aq, A' S 0A
A - ¢
A - B1 (whereB'sdo not start with Aa) A S BA
A~ B A - BA
A - Bm A S BA'
and n> 0, then

Possible Solutions to the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion

LL (k) Languages
We have just offered heuristic rules for getting rid of some nondeterminism.
We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work.

We define agrammar to be LL (k) if it is possible to decide what production to apply by looking ahead at most k symbols in the
input string.

Specifically, agrammar GisLL (1) iff, whenever

A - a|pBaetworulesinG:

1. For noterminal ado a and 3 derive strings beginning with a.

2. Atmost oneof a | B can derivee.

3. If B =* &, then a does not derive any strings beginning with aterminal in FOLLOW(A), defined to be the set of terminals
that can immediately follow A in some sentential form.

We define alanguage to be L L (k) if there exists an LL (k) grammar for it.
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Implementing an LL (1) Parser

If alanguage L hasan LL (1) grammar, then we can build a deterministic LL (1) parser for it. Such a parser scansthe input L eft to
right and builds a L eftmost derivation.

The heart of an LL(1) parser isthe parsing table, which tellsit which production to apply at each step.
For example, here is the parsing table for our revised grammar of arithmetic expressions without function cals:

V\Z id + * ( ) $
E E-TE E-TE
E' E-+TE' E-e¢ E'-¢
T T FT T FT'
T T ¢ T S *FT T € T €
F F-id F-(E)
Giveninput id +id * id, the first few moves of this parser will be:
E id+id* id$
E-TE TE' id+id*id$
T-FT FT'E id+id* id$
F-id idT'E' id+id*id$
TE +id* id$
T-¢ E +id* id$

But What If We Need a Language That Isn't LL(1)?
Example:

ST - if Cthen ST else ST
ST - if Cthen ST

We can apply left factoring to yield:
ST - ifCthenST S
S - else ST |¢

Now we've procrastinated the decision. But the language is still ambiguous. What if the input is

if C, thenif C,then ST, else ST,

Which bracketing (rule) should we choose?
A common practice is to choose S o elseST
We can force thisif we create the parsing table by hand.
Possible Solutionsto the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead

B. Use a parsing table

C. Tailor parsing table entries by hand
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion
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Old Grammar
[1] E_E+T

2 E-T

8] T-T*F
4 T-F

(5] F - (E)
6] F-id
[71  F-idE)

input =id+id+id

id A
|
€

Regular Languages

e regular exprs.
or
e regular grammars
« =DFSAs
e recognize
e minimize FSAs
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The Price We Pay

New Grammar

E- TE
E - +TE
E - ¢
T FT'
T - *FT"
T > ¢
F- (B
F - idA
Ao e
A~ (B
E
e L
+ T E'
F T + T E'
id A € F T €
| PN |
€ id A 3

Comparing Regular and Context-Free L anguages
Context-Free Languages

e context-free grammars
« =NDPDAs
*  pase

e find deterministic grammars
» find efficient parsers

Top Down Parsing



Bottom Up Parsing
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Section 3.

Bottom Up Parsing

An Example:

[1] E-E+T

[2] E-T

[3] T-T*F

[4] T-F

(5] F- (B

[6] F-id

id + id * id $

Creating a Bottom Up PDA
There are two basic actions:
1. Shift an input symbol onto the stack
2. Reduce astring of stack symbolsto a nonterminal

; $/s/ }

So, to construct M from agrammar G, we need the following transitions:

M will be:

(1) The shift transitions:
((p, & €), (p, @), foreacha O =

(2) The reduce transitions:
((p, &, 0©), (p, A)), for eachrule A — ainG.

(3) The finish up transition (accept):
((r. $,9), (. )

(Thisisthe “bottom-up” CFG to PDA conversion agorithm.)
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M for Expressions

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (. & F), (p, T)

5 (&, “)"E"(" ). (P, F)

6 (p. & id), (p, F)

7 (. $.E), (0, 8)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €

TheParse Tree

| — | T
| |
¥ i‘d .

Producing the Rightmost Derivation

We can reconstruct the derivation that we found by reading the results of the parse bottom to top, producing:

E= E+ id* id>
E+ T> T+ id*id=>
E+ T* F= F+ id*id=
E+ T*ide id+ id*id
E+ Fid=>

Thisis exactly the rightmost derivation of the input string.
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Possible Solutions to the Nondeter minism Problem

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character ook ahead
. Use a parsing table
. Tailor parsing table entries by hand
. Switch to a bottom-up par ser
3) M odify the grammar
. Left factor
. Get rid of left recursion

Solving the Shift vs. Reduce Ambiguity With a Precedence Relation
Let's return to the problem of deciding when to shift and when to reduce (asin our example).
We chosg, correctly, to shift * onto the stack, instead of reducing T+E to E.
This corresponds to knowing that “+” has low precedence, so if there are any other operations, we need to do them first.
Solution:

1. Add aone character lookahead capability.
2. Define the precedence relation

PO (V x {0 %} )
top next
stack input
symbol symbol

If (a,b) isin P, we reduce (without consuming the input) . Otherwise we shift (consuming the input).
How Does |t Work?

We're reconstructing rightmost derivations backwards. So suppose arightmost derivation contains
Byabx
I 4—— correspondingtoarule A — yaand not somerule X — ab
BAbx
ﬂ*
S

We want to undo rule A. Soif the top of the stack is
a
Y and the next input character is b, we reduce

now, before we put the b on the stack.

To make this happen, we put (a, b) in P. That meanswe'll try to reduce if ais on top of the stack and b is the next character. We
will actually succeed if the next part of the stack isy.

Lecture Notes 18 Bottom Up Parsing 3



Example

TﬂF 4— correspondingtoarule T - T*F
-TI{* Input: id*id* id
E
We want to undo rule T. So if the top of the stack is
’[‘: and the next input character is anything legal, we reduce.
T

The precedence relation for expressions:

V\> ( ) id + *
(
) L] L] L]
|d ° . .
+
E
T . .
F ° . °

A Different Example
E+T
f* 4—— correspondingto arule E - E+T
E

We want to undo rule E if the input is E+T$
or E+T+id
but not E+T*id
Thetop of the stack is
T
+
E
The precedence relation for expressions:
V\Z ( ) id + *
(
) L] L] L]
|d . ° .
+
*
E
T . .
F ° ° °

Lecture Notes 18 Bottom Up Parsing



What About If Then Else?

ST - if Cthen ST else ST
ST - if Cthen ST

What if theinput is

Which bracketing (rule) should we choose?

We don't put (ST, else) in the precedence relation, so we will not reduce at 1. At 2, we reduce:

ST2 2
ese
STl 1
then
Cc2
if
then
(o4}
if

Resolving Reduce vs. Reduce Ambiguities

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (P& F), (p, T)

5 (P& ") E (") (0, F)

6 (p. & id), (p, F)

7 (P, $,E), (g, ¢)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €
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TheLongest Prefix Heuristic
A simple to implement heuristic rule, when faced with competing reductions, is:

Choose the longest possible stack string to reduce.
Example:

*|= -

Supposethestackhas F* T + E
U
T

We call grammars that become unambiguous with the addition of a precedence relation and the longest string reduction heuristic
weak precedence grammars.

Possible Solutionsto the Nondeter minism Problem in a Bottom Up Par ser

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character lookahead
. Use a precedence table
. Add the longest first heuristic for reduction
. Usean LR parser
3) M odify the grammar

LR Parsers

LR parsers scan each input L eft to right and build a Rightmost derivation. They operate bottom up and deterministically using a
parsing table derived from a grammar for the language to be recognized.

A grammar that can be parsed by an LR parser examining up to k input symbols on each move isan L R(k) grammar. Practical
LR parsersset k to 1.

AnLALR (or Look Ahead LR) parser is a specific kind of LR parser that has two desirable properties:
e Theparsing tableis not huge.
*  Most useful languages can be parsed.

Another big reason to use an LALR parser:
There are automatic tools that will construct the required parsing table from a grammar and some optional additional
information.

Wewill beusing such atool:  yacc
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How an LR Parser Works

Input String
state
state
state
Output Token
Stack

Parsing Table

In simple cases, think of the "states' on the stack as corresponding to either terminal or nonterminal characters.

In more complicated cases, the states contain more information: they encode both the top stack symbol and some facts about
lower objectsin the stack. Thisinformation is used to determine which action to take in situations that would otherwise be
ambiguous.

The Actionsthe Parser Can Take

At each step of its operation, an LR parser does the following two things:

1) Based on its current state, it decides whether it needs alookahead token. If it does, it gets one.
2) Based on its current state and the lookahead token if there is one, it chooses one of four possible actions:
. Shift the lookahead token onto the stack and clear the lookahead token.
. Reduce the top elements of the stack according to some rule of the grammar.
. Detect the end of the input and accept the input string.
. Detect an error in the input.
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0: S - rhyme $end ;

1: rhyme - sound place ;
2:sound — DING DONG ;
3: place - DELL

state 0 (empty)

A Simple Example

O therule this came from

error ettt .

State 3

push state 2

state 2 (sound)
rhyme : sound_place
DELL shifth
. error
place goto 4
state 3 (DING)

sound : DING_DONG

DONG shift6
. error ’
state 4 (place)

rhyme : sound place (1)

[1] <stmt> - procname ( <paramlist>)

[2] <stmt> - <exp> = <exp>

.......................................................... . byrU|el

state 5 (DELL)

current position of input
if none of the others match

if we see EOF, accept

place: DELL_ (3)

. reduce 3
state 6 (DONG)

sound : DING DONG_ (2)

. reduce 2

[3] <paramlist> - <paramlist>, <param> | <param>

[4] <param> - id

[5] <exp> — arrayname (<subscriptlist>)

[6] <subscriptlist> - <subscriptlist>, <sub> | <sub>

[7] <sub> - id
Example:

procname ( id)

Should we reduce id by rule 4 or rule 7?

The parsing table can get complicated as we incorporate more stack history into the states.

Lecture Notes 18
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The Language I nter pretation Problem:
Input: -(17 * 83.56) + 72/ 12
Output: -1414.52
The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

Compute the answer

-

Output: -1414.52

The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

-

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52
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The Language I nter pretation Problem:

Input: (17 * 83.56) + 72/ 12

Lexical analysis of the input *1

A string of input tokens, corresponding to the primitive objects of which the input is composed:
-(id* id) + id / id

+

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52

yacc and lex

Lexical analysis of the input *1

Parse the input *2

Where do the procedures to do these things come from?

regular expressions that describe patterns

v

lex

lexical analyzer *1

grammar rules and other facts about the language

-

yacc

-

parser *2
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Theinput to lex: definitions
%%
rules
%%
user routines

All strings that are not matched by any rule are ssmply copied to the output.

Rules:

[ \M]+; get rid of blanks and tabs
[A-Za-Z][A-Za-z0-9]* return(1D); find identifiers

[0-9]+ { sscanf(yytext, "%d", &yylva);

return (INTEGER); } return INTEGER and put the value in yylval
How Does lex Deal with Ambiguity in Rules?
lex invokes two disambiguating rules:

1. Thelongest match is prefered.
2. Among rules that matched the same number of characters, therule given first is preferred.

Example:
integer  action 1
[az]+ action2
input: integers take action 2
integer take action 1
yacc

(Yet Another Compiler Compiler)
The input to yacc:

declarations

%%

rules

%%

#include "lex.yy.c"
any other programs

This structure means that lex.yy.c will be compiled as part of y.tab.c, so it will have access to the same token names.
Declarations:

%token namel name2 ...

Rules:
Vv rabc
V abc {action}
\% abc {$$=92} returns the value of b
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Example
Input to yacc:
%token DING DONG DELL
%%

rhyme :  sound place ;
sound : DING DONG ;
place : DELL

%%
#include "lex.yy.c"

state 0 (empty) state 3 (DING)
$accept : _rhyme $end sound : DING_DONG
DING shift 3 DONG shift 6
. error . error
rhyme goto 1 state 4 (place)
sound goto 2 rhyme : sound place (1)
state 1 (rhyme) . reduce 1
$accept : rhyme $end state 5 (DELL)
$end accept place: DELL_ (3)
. error . reduce 3
state 2 (sound) state 6 (DONG)
rhyme : sound_place sound : DING DONG_ (2)
DELL shifts . reduce 2
. error
place goto 4

How Does yacc Deal with Ambiguity in Grammars?

The parser table that yacc creates represents some decision about what to do if there is ambiguity in the input grammar rules.

How does yacc make those decisions? By default, yacc invokes two disambiguating rules:
1. Inthe case of ashift/reduce conflict, shift.

2. Inthe case of areduce/reduce conflict, reduce by the earlier grammar rule.

yacc tells you when it has had to invoke these rules.

Shift/Reduce Conflicts - If Then Else

ST - if Cthen ST else ST
ST - if Cthen ST

What if the input is

if C, then if C, then ST; €dse ST,

! i

Which bracketing (rule) should we choose?

yacc will choose to shift rather than reduce.

ST2 2
else
ST1 1
then
c2
if
then
Cc1
if
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Shift/Reduce Conflicts - L eft Associativity

We know that we can force left associativity by writing it into our grammars.

Example:
E-E+T =
E_T T
T - id E\ T
E T
T
|Jd + id + id

What does the shift rather than reduce heuristic if we instead write:
E-E+E id + id + id
E-id
Shift/Reduce Conflicts - Operator Precedence
Recall the problem: input: id+id*id

T Should we reduce or shift on* ?

+

E

The "always shift" rule solves this problem.

But what about: id*id+id
T Should we reduce or shift on + ?
E Thistime, if we shift, we'll fail.

One solution was the precedence table, derived from an unambiguous grammar, which can be encoded into the parsing table of an
LR parser, since it tells us what to do for each top-of-stack, input character combination.

Operator Precedence

We know that we can write an unambiguous grammar for arithmetic expressions that gets the precedence right. But it turns out
that we can build afaster parser if we instead write:

E_ E+E|E*E|(E)|id

And, in addition, we specify operator precedence. In yacc, we specify associativity (since we might not always want left) and
precedence using statements in the declaration section of our grammar:

%left '+ -
Yoleft ** /'

Operators on the first line have lower precedence than operators on the second line, and so forth.

Lecture Notes 18 Bottom Up Parsing 13



Reduce/Reduce Conflicts

Recall:

2.

This can easily be used to simulate the longest prefix heuristic, " Choose the longest possible stack string to reduce.

(4]
(2]
(3]
[4]
(5]
(6]

In the case of areduce/reduce conflict, reduce by the earlier grammar rule.

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

Generating an Executable System

Step 1: Create the input to lex and the input to yacc.

Step 2:

$ lex ourlex.| creates lex.yy.c
$ yacc ouryacc.y createsy.tab.c
$ cc-oourprogy.tab.c -ly -l actually compilesy.tab.c and lex.yy.c, which isincluded.

-ly links the yacc library, which includes main and yyerror.
-l links the lex library

Step 3: Run the program

$ ourprog
Runtime Communication Between lex and yacc-Generated M odules
Parser read the value of the token
ask return
for a a
token token
Lexica Analyer
set the value of the token
Summary

Efficient parsers for languages with the complexity of atypical programming language or command line interface:

Make use of special purpose constructs, like precedence, that are very important in the target languages.
May need complex transition functions to capture all the relevant history in the stack.

Use heuristic rules, like shift instead of reduce, that have been shown to work most of the time.

Would be very difficult to construct by hand (as aresult of all of the above).

Can easily be built using atool like yacc.

Lecture Notes 18 Bottom Up Parsing

14



Languages That Are and Are Not Context-Free
Read K & S3.5,3.6,3.7.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free
Languages
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma.
Do Homework 16.
Deciding Whether a Language is Context-Free
Theorem: There exist languages that are not context-free.
Pr oof:
(1) There are a countably infinite number of context-free languages. This true because every description of a context-free
language is of finite length, so there are a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.
Thus there are more languages than there are context-free languages.

So there must exist some languages that are not context-free.

Example: {a'b"c"}
Showing that a Languageis Context-Free

Techniques for showing that alanguage L is context-free:

1. Exhibit a context-free grammar for L.

2. Exhibit aPDA for L.

3. Usethe closure properties of context-free languages.
Unfortunately, these are weaker than they are for regular languages.

The Context-Free Languages are Closed Under Union

Let Gl = (Vl! Zl! Rl1 Sl) and
G,=(V2 25, R, S))

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) O L(Gy)

We can show that L is context-free by exhibiting a CFG for it:

The Context-Free L anguages are Closed Under Concatenation

Let Gl = (Vll zlv R11 Sl) and
GZ = (V21 22! RZ! SZ)

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) L(Gp)

We can show that L is context-free by exhibiting a CFG for it:
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The Context-Free Languages are Closed Under Kleene Star
Let G1=(Vy, 23, Ry, S))
Assume that G, does not have the nonterminal S.
Let L = L(Gy)*

We can show that L is context-free by exhibiting a CFG for it:

What About I ntersection and Complement?

We know that they share afate, since

Linl, =L, 0L,

But what fate?

We proved closure for regular languages two different ways. Can we use either of them here:

1. Given adeterministic automaton for L, construct an automaton for its complement. Argue that, if closed under complement
and union, must be closed under intersection.

2. Givenautomatafor L; and L,, construct a new automaton for L; n L, by simulating the parallel operation of the two original
machines, using states that are the Cartesian product of the sets of states of the two original machines.

More on this later.

TheIntersection of a Context-Free Language and a Regular Languageis Context-Free

L =L(My),aPDA = (Ky, Z, Iy, Ay, 51, F1)
R=L(My), adeterministic FSA = (K3, Z, d, s, F»)

We construct a new PDA, M3, that acceptsL n R by simulating the parallel execution of M; and M.
M= (K XKy Z,T1, A (81, %), FL X F)

Insert into A:

For eachrule ((as, apB), (P Y)inAy

and each rule (0, a, p2) ind,

(1, 92, & B), (P2, P2, Y)

For eachrule ((q, & B), (P, y) inA,,
and each state  q, inKy,

(1, A2, &, B), (P, G2). V)

Thisworks because: we can get away with only one stack.

Lecture Notes 19 Languages That Are and Are Not Context Free 2



Example

L= &b n (aa)* (bb)*

a//a b/al

(A, a8, (A &)
((A, b, a), (B, €)

((B,b,a), (B, €)) (2,a1)
(3, b, 4)
(4, b, 3)
A PDA for L:

Don’t Try to Use Closure Backwards

One Closure Theorem:
If L, and L, are context freg, then sois

|_3 = E O L2.
But what if L3 and L, are context free? What can we say about L,?

L3: L1D L2.

T A
Example:

a'b’c* = d'b"cr O d'p"c"

The Context-Free Pumping Lemma
This time we use parse trees, not automata as the basis for our argument.

S

r u T v T x 'y T z 1

If L isacontext-free language, and if wisastring in L where jw| > K, for some value of K, then w can be rewritten as uvxyz,
where jvy| > 0 and [vxy| < M, for some value of M.

UXZ, UVXYZ, UVVXYYZ, UVWVXYYYZ, etc. (i.e., uv"xy"z, for n > 0) areall in L.
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Some Tree Basics

O < root
N
o O o/\oI . e
yield

Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is< B".

Proof: By inductiononH. If His 1, thenjust asinglerule applies. By definition of fanout, the longest yield is B.
Assumetruefor H = n.

Consider atreewithH =n+ 1. It consists of aroot, and some number of subtrees, each of which is of height < n (so induction
hypothesis holds) and yield < B". The number of subtrees< B. So the yield must be< B(B") or B™*.

What IsK?

—
-

u v ! x oy bz

Let T be the number of nonterminalsin G.

If thereisatree of height > T, then some nonterminal occurs more than once on some path. If it does, we can pump itsyield.
Since atree of height = T can produce only strings of length < BT, any string of length > BT must have a repeated nonterminal and
thus be pumpable.

So K =BT, where T isthe number of nonterminalsin G and B is the branching factor (fanout).

What isM?

—

u v X y Iz !

Assume that we are considering the bottom most two occurrences of some nonterminal. Then the yield of the upper oneis at
most B™** (since only one nonterminal repeats).

SoM =B™,
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The Context-Free Pumping Lemma

Theorem: Let G=(V, Z, R, S) be a context-free grammar with T nonterminal symbols and fanout B. Then any stringw [ L(G)
where jw| > K (BT) can be rewritten asw = uvxyz in such away that:

* |wl>0

o |vxy]< M (B™), (making this the "strong" form),

o foreveryn=0, u"xy"zisinL(G).

Proof:

Let w be such astring and let T be the parse tree with root labeled S and with yield w that has the smallest number of |eaves
among all parse trees with the sameroot and yield. T has a path of length at least T+1, with a bottommost repeated nonterminal,
which well call A. Clearly v and y can be repeated any number of times (including 0). If [vy| = 0, then there would be a tree with
root S and yield w with fewer leavesthan T. Finally, jvxy|< B™™.

An Example of Pumping
L ={a"c": n=0}
Choose w = db'c' wherei >[K/3] (making jw| > K)

S

A

N\

r u LY, I X I y 1 Z 1

Unfortunately, we don't know wherev and y fall. But there are two possibilities:

1. If vy contains al three symbols, then at least one of v or y must contain two of them. But then uvvxyyz contains at |east one
out of order symbol.

2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols.

Using the Strong Pumping Lemma for Context Free Languages
If L is context free, then

Thereexist K and M (with M = K) such that
For all stringsw, where jw|> K,
(Sincetruefor all such w, it must be true for any paricular one, so you pick w)
(Hint: describe w in terms of K or M)

there exist u, v, X, y, z such that w = uvxyz and Ivy| >0, and
vxy|< M, and
forall n=0, uv"xy"zisinL.

We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria. To do that, we just need to

focus on possible values for v and y, the pumpable parts. So we show that all possible picksfor v and y violate at least one of
thecriteria.

Write out asingle string, w (interms of K or M) Dividew into regions.

For each possibility for v and y (described in terms of the regions defined above), find some value n such that uv"xy"zisnot in L.
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in). Your value for n may differ for different cases.
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v y n why theresulting stringisnot in L

(4]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
[10]

Convincethereader that thereareno other cases.
Q.E.D.

A Pumping Lemma Proof in Full Detail
Proof that L = {a'b"c" : n> 0} isnot context free.

Suppose L is context free. The context free pumping lemma appliesto L. Let M be the number from the pumping lemma.
Choosew = a"b"c™. Noww O L and jw|>M = K. From the pumping lemma, for all strings w, where [w| > K, there exist u, v, x,
y, z such that w = uvxyz and [vy| > 0, and [vxy| < M, and for all n> 0, uv"xy"zisin L. There are two main cases:
1. Either v or y contains two or more different types of symbols (“a’, “b” or “c”). In this case, uv®xy?z is not of the form
a*b*c* and hence uvxy?z L.
2. Neither v nor y contains two or more different types of symbols. In this case, vy may contain at most two types of
symbols. The string uvxy°z will decrease the count of one or two types of symbols, but not the third, so uv®xy°z OL
Cases 1 and 2 cover all the possibilities. Therefore, regardless of how w is partitioned, there is some uv"xy"z that isnot in L.
Contradiction. ThereforeL is not context free.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

Context-Free Languages Over a Single-L etter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.

Examples:

L ={d'b"

L' ={d'd}
={a")
={wO{a* : w|iseven}

L ={ww®:wO{a b}*}

L’ ={ww?:w O {a*}
={ww: w O {a}*}
={wO{a* : w|iseven}

L ={db™:n,m=0and n# m}

L’ ={d'a":n,m=0andn#m}

Proof: See Parikh's Theorem
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Another Language That IsNot Context Free
L={d":nx1lisprime}
Two waysto prove that L is not context free:
1. Usethe pumping lemma:
Choose astring w = &' such that nis prime and n > K.
W = a8388808080800000858588.
u v x y z
Let vy =& and uxz = d. Thenr + kp must be prime for all values of k. This can't be true, as we argued to show that L was not
regular.

2. |z |=1. Soif L were context free, it would also be regular. But we know that it isnot. So it isnot context free either.

Using Pumping and Closure
L={wO{a b, c}*: whasan equa number of as, b's, and c's}

L is not context free.
Try pumping: Letw = ab*c®

Now what?

Using Inter section with a Regular L anguage to M ake Pumping Tractable
L={tt:tO{a b}*}

Let'stry pumping: |w|>K

t | t
u Y, X y z
What if u is ¢,
v is w,
X is g,
y is w, and
zZ is ¢

Then all pumping tellsusisthat  t"t" isinL.
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L ={tt:tO{a b}*}
What if we let w| > M, i.e. choose to pump the string d"ba"b:
Now v and y can't bet, since jvxy|< M:

t | t
u v X y z

Suppose v| = ly]. Now we have to show that repeating them makes the two copies of t different. But we can't.
L={tt:t0{a b}*}
But let'sconsider L' =L n a*b*a*b*
Thistime, we let jw| > 2M, and the number of both a@sand b'sinw >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Now we use pumping to show that L' is not context free.
First, notice that if either v or y contains both as and b's, then we immediately violate the rules for L' when we pump.
So now we know that v and y must each fall completely in one of the four marked regions.
L'={tt:tO{a b}*} n a*b*a*b*
jw| > 2M, and the number of both asand b'sin w >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Consider the combinations of (v, y):

(L.1)
(22)
(33
(4.4)
(1.2)
(23
(34)
(1.3
(24)
(1.4)
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The Context-Free Languages Are Not Closed Under I ntersection
Proof: (by counterexample)
Consider L ={a'b"c™ n= 0}
L isnot context-free.

Let L, ={adb"'¢™ n,m=0} /*equal dsandb's
L,={a""c": n,m=0} /*equal b'sandc's

Both L, and L, are context-free.

ButL =L;n Ly

So, if the context-free languages were closed under intersection, L would have to be context-free. But it isn't.
The Context-Free Languages Are Not Closed Under Complementation

Proof: (by contradiction)

By definition:

Llﬂ L2:L1DL2

Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily
be closed under intersection. But we just showed that they are not. Thus they are not closed under complementation.

The Deter ministic Context-Free Languages Are Closed Under Complement
Proof:

Let L be alanguage such that L$ is accepted by the deterministic PDA M. We construct a deterministic PDA M' to accept (the
complement of L)$, just aswe did for FSMs:

Initialy, let M' =M.
M' is aready deterministic.
Make M' simple. Why?
Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including:
e Transitionsthat are required to assure that for al input, stack combinations some transition can be followed.
» |f some state q has atransition on (g, €) and if it does not later lead to a state that does consume something then
make atransiton on (g, €) to the dead state.
Swap final and nonfinal states.
6. Noticethat M' isstill deterministic.

AWONPE

o
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An Example of the Construction

L=ab" M acceptsL$ (and is deterministic):

a//a
9 b/al ‘

Set M =M'. Make M simple.
alalaa

alZlaz b/al .

s/s/Z b/al $/Z/
(IO O Om.©

A

$/z/
The Construction, Continued

Add dead state(s) and swap final and nonfinal states:

alalaa
alZlaz b/al
‘S/S/Z b/a/ @ $/z/ °

all, $lal, biz/

al,bll, $ll, elal, €2/
Issues: 1) Never having the machine die
2)-(L9) 2 (-L)$
3) Keeping the machine deterministic
Deter ministic vs. Nondeter ministic Context-Free Languages
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.
Proof: Consider L ={a'b™c®: mznorm#p} L iscontext free (we have shown a grammar for it).
But L isnot deterministic. If it were, then its complement L; would be deterministic context free, and thus certainly context free.
But then
L, =L, n ab*c* (aregular language)
would be context free. But
L, ={ab"c": n>0}, whichweknow is not context free.

Thus there exists at least one context-free language that is not deterministic context free.

Note that deterministic context-free languages are not closed under union, intersection, or difference.
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Decision Procedures for CFLs & PDAs

Decision Proceduresfor CFLs

There are decision procedures for the following (G is a CFG):
»  Deciding whether w O L(G).
e Deciding whether L(G) = 0.
»  Deciding whether L(G) is finite/infinite.

Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form. Why?
Theorem: For any context free grammar G, there exists a number n such that:
1. If L(G) # O, then there existsaw O L(G) such that jw| < n.
2. If L(G)isinfinite, then there existsw O L(G) such that n< jw| < 2n.
There are not decision procedures for the following:
e Deciding whether L(G) = Z*.
» Deciding whether L(G;) = L(Gy).

If we could decide these problems, we could decide the halting problem. (More later.)

Decision Proceduresfor PDA’s

There are decision procedures for the following (M isa PDA):

»  Deciding whether w O L(M).

» Deciding whether L(M) = .

e Deciding whether L(M) isfinite/infinite.
Convert M to its equivalent PDA and use the corresponding CFG decision procedure. Why avoid using PDA’s directly?
There are not decision procedures for the following:

»  Deciding whether L(M) = Z*.

»  Deciding whether L(M1) = L(M)).

If we could decide these problems, we could decide the halting problem. (More later.)
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Regular Languages

e regular exprs.
e or
e regular grammars
*  recognize
» =DFSAs
*  recognize
* minimize FSAs

»  closed under:
0 concatenation
00 union
O Kleene star
0 complement
O intersection
*  pumping lemma
e deterministic = nondeterministic

Lecture Notes 19

Comparing Regular and Context-Free L anguages

Context-Free Languages

. context-free grammars

s  pase
« =NDPDAs
e  pase

e find deterministic grammars
» find efficient parsers
» closed under:

0 concatenation

0 union

0 Kleenestar

e intersection w/ reg. langs

*  pumping lemma
e deterministic # nondeterministic

Languages and M achines

Recursively Enumerable
Languages
Recursive

Context-Fre€

Languages That Are and Are Not Context Free 12



Turing Machines

Read K & S4.1.
Do Homework 17.

Grammars, Recursively Enumer able L anguages, and Turing M achines

Recursively
»( Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Turing Machines

Can we come up with anew kind of automaton that has two properties:
»  powerful enough to describe all computable things
unlike FSMs and PDAs
» simple enough that we can reason formally about it
like FSMs and PDAs
unlike real computers
Turing M achines

M| % a a b b a M| M| a

T

At each step, the machine may:

e gotoanew state, and Finite State Control
e @ther
e write on the current square, or S, S .. g, o

* move left or right

A Formal Definition
A Turing machineisaquintuple (K, Z, §, s, H):
K isafinite set of states;
> isan alphabet, containing at least 1 and ¢, but not - or —;
sOK istheinitia state;
H 0O K isthe set of halting states;
o isafunction from:

(K-H)  x ¥ to K x E0{-, <}
non-halting state x  input symbol state X action (write or move)
such that

(a) if the input symbol is 9, the actionis -, and
(b) ¢ can never be written .

Lecture Notes 20 Turing Machines



Notes on the Definition

1. Theinput tapeisinfinite to theright (and full of Q), but has awall to the left. Some definitions allow infinite tape in both
directions, but it doesn't matter.

2. disafunction, not arelation. So thisisadefinition for deterministic Turing machines.
3. 0 must be defined for all state, input pairs unless the state is a halt state.
4. Turing machines do not necessarily halt (unlike FSM's). Why? To halt, they must enter a halt state. Otherwise they loop.
5. Turing machines generate output so they can actually compute functions.
A Simple Example

A Turing Machine Odd Parity Machine:

d O d 0 1 1 0 d d d
2=0,1,0,Q ?
S=
H=
o=

Formalizing the Operation

O a a b b a a a (1)
O a a a b b a a a 2

?

A configuration of a Turing machine
M = (K, Z, 9, s, H) isamember of

K x Oz* x EEZ-{Q))oe
state input up input after
to scanned scanned square
square

Theinput after the scanned square may be empty, but it may not end with ablank. We assume the entire tape to the right of the
input isfilled with blanks.

«y (9, Gaab, b)
2  (h ¢Qasbb, €)

(g, Vaabb)
(h, 0Qaabb) ahalting configuration
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Yields
(O, Wiagly) |-m (O, Wosblp), &y anda 0%,  iff ObO>0O{ <, -}, 0(q:, &) = (gx, b) and either:

DbOZ, wy=w, u;=Uy,anda =b (rewrite without moving the head)

| Wy | & | u |

[o |9 | a [ a [ b [ b | 0 [0 [0 | 0Qaabb
?

| Wp | & | U |

o | | a | a | a [ b [0 [0 |O| 0Qaaab

(2) b= —, w; =w,a, and either
(@ u=aguy, ifayzQoru #¢,

|<> | O | a | a | a | b | Q | Q | Q | 0Qaaab
I Wa | & | T Uy I
|<> = | a | a | a b | Q | Q | Q | 0Qaaab
?
or (b)u,=¢,ifggy=0andu;=¢
| Wy | & |u1|
[ o | [ a [ a |[a | b [0 [0 |OQ | ©¢Qaab
| Wy | & |U1|T
[ o | [ a [ a [ a | b |0 [Q |O | ¢Qamb

If we scan left off the first square of the blank region, then drop that square from the configuration.
Yields, Continued

(3) b=, Wo = W1ay, and either

(@) U = &y
| Wy | . Ui |
[o [0 | a [ a | a b [0 [ o [Q | 00«
| W, T 2 | W |
[o ] | a [ a | a b | o [ o | o | (Qaab
?
or b)uy=uw,=canda =0
| W1 | (= |u1|
o |9 | a |a |a |b [0 [0 |0 | 0Qaaab
| Wo ? | & |u)
o | Q | a | a Ja [ b |O [Q | QO | ¢Daad

?

If we scan right onto the first square of the blank region, then a new blank appears in the configuration.
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Yields, Continued
For any Turing machine M, let |-\,* be the reflexive, transitive closure of |-y.

Configuration C, yields configuration C, if
Ci v* C

A computation by M is a sequence of configurations Cy, Cy, ..., C, for some n = 0 such that
Colm Cilm Cobm -ov I Cin
We say that the computation is of length n or that it has n steps, and we write
C0 |'Mn Cn
A Context-Free Example

M takes a tape of asthen b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's.

% a a a a b Q Q Q

?

K={0,1,2345,6,7,8, 9}
>=ab 0,912

H={9) 5=

S=
Q/-
al, 2/q
al -
@, )
EI/2
o

@—'M O,
8
o/ -

all

O

An Example Computation

|a|a|a b|EI|E||E|

(0, 0Qaaab) |-y
(1, 0Qaaab) |-y
(2, 0Q1a8b) |-y
(3, 00128b) |-y
(3, 001a8b) |-y
(3, 001aab) |-y
(4, 001a82) |-y
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Notes on Programming
The machine has a strong procedural feel.

It's very common to have state pairs, in which the first writes on the tape and the second move. Some definitions allow both
actions at once, and those machines will have fewer states.

There are common idioms, like scan left until you find a blank.
Even avery simple machine is a nuisance to write.

A Notation for Turing Machines
(1) Define some basic machines

e Symbol writing machines
Foreacha X - {0}, define M, written just a, = ({s, h}, Z, §, s, {h}),
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s, ~)
Example:
awritesana

e Head moving machines
Foreacha{ —, -}, defineM,, written R(-)andL(<):
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s ~)
Examples:
R moves one square to the right
aR writes an a and then moves one square to the right.

A Notation for Turing Machines, Cont'd

(2) The rules for combining machines: aswith FSMs
>%] a ' M,
M3

e Startinthe start state of M.

e Compute until M, reaches a halt state.

»  Examine the tape and take the appropriate transition.

»  Startinthe start state of the next machine, etc.

» Haltif any component reaches a halt state and has no place to go.

« |f any component fails to halt, then the entire machine may fail to halt.
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M, al elemsof > >M2 becomes M,

MM

M, al elemsof X

except a

eg., > xz0O

Lecture Notes 20

Shorthands

M, becomes M; ab l M,

M2

#’

MM,

becomes M?

N M, becomes M, x#a M,

=2

and x takes on the value of the current square

}Mz becomes M; x=ab 'Mz

and x takes on the value of the current square

M X?y | M,

if x =y then take the transition

if the current squareis not blank, go right and copy it.
Some Useful Machines
find the first blank square to the right of the current square
find the first blank square to the left of the current square

find the first nonblank square to the right of the current square

find the first nonblank sgquare to the left of the current square

Turing Machines



M or e Useful M achines
L, find the first occurrence of ato the left of the current square
Rap find the first occurrence of a or b to the right of the current square

Lap a ' M, find the first occurrence of a or b to the left of the current square, then go to M if the detected
character is a; go to M, if the detected character isb

M,
Lx=apb find the first occurrence of a or b to the left of the current square and set x to the value found
Lx=apRX find the first occurrence of a or b to the left of the current square, set x to the value found, move one
sguare to the right, and write x (a or b)
An Example
Input: oQw  wO{1}*
Output: oaw?
Example; ¢ 0111000000000000a
o
>R, 1 | H#R HRHL
Q

_#_’1

O
I{_I_

A Shifting Machine S_

Input: acwd

Output: awl

Example: Q0abbal0000000000OAN0O
- I

>L, R x#Q ’DLXR

=

L
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Computing with Turing Machines

Read K & S4.2.
Do Homework 18.

Turing M achines as L anguage Recognizers

Convention: We will write the input on the tape as:
oQwQd , w contains no Qs
Theinitia configuration of M will then be:
(s, 0Qw)
A recognizing Turing machine M must have two halting states: y and n
Any configuration of M whose stateis:
y is an accepting configuration
nisarejecting configuration
Let 2, the input al phabet, be a subset of Z-{Q,0}
Then M decidesalanguage L [0 2y* iff for any string
w O Zp*it istrue that:
if w L then M acceptsw, and
if wL then M regjectsw.
A language L isrecursiveif thereisaTuring machine M that decidesit.

A Recognition Example
L={ab'c":n=0}

Example: 0Qaabbcc00000000

Example: ¢Qaacch00000000
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Anocther Recognition Example
L ={wew:wO{a b}*}

Example: 0QabbcabblQ

Example: 0Qacabbddd

(Y ?X) Ry=—s

b/?x
y #LD_/

Do Turing M achines Stop?

FSMs Always halt after n steps, where n is the length of the input. At that point, they either accept or reject.
PDAs Don't always halt, but there is an algorithm to convert any PDA into one that does halt.
Turing machines Can do one of three things:

(1) Halt and accept

(2) Halt and reject

(3) Not halt
And now there is no algorithm to determine whether a given machine always halts.

Computing Functions

LetZ, O -{0,Q} andletw O Zo*
Convention: We will writetheinput on thetapeas. ¢Qwd
Theinitia configuration of M will then be; (s, 0Qw)
Define M(w) =y iff:
* M haltsif started in the input configuration,
» thetape of M when it haltsis 0QyQ, and
c yUX"
Let f be any function from Z4* to >o*.

We say that M computesf if, for all w 0 Zg*, M(w) = f(w)

A function f isrecursiveif thereisa Turing machine M that computesit.
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Example of Computing a Function

f(w) = ww
Input: 0QwlA00d Output: 0QwwU
Define the copy machine C: oQwaaQ > oQwaw

Remember the S_ machine:

OQwwQ > OQww
- |
>L, R x#0Q | ULxR
<
L

Then the machine to computefisjust >CSL,.
Computing Numeric Functions
We say that a Turing machine M computes a function f from N¥ to N provided that
num(M (ng;n,;...nK)) = f(num(ny), ... num(ny))
Example: Succ(n)=n+1
We will represent ninbinary. SondJ 0 0 1{0,1}*

Input:  0QNAQ0Q0AA Output: 0Qn+14
0011110000 Output; ¢Q10000Q

Why Are We Working with Our Hands Tied Behind Our Backs?

Turing machines are more powerful than any of the other formalisms we have studied so far.

Turing machines are alot harder to work with than all the real computers we have available.

Why bother?

The very simplicity that makesit hard to program Turing machines makes it possible to reason formally about what they can do.
If we can, once, show that anything areal computer can do can be done (albeit clumsily) on a Turing machine, then we have a

way to reason about what real computers can do.
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Recursively Enumerable and Recursive Languages

Read K & S4.5.
Recursively Enumer able L anguages

Let 2, the input a phabet to a Turing machine M, be a subset of %, - {Q, ¢}
Let L O 5.

M semidecides L iff
for any string w [0 2¢*,

wiL= M halts on input w
wiL = M does not halt on input w
M(w) =1

L isrecursively enumerable iff there is a Turing machine that semidecidesit.
Examples of Recursively Enumerable L anguages

L={wO{a b}* :wcontainsat least onea}

1)
>R

Qb bbbbblddadad

4

L={wO{ab,(,)}* :wcontainsat least one set of balanced parentheses}

v 1o
E'ia ) Pl
T
OQbbbbbb)aaodQ
—
{—

Recursively Enumerable Languagesthat Aren't Also Recursive

A Real Life Example:
L ={w O {friends} :w will answer the message you've just sent out}

Theoretical Examples

L ={Turing machines that halt on a blank input tape}
Theorems with valid proofs.
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Why Are They Called Recursively Enumerable L anguages?
Enumerate means list.

We say that Turing machine M enumer ates the language L iff, for some fixed state g of M,
L ={w: (s 0Q) [v* (g, 0Qw)}

A language is Turing-enumer able iff there is a Turing machine that enumeratesiit.
Note that g is not a halting state. It merely signals that the current contents of the tape should be viewed as a member of L.
Recur sively Enumerable and Turing Enumerable

Theorem: A language isrecursively enumerableiff it is Turing-enumerable.

Proof that Turing-enumerableimplies RE: Let M be the Turing machine that enumerates L. We convert M to a machine M' that
semidecidesL:

1. Saveinputw.

2. Beginenumerating L. Each time an element of L is enumerated, compare it tow. If they match, accept.

=w? }—Pp halt

; W3, W, W1

The Other Way

Proof that RE implies Turing-enumerable;
If L O X* isarecursively enumerable language, then thereisa Turing machine M that semidecidesL.
A procedure to enumerate all elementsof L:
Enumerate all w O Z* lexicographically.

eg., € a b, aa ab, ba bb, ...
As each string w; is enumerated:
1. Start up acopy of M with w; asitsinput.
2. Execute one step of each M; initiated so far, excluding only those that have previously halted.
3. Whenever an M; halts, output w;.

e[1]

e[2] a [1]

e[3] a [2] b [1]

e[4] a [3] b [2] aa [1]

e[9] a [4] b [3] aa [2] ab [1]

€ [6] a [5] aa [3] ab [2] ba [1]
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Every Recursive Languageis Recursively Enumerable
If L isrecursive, then there is a Turing machine that decidesit.
From M, we can build a new Turing machine M' that semidecides L:
1. Letnbethergect (and halt) state of M.

2. Thenaddto o'
((n, @), (n, @) foralad =

3 »@ )
® ®

What about the other way around?
Not true. There are recursively enumerable languages that are not recursive.

/Da/a

The Recursive Languages Are Closed Under Complement
Proof: (by construction) If L isrecursive, then thereisa Turing machine M that decides L.

We construct amachine M' to decide L by taking M and swapping the roles of the two halting statesy and n.
M: M

¥ O >
0 O 0

This works because, by definition, M is
e deterministic
e complete

b 4

Arethe Recursively Enumerable L anguages Closed Under Complement?

M: M":

’Qﬁg

Lemma: There exists at least one language L that is recursively enumerable but not recursive.

Proof that M" doesn't exist: Suppose that the RE languages were closed under complement. Thenif L isRE, L would be RE. If

that were true, then L would also be recursive because we could construct M to decideit:

1. Let T, bethe Turing machine that semidecidesL.

2. Let T, be the Turing machine that semidecides L.

3. Givenastring w, fireup both T, and T, onw. Since any stringin 2* must bein either L or L, one of the two machines will
eventually halt. If it's T4, accept; if it's T, reject.

But we know that there is at least one RE language that is not recursive. Contradiction.
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Recursive and RE Languages
Theorem: A languageis recursive iff both it and its complement are recursively enumerable.

Proof:

* LrecursiveimpliesL and -L are RE: Clearly L isRE. And, since the recursive languages are closed under complement,
=L isrecursive and thus also RE.

e Land-L areREimpliesL recursive: SupposelL issemidecided by M1 and - L is semidecided by M2. We construct M to
decide L by using two tapes and simultaneously executing M1 and M2. One (but not both) must eventually halt. If itsM1,
we accept; if it's M2 we regject.

L exicographic Enumeration

We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order. A languagelL is
lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumeratesit.

Example: L ={ab"c"}

L exicographic enumeration:
Pr oof

Theorem: A languageis recursive iff it islexicographically Turing-enumerable.
Proof that recursive implies lexicographically Turing enumerable: Let M be a Turing machine that decidesL. Then M’

lexicographically generates the stringsin >* and tests each using M. It outputs those that are accepted by M. Thus M'
lexicographically enumerates L.

yes —1——» %,
no

Z*31 Z*21 Z*l —’ DL?

vV Vv

Proof, Continued
Proof that lexicographically Turing enumerable impliesrecursive: Let M be a Turing machine that |exicographically enumerates

L. Then, oninput w, M' startsup M and waits until either M generates w (so M' accepts), M generates a string that comes after w
(so M' rejects), or M halts (so M' rgjects). Thus M' decidesL.

L

=wW? ——» yes
> L3 Lo Ly
>SW?—1p Nno
M
nomoreLiS?———— 1 » no
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Partially Recursive Functions

L anguages Functions
Tm aways halts recursive recursive
Tm hdtsif yes recursively ?
enumer able
{;\‘ K
domain range

Suppose we have a function that is not defined for all elements of its domain.
Example: f: N - N, f(n) =n/2

Partially Recursive Functions

ST

domain range

One solution: Redefine the domain to be exactly those elements for which f is defined:

) \
domain 7
range

But what if we don't know? What if the domain isnot arecursive set (but it is recursively enumerable)? Then we want to define
the domain as some larger, recursive set and say that the function is partially recursive. There exists a Turing machine that halts
if given an element of the domain but does not halt otherwise.
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Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure
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Diagonalization
Reduction

Pumping
Closure

Pumping
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Turing Machine Extensions

Read K & S4.3.1, 4.4.
Do Homework 19.

Turing M achine Definitions

An alternative definition of a Turing machine:
(K, Z, T, 98, s H):

I" isafinite set of allowable tape symbols. One of theseisQ.
2 isasubset of I' not including 4, the input symbals.

o isafunction from:

KxT o Kx (T-{Q)x{, -}
state, tapesymbol, L or R
a a a b b a a a a

“

Example transition: ((s, a), (s, b, -))

Do these Differences M atter ?
Remember the goal:

Define adevicethat is:
»  powerful enough to describe all computable things,
» simple enough that we can reason formally about it

Both definitions are simple enough to work with, although details may make specific arguments easier or harder.
But, do they differ in their power?
Answer: No.

Consider the differences:
« Oneway or two way infinite tape: we're about to show that we can simulate two way infinite with ours.
* Rewrite and move at the same time: just affects (linearly) the number of movesit takes to solve a problem.

Turing M achine Extensions

In fact, there are lots of extensions we can make to our basic Turing machine model. They may make it easier to write Turing
machine programs, but none of them increase the power of the Turing machine because:

We can show that every extended machine has an equivalent basic machine.

We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic
machine.

Some possible extensions:

e Multiple tapes

*  Two-way infinite tape

e Multiple read heads

e Twodimensiona “sheet” instead of atape
*  Random access machine

*  Nondeterministic machine
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Multiple Tapes

a a a b b a a a
a b a b b a a a
»
a a 1 2 2 1 a a
-~
The transition function for a k-tape Turing machine:
(K-H) , 2z, to (K, 2 0{, >}
122 122'['{*1—'}
2 vZeO0{ <, -})

Input: input as before on tape 1, others blank
Output: output as before on tape 1, others ignored

An Example of a Two Tape Machine
Copying a string

a| Q| a b b a a | AQ
+ »
|D|EI|EI|EI|EI|EI EIlEI
+
a| Q| a b b a a | AQ
+
| Q| a b b a a | Q
¢ <~
| Q| a b b a a | Q
+
| Q| a b b a a | Q
4+ )
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Anocther Two Tape Example - Addition

lo [ 1 Jo [ 2] [ 1]1 [0 [a
+

aQ | (a | | ;7 o | a9 ( a 1|14
+

o | o [o [ o] o 1] 1[0 |a

y— >

a (1 (o | 1 | | | | a |49

y— ~

Adding Tapes Adds No Power

Theorem: Let M be ak-tape Turing machine for somek = 1. Then thereis astandard Turing machine M' where X (0 %', and such

that:

For any input string x, M on input x halts with output y on the first tape iff M' on input x halts at the same halting state and
with the same output on its tape.
If, oninput X, M halts after t steps, then M" halts after a number of steps which is O(t C{|x| + t)).

Proof: By construction

O a a b a a a
¢ 0 0 1 0 0 0 0 a a
O a b b a b a
0 1 0 0 0 0 0
Alphabet (=) of M'= 2 O (= x {0, 1} )
eg., ¢,(,0,90,0,(@Q,0,a1
The Operation of M'
O Q a b a Q Q
O 0 0 1 0 0 0 0 Q Q
0 a b b a b a
0 1 0 0 0 0 0
1 Set up the multitrack tape:
1) Shift input one square to right, then set up each square appropriately.
2. Simulate the computation of M until (if) M would halt: (start each step to the right of the divided tape)
1) Scan left and store in the state the k-tuple of characters under the read heads. Move back right.
2) Scan left and update each track as required by the transitions of M. Move back right.
i) If necessary, subdivide a new sguare into tracks.
3. When M would halt, reformat the tape to throw away all but track 1, position the head correctly, then go to M's halt
State.
How Many Steps DoesM' Take?
Let: X be the input string, and
t be the number of stepsit takes M to execute.
Step 1 (initialization) O([x)
Step 2 ( computation)
Number of passes=t
Work at each pass: 2.1 =2 (length of tape)
=2[x[+2+1)
22=20x|+2+1)
Total = O(t ({(|x| +1))
Step 3 (clean up) O(length of tape)

Total = O(t x| +1))
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Two-Way Infinite Tape
Our current definition:

o lalblcld o la
Proposed definition: +
o [a Jg [f e lalolf]ec|dal]a ]
o +
Simulation:
Track 1 |<>|a|b|c|d|EIIEI

-

Track 2 | o [ e | ¢+ | ¢ | o] o [

Simulating a PDA
The components of a PDA:
Finite state controller
Input tape
Stack
The simulation:
Finite state controller:

Input tape:
Stack:
Track 1 I O | a I a | a | b | b I a
(Input) +
Trackz\ | o | o] a|] a | o] a |o
-

Corresponding to

Simulating a Turing Machine with a PDA with Two Stacks

olafolalaf#fafalbla] | | | [ [ |

n

< | [T|o|w
L [T | | | &
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Random Access Turing M achines

A random access Turing machine has:
» afixed number of registers
« afinitelength program, composed of instructions with operators such as read, write, load, store, add, sub, jJump
* atape
e aprogram counter
Theorem: Standard Turing machines and random access Turing machines compute the same things. Furthermore, the number of
steps it takes a standard machine is bounded by a polynomial in the number of stepsit takes a random access machine.

Nondeter ministic Turing Machines

A nondeter ministic Turing machine is a quintuple (K,Z,A s H)
where K, Z, s, and H are as for standard Turing machines, and A isasubset of
(K-H)xX)x(Kx(ZO{~, -}))

0Qabab
0Qabab O0Qabab
0Qabab OUbbab

What does it mean for a nondeterministic Turing machine to compute something?
*  Semidecides - at |east one halts.
* Decides - ?
« Computes - ?
Nondeter ministic Semideciding

Let M = (K, Z, A, s, H) be anondeterministic Turing machine. We say that M accepts an input
w O (Z - {0, Q})* iff
(s, 0Qw) yields aleast one accepting configuration.

We say that M semidecides alanguage
L O(Z-{0,Q})* iff
foralw O (Z-{0,Q})*:
w O L iff
(s, 0Qw) yields aleast one halting configuration.

An Example
L={wO{a b,c,d}* : therearetwo of at |east one letter}
_|d—>
a
0/ - al -
i 0) Q/- | 1 b/ -
v
c/ -
d/ -
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Nondeter ministic Deciding and Computing
M decides alanguage L if, for all w O (Z - {0, Q})* :
1. all of M's computations on w halt, and
2. w OL iff at least one of M's computations accepts.
M computesafunction f if, for all w O (Z - {0, Q})* :
1. all of M's computations halt, and
2. all of M's computations result in f(w)
Note that all of M's computations halt iff:
Thereisanatural number N, depending on M and w, such that thereis no configuration C satisfying
(s, 0Qw) |-u" C.
An Example of Nondeter ministic Deciding
L ={w O{0, 1}* : wisthe binary encoding of a composite number}

M decides L by doing the following on input w:

1. Nondeterministically choose two binary numbers 1 < p, g, where |p| and |g| < |w|, and write them on the tape, after w,
Separated by ;.

04d110011;111;1111004
2. Multiply p and g and put the answer, A, on the tape, in place of p and g.
04d110011;101111100Q
3. CompareA andw. If equal,gotoy. Elsegoton.
Equivalence of Deterministic and Nondeter ministic Turing M achines

Theorem: If a nondeterministic Turing machine M semidecides or decides alanguage, or computes a function, then thereisa
standard Turing machine M' semideciding or deciding the same language or computing the same function.

Note that while nondeterminism doesn’t change the computational power of a Turing Machine, it can exponentially increase its
speed!

Proof: (by construction)
For semideciding: We build M', which runs through all possible computations of M. If one of them halts, M' halts

Recall the way we did thisfor FSMs: simulate being in a combination of states.
Will thiswork here?

What about: Try path 1. If it accepts, accept. Else
Try path 2. If it accepts, accept. Else
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The Construction

At any point in the operation of a nondeterministic machine M, the maximum number of branchesis

r= Kl O (z+2
states actions
So imagine atable:
1 2 3 r

(ql,Ul) (p-,U-) (p'vo') (p_!U_) (p'vo') (p_!U_)
(91,02) (p-,0-) (p-,0-) (p-,0-) (p-,0-) (p-,0-)
(ql,0n)
(g2,01)
(9K],on)

Note that if, in some configuration, there are not r different legal things to do, then some of the entries on that row will repeat.

The Construction, Continued
Mg: (supposer = 6)

Tape 1: I nput

Tape 2: 13265436

Mg chooses its 1st move from column 1
Mg chooses its 2nd move from column 3
Mg chooses its 3rd move from column 2

until there are no more numbers on Tape 2

My either:
e discoversthat M would accept, or
e comesto the end of Tape 2.

In either casg, it halts.
The Construction, Continued
M' (the machine that simulates M):

Tape 1: Input
Tape 2: Copy of Input
Mg
Tape 3: 13265436
Steps of M*:
write g on Tape 3
until My accepts do
(2) copy Input from Tape 1 to Tape 2
(2) run My
(3) if My accepts, exit
(4) otherwise, generate lexicographically next string on Tape 3.
Pass 1 2 3 7 8 9
Tape3 € 1 2 I 6 11 12 11l 2635
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Nondeter ministic Algorithms

Other Turing M achine Extensions

Multiple heads (on one tape)
Emulation strategy: Use tracks to keep track of tape heads. (See book)

Multiple tapes, multiple heads
Emulation strategy: Use tracks to keep track of tapes and tape heads.

Two-dimensional semi-infinite “tape’
Emulation strategy: Use diagonal enumeration of two-dimensional grid. Use second tape to help you keep track of
where the tape head is. (See book)
Two-dimensional infinite “tape” (really a sheet)
Emulation strategy: Use modified diagonal enumeration as with the semi-infinite case.
What About Turing M achine Restrictions?
Can we make Turing machines even more limited and still get all the power?
Example:
We alow atape aphabet of arbitrary size. What happensif we limit it to:
*  Onecharacter?

*  Two characters?
e Three characters?
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Problem Encoding, TM Encoding, and the Universal TM

ReadK & S5.1& 5.2.
Encoding a Problem asa L anguage
A Turing Machines deciding alanguage is analogous to the TM solving adecision problem.

Problem: |sthe number n prime?
Instance of the problem: Isthe number 9 prime?
Encoding of the problem, (n): nasabinary number. Example: 1001

Problem: Isan undirected graph G connected?
Instance of the problem: Isthe following graph connected?

I—2—3

NN

4 5

Encoding of the problem, (G):
1) |V|asabinary number
2) Alist of edges represented by pairs of binary numbers being the vertex numbers that the edge connects
3) All such binary numbers are separated by “/”.
Example: 101/1/10/10/11/1/100/10/101

Problem View vs. Language View
Problem View: It isunsolvable whether a Turing Machine halts on agiven input. Thisis called the Halting Problem.

Language View: Let H ={(M, w) : TM M halts on input string w}
H isrecursively enumerable but not recursive.

The Universal Turing Machine
Problem: All our machines so far are hardwired.
Question: Does it make sense to talk about a programmable Turing machine that accepts as input
program input string

executes the program, and outputs

output string
Yes, it's called the Universal Turing Machine.
Notice that the Universal Turing machine semidecidesH = {(M, w) : TM M halts oninput string w} = L(U).
To define the Universal Turing Machine U we need to do two things:
1. Define an encoding operation for Turing machines.
2. Describe the operation of U given an input tape containing two inputs:

e encoded Turing machine M,
* encoded input string to be givento M.
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Encoding a Turing Machine M

We need to describe M = (K, Z, 9, s, H) asastring. To do thiswe must:
1. Encoded

2. Specify s.

3. Specify H (and y and n, if applicable)

1. To encode &, we need to:
1. Encode the states
2. Encode the tape a phabet
3. Specify thetransitions

1.1 Encode the states as
gs :s0{0,1}" and
|s|=iand
i isthe smallest integer such that 2' > |K|

Example: 9 states i=4
s = 0000,
remaining states: q0001, 0010, 0011,
0100, 0101, @0110, q0111, 1000

Encoding a Turing Machine M, Continued

1.2 Encode the tape al phabet as
as :sO{0, 1} and
Isl=] and |
j isthe smallest integer such that 2 > |Z] + 2 (the+ 2 dlowsfor — and -)
Example 2 ={0,0,a, b} j=3
= a000
= ao01
<= aolo
- = a011l
a= al100
b= al101

Encoding a Turing Machine M, Continued
1.3 Specify transitionsas (state, input, state, output)
Example: (000,a000,011,a000)

2. Specify sas q0'
3. Specify H:

+  Stateswith no transitions out arein H.

* If M decides alanguage, then H = {y, n}, and we will adopt the convention that y is the lexicographically smaller of

the two states.
y =q010 n=g01l1
Encoding Input Strings

We encode input strings to a machine M using the same character encoding we use for M.
For example, suppose that we are using the following encoding for symbolsin M:

symbol representation
a a000
O a001
- a010
- a0ll
a a100

Then we would represent the string s = 0aala as "s' =(s) =a001a100a100a000a100
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An Encoding Example
Consider M = ({s, q, h}, {Q, ¢,a}, 8, s, {h}), where 6 =

state symbol 0 state/symbol representation

S a (9.9 s o0
S Q (h, Q) q qo1
s 0 (s, ) h qll
q a (s,@ Q a000
q Q (s ) 0 a001
q 0 (g -) < 2010

- a0ll

a al00

The representation of M, denoted, "M", (M), or sometimes p(M) =
(900,a100,q01,a000), (q00,a000,g11,a000), (q00,a001,q00,a011),
(g01,a100,q00,a100), (q01,a000,000,a011), (g01,a001,q01,a011)

Another Win of Encoding

One big win of defining away to encode any Turing machine M:
» It will make senseto talk about operations on programs (Turing machines). In other words, we can talk about some
Turing machine T that takes another Turing machine (say M) asinput and transforms it into a different machine
(say M) that performs some different, but possibly related task.

Example of atransforming TM T:
I nput: amachine M, that reads its input tape and performs some operation P on it.
Output: amachine M, that performs P on an empty input tape:

L, R M,

The Universal Turing Machine
The specification for U:
u'M" "w") ="M(w)"

M M ['w
1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q
0 Q Q Q 0 Q 0
Q Q 0 Q Q Q oo
0 0 0 0 0 0 0
"0 o | w w | QO Q
1 0 0 0 0 0 0
0 "M M" Q 0 0 0 Q
1 0 0 0 0 0 0
q 0 0 0 Q Q Q
1 Q Q Q Q Q Q

Initialization of U:
1. Copy "M" onto tape 2
2. Insert"0O" at the left edge of tape 1, then shift w over.
3. Look at"M", figure out what i is, and write the encoding of state s on tape 3.
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The Operation of U

a 0 0 1 a 0 0
1 0 0 0 0 0 0
O "M M" a a a a Q
1 0 0 0 0 0 0
o} 0 0 0 a a a
1 a a a a a a

Simulate the steps of M:

1. Start with the heads:
tape 1: the a of the character being scanned,
tape 2: far left
tape 3: far left

2. Simulate one step:
1. Scan tape 2 for a quadrupl e that matches current state, input pair.

2. Perform the associated action, by changing tapes 1 and 3. If necessary, extend the tape.
3. If no quadruple found, halt. Else go back to 2.

An Example

Tape 1. a001a000a100a100a000a100
O QO a a Q4 a

Tape 2: (q00,a000,g11,a000), (q00,a001,0q00,a011),
(900,a100,q01,a000), (q01,a000,g00,a011),
(g01,a001,q01,a011), (q01,a100,000,a100)

Tape 3. 01
+

Result of simulating the next step:

Tape 1. a001a000a100a100a000a100
O O a a QO a

Tape 3: qO0

+

If A Universal Machineis Such a Good ldea ...
Could we define a Universal Finite State Machine?

Such a FSM would accept the language
L={"F'"w": Fisafinite state machine, and w OJ L(F) }
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Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

Recursively
Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple

(V, 2, R, S), where

V isan alphabet,
> (the set of terminals) is a subset of V,
R (the set of rules) is afinite subset of
o (V* (V-2) V*) X V*,
context N context - result
S (the start symbol) isan element of V - 2.

We define derivations just as we did for context-free grammars.
The language generated by G is

{wOZx*:S=c* w}

There is no notion of a derivation tree or rightmost/Ieftmost derivation for unrestricted grammars.

Unrestricted Grammars

Example: L =ab"c", n>0

S - aBSc
S - aBc
Ba - aB
Bc - bc
Bb - bb
Another Example

L={w0O{a b, c}": number of as, b'sand c'sis the same}

S - ABCS CA - AC
S -~ ABC CB - BC
AB - BA A-a
BC - CB B-b
AC - CA C-c
BA - AB
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A Strong Procedural Feel
Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we'rein a
particular phase.

It's very common to have two main phases:

*  Generate the right number of the various symbols.

e Movethem around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammarsand Turing M achines

Theorem: A language is generated by an unrestricted grammar if and only if it isrecursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar — TM): by construction of a nondeterministic Turing machine.

If (TM - grammar): by construction of a grammar that mimics backward computations of M.
Proof that Grammar — Turing Machine
Given agrammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

olc|o|e
Flo g
ol|ln|o|w
o|H|o|T
olo |o|w
ol|o|o|g
o|0|o|Db

For each nondeterministic "incarnation":
e Tapel holdstheinput.
» Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses aruleto try to apply and a position on tape 2 to start looking for the left hand side

of therule. Or it chooses to check whether tape 2 equalstape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.
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Proof that Turing Machine - Grammar

Suppose that M semidecides alanguage L (it halts when fed stringsin L and loops otherwise). Then we can build M' that haltsin
the configuration (h, 0Q).

We will define G so that it simulates M backwards.
We will represent the configuration (g, Ouaw) as

>uagw<

M

goes from
O a a b b a a a a
O a a a a a a a a

Then, if w O L, we require that our grammar produce a derivation of the form
S=¢ >0h<  (producesfina state of M")

=s* >0abg< (some intermediate state of M")

=s* >Qsw< (theinitial state of M")

= W< (viaa specid ruleto clean up >Qs)
=c W (viaaspecia ruleto clean up <)
TheRulesof G
S - >0h<  (the halting configuration)
>0s - € (clean-up rules to be applied at the end)
< 5 8
Rules that correspond to &:
If &(a, &) = (p, b) : bp - aq
If &(g, @ =(p, »): abp-agp ObOZX
alp< - ag<
If (g, d=(p, ), az0 pa - aq
1f &(q, Q) =(p, <) pab - Qgb ObOX
p< - dg<
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A REALLY Simple Example

M'= (K, {a}, o, s, {h}), where
o={ ((s Q). (@ ~)). 1
((qr a-)! (qv _'))l 2
((qr D)! (t! ‘_))l 3
((t,a), (p,Q)), 4
((t, ), (h, ), 5
((pr D)! (t! ‘_)) 6
L=a
S - >0h< 3 taQ - Qg4
>Us - € tda - Uga
<5 € t< - Ug<
4 Qp - at
(1) Qdg- A4 (5) Qh - Qt
Qaq - Qsa (6) Q- Qpd
Udg< - Us< tQa - Upa
2 alq - ag t< - Qp<
aq - aga
alg< - ag<
Working It Out
S - >0h< 1 3 tQQ - QoA 10
>0s - € 2 tda - Uga 11
<€ 3 t< - Ug< 12
(4 Up - at 13
(1) Qdg- A4 4 (5) Qh - Qt 14
Oag - Qsa 5 (6) taa - Qpa 15
QQg< - As< 6 t0a - Qpa 16
(2 alq - ag 7 t< - Qp< 17
aq - aga 8
ado< - ag< 9
>0saa< 1 S = >0h< 1
>Qaga< 2 = >Ui< 14
>Uaag< 2 = >U0p< 17
>Qaalg< 3 = >Uat< 13
>Qaat< 4 = >0adp< 17
>0 p< 6 = >Laat< 13
>Qat< 4 = >Qaaldg< 12
>00p< 6 = >Uaag< 9
>0t< 5 = >0aga< 8
>0h< = >0saa< 5
= aa< 2
= aa 3
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An Alternative Proof
An dternative isto build agrammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols

to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

Thefirst (generate) part of G:
Creates all strings over >* of the form
w=000UQsaayawazaUl...

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
¢00d0alb2cch4Q3a3

Examples of rules:
bbQ4 - b4Q4 (rewritebas4)
b4Q3 - Q3b4 (moveleft)

Thethird (cleanup) part of G erasesthejunk if M ever reaches h.

Examplerule:
#hal - a#h  (sweep# hto theright erasing the working “tape”)

Computing with Grammars
We say that G computesf if, for all w, v X *,
SWS =c* v iff v =1f(w)
Example:
S1S =c* 11
S11S =6 111 f(x) = succ(x)
A function f is called grammatically computable iff there is agrammar G that computesit.

Theorem: A function f isrecursiveiff it is grammatically computable.
In other words, if a Turing machine can do it, so can agrammar.

Example of Computing with a Grammar
f(x) = 2x, where x is an integer represented in unary
G=({S 1},{1},R,S), whereR =
Sl - 11S
SS- ¢
Example:

Input: S111S

Output:
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More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
e zerog(ng, Ny, ...NY) =0
o identity; (N, My, ... MY =1y
e successor(n)=n+1
Combining functions:
»  Composition of g with hy, hy, ... h¢is
g(ha( ), ho( ), ... hi( )
e Primitiverecursion of f intermsof g and h:
f(ng,No,...Nk,  0) = g(Ng,Na,...1NK)
f(ny,Ny,...Nk,M+1) = h(ng,Ny,...N, M, f(Nyg, Ny,...NK,M))

Example: plus(n, 0) =n
plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivialy true; al primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:

Lexicographically enumerate the unary primitive recursive functions, fo, fy, o, 3, ....

Define g(n) = f,(n) + 1.

Gisclearly computable, but it isnot on thelist. Supposeit were f,, for somem. Then
fm(m) = fi(m) + 1, which is absurd.

0 1 2 3 4
fo

fy

fa

fa 27

fa

Suppose gisfs. Theng(3) =27 + 1 =28. Contradiction.
Functionsthat Aren't Primitive Recursive

Example: Ackermann's function: A, y)=y+1
Ax+1,0)=A(x1)
Ax+1Ly+1)=AX AX+1Y))

0 1 2 3

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 65533 2203«

27 -3 ¢ 22 -3 %

* 19,729 digits 10*" seconds since big bang
# 10 digits 10% protons and neutrons
% 10" digits 102 light seconds = width

of proton or neutron
Thus writing digits at the speed of light on all protons and neutronsin the universe (al lined up) starting at the big bang would
have produced 10'’ digits.
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Recursive Functions

A functionis p-recursiveif it can be obtained from the basic functions using the operations of:
e Composition,

* Recursive definition, and

*  Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is afunction f of k arguments defined as:
f(ng,ny,...nK) = theleast m such at g(ng,ny,. .. Nk,M)=1, if such an m exists,
0 otherwise
A function g is minimalizable iff for every ny,n,,...ny, there isan m such that g(ny,ny, ... N, M)=1.
Theorem: A functionis p-recursiveiff it isrecursive (i.e., computable by a Turing machine).
Partial Recursive Functions
Consider the following function f:
f(n) = 1if TM(n) halts on ablank tape
0 otherwise

The domain of f isthe natural numbers. Isf recursive?

domain range

Theorem: There are uncountably many partialy recursive functions (but only countably many Turing machines).

Functions and M achines

Partial Recursive
Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Turing Machines

IsThere Anything In Between CFGs and Unrestricted Grammar s?

Answer: yes, various things have been proposed.
Context-Sensitive Grammar s and L anguages:
A grammar G is context sensitiveif all productions are of the form

X -y

and [x| < ly|
In other words, there are no length-reducing rules.
A language is context senditive if there exists a context-sensitive grammar for it.
Examples:

L ={a%"c",n>0}
L={wO{a b,c}" : number of as, b'sand c'sis the same}
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Context-Sensitive L anguages are Recursive

Thebasicidea: Todecideif astringw isinL, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L={db"c¢":n=0}

0Qaabbcc10000000a0a

(¥ e (3
> a }'a’ R h }b’ R—e) C L,

ca ,c&/
Q,ab'.a
n

Context-Sensitive L anguages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build amachine B with atwo track tape. Oninput w, B keepsw on thefirst tape. On the second tape, it
nondeterministically constructs all derivations of G. The key isthat as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. Thereis also a proof that from any |ba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Linear Bounded Automata

Turing Machines
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The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive
Languages

Context-Free
Languages

Regular
(Type?3)
Languages
FSMs

TypeO [ Typel [Type2

Linear Bounded Automata

Turing Machines
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Undecidabilty

Read K & S5.1,5.3, & 5.4.
Read Supplementary Materials. Recursively Enumerable Languages, Turing Machines, and Decidability.
Do Homeworks 21 & 22.
Church'sThesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.
The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.
Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine.

Thisisn't aformal statement, so we can't proveit. But many different computational models have been proposed and they all turn
out to be equivalent.

Examples:

unrestricted grammars
lambda calculus
cellular automata
DNA computing
guantum computing (?)

The Unsolvability of the Halting Problem

Suppose we could implement the decision procedure
HALTS(M, x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x, x) then loop forever
else halt

So now what happensif we invoke TROUBLE(“TROUBLE"), which invokes HALTS(* TROUBLE”, “TROUBLE")

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |F HALTS saysthat TROUBLE loops, then TROUBLE
halts. Either way, we reach a contradiction, so HALTS(M, x) cannot be made into a decision procedure.
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Another View

The Praoblem View: The halting problem is undecidable.
TheLanguage View: Let H =

{"M""w" : TM M halts on input string w}
H isrecursively enumerable but not recursive.
Why?
H isrecursively enumerable because it can be semidecided by U, the Universal Turing Machine.
But H cannot berecursive. If it were, then it would be decided by some TM MH. But MH("M" "w") would have to be:

If M isnot asyntactically valid TM, then False.

else HALTS("M" "w")
But we know cannot that HALTS cannot exist.
If H were Recursive
H={"M""w":TM M halts on input string w}
Theorem: If H were also recursive, then every recursively enumerable language would be recursive.
Proof: Let L be any RE language. Since L isRE, thereexistsaTM M that semidecidesit.
Suppose H isrecursive and thusis decided by some TM O (oracle).
We can buildaTM M' from M that decidesL:
1. M'transformsitsinput tape from 0QwQ to 0Q"M""w"Q.
2. M'invokes O on itstape and returns whatever answer O returns.
So, if H were recursive, al RE languages would be. But it isn't.
Undecidable Problems, Languagesthat Are Not Recursive, and Partial Functions

The Praoblem View: The halting problem is undecidable.
ThelLanguage View: LetH =

{"M""w" : TM M halts on input string w}

H isrecursively enumerable but not recursive.

The Functional View: Letf (w)=M(w)
fisapartia function on Z*

"M"w! pal I's
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Other Undecidable Problems About Turing Machines
*  GivenaTuring machine M, does M halt on the empty tape?
e GivenaTuring machine M, isthere any string on which M halts?
*  GivenaTuring machine M, does M halt on every input string?

e Given two Turing machines M; and M, do they halt on the same input strings?
*  GivenaTuring machine M, isthe language that M semidecidesregular? Isit context-free? Isit recursive?

Post Correspondence Problem
Consider two lists of strings over some alphabet . The lists must be finite and of equal length.

A =Xq, Xo, X3, ...y Xn
B=yu,¥2V¥3 ...i¥n

Question: Does there exist some finite sequence of integers that can be viewed as indexes of A and B such that, when elements of
A are selected as specified and concatenated together, we get the same string we get when elements of B are selected also as
specified?

For example, if we assert that 1, 3, 4 is such a sequence, we're asserting that X;XsX4 = Y1YaYa

Any problem of thisform is an instance of the Post Correspondence Problem.

I's the Post Correspondence Problem decidable?

Post Correspondence Problem Examples

i A B

1 1 111
2 10111 10
3 10 0

i A B

1 10 101
2 011 11
3 101 011

Some L anguages Aren't Even Recursively Enumer able

A pragmatically non RE language: Li={ (i, j) : i, j areintegers where the low order five digits of i are a street address number
and j isthe number of houses with that number on which it rained on November 13, 1946 }

An analytically non RE language: L,={x : x ="M" of a Turing machine M and M("M") does not halt}
Why isn't L, RE? Supposeit were. Then therewould beaTM M* that semidecidesL,. IS"M*" inL,?
e Ifitis, then M*("M*") halts (by the definition of M* as a semideciding machine for L,)
*  But, by the definition of L,, if "M*" O L,, then M*("M*") does not halt.
Contradiction. So L, isnot RE.

Another Non RE Language
H

Why not?
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Reduction
Let L4, L, 0 2* belanguages. A reduction fromL;toL,isarecursivefunctiont: * — 3* such that
x O Ly iff t(x) O L.
Example:
L;={ab:ab0ON:b=a+1}
U T = Succ
U a, bbecomes Succ(a), b
L,={ab:ab0ON:a=hb}
If thereisa Turing machine M, to decide L,, then | can build a Turing machine M to decide L ;:
1. Taketheinput and apply Succ to the first number.
2. Invoke M, on the result.
3. Return whatever answer M, returns.

Reductions and Recursive L anguages

Theorem: If thereisareduction fromL,to L, and L, isrecursive, then L, isrecursive.

X
Mg, xOL?
y=, M Yes), YES,,
Tt YOL? s ol

Theorem: If thereisareduction from L, to L, and L, isnot recursive, then L, is not recursive.

Reductions and RE L anguages
Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X

x OL,?

= M2
?

halt, |halt
|l |4l

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.
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Can it be Decided if M Halts on the Empty Tape?

Thisisequivalent to, "Isthe language L, = {"M" : Turing machine M halts on the empty tape} recursive?"

L, =H= {s="M""w": Turing machine M halts oninput string w}
U T
(?My) L,= {s="M": Turing machine M halts on the empty tape}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows on an empty input tape:
1.  Writew on the tape.
2.  Operate asM would have.

If M, exists, then My = My(M(9)) decidesL;.
A Formal Reduction Proof
Prove that L, = {(M): Turing machine M halts on the empty tape} is not recursive.

Proof that L, is not recursive viaareduction from H = {{M, w): Turing machine M halts on input string w}, a non-recursive
language. Suppose that there existsa TM, M, that decides L,. Construct a machine to decide H as M;({M, w)) = M,(T({M, w))).
The 1 function creates from (M) and (w) a new machine M*. M* ignoresitsinput and runs M on w, halting exactly when M halts
onw.

e (M,w)dH= M hadtsonw = M* dways hats=¢ 00 L(M*) = (M*) O L, = M, accepts = M, accepts.

* (M,w)0H= M doesnot hatonw= ¢ 0L(M*) = (M*) OL,= M, reects= M, rejects.

Thus, if there is a machine M, that decides L,, we could use it to build a machine that decides H. Contradiction. 0L, is not
recursive.

Important Elementsin a Reduction Proof

» A clear declaration of the reduction “from” and “to” languages and what you' re trying to prove with the reduction.
e A description of how amachine is being constructed for the “from” language based on an assumed machine for the “to”
language and a recursive T function.

e A description of the T function’sinputs and outputs. If T isdoing anything nontrivial, it isagood ideato argue that it is
recursive.

» Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where
needed.

* Runthrough the logic that demonstrates how the “from” language is being decided by your reduction. Y ou must do both
accepting and rejecting cases.
»  Declare that the reduction proves that your “to” language is not recursive.
The Most Common Mistake: Doing the Reduction Backwards

The right way to use reduction to show that L, is not recursive:

1. Giventhat L, isnot recursive, L,
2. Reducel;toL,,i.e. show how to solve L (the known one) in terms of L, (the unknown one) \/
Lo

Example: If there exists a machine M, that solves L ,, the problem of deciding whether a Turing machine halts on a blank tape,
then we could do H (deciding whether M halts on w) as follows:

1. Create M* from M such that M*, given a blank tape, first writes w on its tape, then simulates the behavior of M.

2. Return My("M*").

Doing it wrong by reducing L, (the unknown oneto L,): If there exists a machine M, that solves H, then we could build a
machine that solves L, as follows:
1. Return (Mi("M","")).
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Why Backwards Doesn't Work

Suppose that we have proved that the following problem L, isunsolvable: Determine the number of days that have elapsed since
the beginning of the universe.

Now consider the following problem L,: Determine the number of days that had elapsed between the beginning of the universe
and the assassination of Abraham Lincoln.

Reduce LitoL,: L
L1 =L, + (now - 4/9/1865) \/
Lo
Reduce L,to L4: L,
L, =L, - (now - 4/9/1865) \/
La

Why Backwards Doesn't Work, Continued

L, = days since beginning of universe
L, = elapsed days between the beginning of the universe and the assassination of Abraham Lincoln.
L3 = days between the assassination of Abraham Lincoln and now.

Considering L ,: L,
Reduce L to L,: \l(
L1 =L, + (now - 4/9/1865) 2
Reduce LrtoLq: L,
L, =L - (now - 4/9/1865) \/
Ly
Considering L 3: L,
Reduce L to L3 \/
L, = oops L3
Reduce LiztoLq: L3
Ly;=L;-365- (nOW-4/9/1866) W
Ly

IsThere Any String on Which M Halts?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M,) L,= {s="M": there exists a string on which Turing machine M halts}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows:
1. M* examinesitsinput tape.
2. Ifitisequal tow, thenit simulates M.
3. If not, it loops.
Clearly the only input on which M* has a chance of halting isw, which it does iff M would halt on w.

If M, exists, then My = My(M(s)) decides L.
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Does M Halt on All Inputs?

L, = {s="M" : Turing machine M halts on the empty tape}
U T
(?My) L,= {s="M": Turing machine M halts on all inputs}

Let T be the function that, from "M", constructs "M*", which operates as follows:
1. Erasetheinput tape.
2. Simulate M.

Clearly M* either halts on all inputs or on none, since it ignores its input.
If M, exists, then M = My(M(s)) decides L.
Rice's Theorem
Theorem: No nontrivial property of the recursively enumerable languages is decidable.

Alternate statement: Let P: 2 _ {true, false} be anontrivial property of the recursively enumerable languages. The language
{*M”: P(L(M)) = True} isnot recursive.

By "nontrivial" we mean a property that is not simply true for all languages or false for all languages.

Examples:

e L contains only even length strings.

* L contains an odd number of strings.

e L containsal stringsthat start with"a".
« Lisinfinite.

e Lisregular.

Note:
Rice's theorem applies to languages, not machines. So, for example, the following properties of machines are decidable;
e M contains an even number of states
e M hasan odd number of symbalsin its tape al phabet
Of course, we need away to define alanguage. Well use machines to do that, but the properties we'll deal with are properties of
L(M), not of M itself.

Proof of Rice's Theorem

Proof: Let P be any nontrivial property of the RE languages.
L, =H= {s="M""w": Turing machine M halts oninput string w}

U T
(MMy) L,= {s="M": P(L(M)) = true}

Either P(O) = trueor P(0) = false. Assume it isfalse (amatching proof existsif it istrue). Since P isnontrivial, there is some
language Ly such that P(Lp) istrue. Let Mp be some Turing machine that semidecides Lp.

Let T construct "M*", which operates as follows:

1. Copy itsinput y to another track for later.

2. Writew onitsinput tape and execute M on w.

3. If M halts, put y back on the tape and execute Mp.
4. If Mp haltsony, accept.

Claim: If M, exists, then M; = M,(M(s)) decides L.
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Why?

Two cases to consider:
o "M""W'[OH= M haltsonw = M* will halt on all strings that are accepted by Mp = L(M*) = L(Mp) = Lp = P(L(M*)) =
P(Lp) = true = M, decides P, so M, accepts "M*" = M, accepts.

e "M""W'[OH= M doesn't halt on w = M* will halt on nothing = L(M*) =0 = P(L(M*)) = P(0) = fdse= M, decides
P, so M, rgjects "M*" = M, rejects.

Using Rice’'s Theorem

Theorem: No nontrivial property of the recursively enumerable languages is decidable.
To use Rice's Theorem to show that alanguage L is not recursive we must:
»  Specify alanguage property, P(L)
e Show that the domain of Pisthe set of recursively enumerable languages.
»  Show that Pisnontrivial:

» Pistrue of at least one language

» Pisfaseof at least one language

Using Rice's Theorem: An Example

L ={s="M": there exists a string on which Turing machine M halts}.
={s="M":L(M)z 0O}

e Specify alanguage property, P(L):
P(L) = Trueiff L#£ O

e Show that the domain of Pisthe set of recursively enumerable languages.
The domain of P isthe set of languages semidecided by some TM. Thisis exactly the set of RE languages.

e Show that Pisnontrivial:
Pistrue of at least one language: P({€}) = True
Pisfalse of at least one language: P(00) = False

Inappropriate Uses of Rice's Theorem

Example 1.
L ={s="M": M writes a1 within three moves} .

»  Specify alanguage property, P(L)
P(M?) = True if M writes a1 within three moves,
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of P isthe set of all TMs, not their languages

Example 2:
L ={s="M1""M2";: L(M1) =L(M2)}.

»  Specify alanguage property. P(L)
P(M1?, M2?) = Trueif L(M1) = L(M2)
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of PisRE x RE
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Given aTuring MachineM, isL(M) Regular (or Context Free or Recursive)?
Is this problem decidable?

No, by Rice’'s Theorem, since being regular (or context free or recursive) is a nontrivial property of the recursively enumerable
languages.

We can also show this directly (viathe same technique we used to prove the more general claim contained in Rice’s Theorem):

Given aTuring MachineM, isL (M) Regular (or Context Free or Recursive)?
L;=H={s="M""w": Turing machine M halts on input string w}

U1
(My)  L,= {s="M": L(M) isregular}

Let T be the function that, from "M" and "w", constructs "M*", whose own input is a string
t = "M*" "W*"
M*("M." "w:") operates as follows:
1. Copy itsinput to another track for later.
2. Writew onitsinput tape and execute M on w.
3. If M hdlts, invoke U on "M." "w.".
4. If U halts, halt and accept.
If M, exists, then =My(M*(s)) decides L, (H).

Why?
If M does not halt on w, then M* accepts O (which isregular).
If M does halt on w, then M* accepts H (which is not regular).

Undecidable Problems About Unrestricted Grammars
* Givenagrammar G and astring w, isw 0 L(G)?
e Givenagrammar G, ise O L(G)?
*  Giventwo grammars G; and G,, isL(G,) = L(Gy)?
e Givenagrammar G, isL(G) =07?

Given aGrammar G and a Stringw, Isw OL(G)?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M>) L,= {s="G""wW":wOL(G)}

Let T be the construction that builds a grammar G for the language L that is semidecided by M. Thus
w O L(G) iff M(w) halts.

Then  T("M" "w") ="G" "w"

If M, exists, then M = My(M(s)) decides L.
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Undecidable Problems About Context-Free Grammars
»  Given acontext-free grammar G, isL(G) = Z*?
»  Given two context-free grammars G, and G, isL(G,) = L(G)?
»  Given two context-free grammars G; and G,, isL(Gy) n L(Gp) =07
e |Iscontext-free grammar, G ambiguous?

*  Given two pushdown automata M; and M, do they accept precisely the same language?
e Given apushdown automaton M, find an equivalent pushdown automaton with as few states as possible.

Given Two Context-Free Grammars G; and G,, ISL(G;) =L(Gy)?
L= {s="G"aCFGGandL(G)=Zx*}
U T
(2M)) L,= {s="G;""G,": G, and G, are CFGsand L(G,) = L(G,)}
Let T append the description of a context free grammar Gs- that generates 2*.
Then, 1("G") ="G" "Gs"

If M, exists, then My = M,y(M(s)) decides L.

Non-RE Languages

There are an uncountable number of non-RE languages, but only a countably infinite number of TM’s (hence RE languages).
0 The class of non-RE languages is much bigger than that of RE languages!

Intuition: Non-RE languages usually involve either infinite search or knowing a TM will infinite loop to accept a string.

{{M): M isaTM that does not halt on the empty tape}
{{(M): MisaTM and L(M) = 2*}
{{M): M isaTM and there does not exist a string on which M halts}

Proving Languages are not RE
Diagonalization
Complement RE, not recursive
Reduction from a non-RE language
Rice's theorem for non-RE languages (not covered)

Diagonalization
L={(M): M isaTM and M({M)) does not halt} is not RE
Suppose L isRE. ThereisaTM M* that semidecidesL. Is(M*)inL?
o Ifitis, then M*((M*)) halts (by the definition of M* as a semideciding machine for L)
e But, by thedefinition of L, if (M*) O L, then M*((M*)) does not halt.
Contradiction. So L isnot RE.
(Thisisavery “bare-bones’ diagonalization proof.)

Diagonalization can only be easily applied to afew non-RE languages.
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Complement of an RE, but not Recursive L anguage

Example: H = {(M, w): M does not accept w}
Consider H = {(M, w): M isaTM that accepts w}:

» HisRE—itissemidecided by U, the Universal Turing Machine.

» Hisnot recursive—it is equivalent to the halting problem, which is undecidable.
From the theorem, H is not RE.

Reductions and RE L anguages

Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X
My xOL?
_ M
y= M 5 |halt, halt,_
T _[(X)r Yy O L2' > >

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.
Reduction from a known non-RE L anguage

Using a reduction from a non-RE language:

L, =H ={(M, w): Turing machine M does not halt on input string w}
Ut
(?My) L, ={(M): there does not exist a string on which Turing machine M halts}

Let T be the function that, from (M) and (w), constructs (M*}, which operates as follows:

1. Erasetheinput tape (M* ignoresitsinput).

2. Writew on thetape

3. RunMonw.

M, w)

M, V¥
M*
. MY M, halty | halt,

M*
e o VIS “ee 2

M, w) DE = M does not halt on w = M* does not halt on any input = M* halts on nothing = M accepts (halts).
(M, w) O H = M hatsonw = M* halts on everything = M, loops.

If M, exists, then M;({M, w)) = M,(M({M, w))) and M; semidecidesL,. Contradiction. L;isnot RE. [0 L,isnot RE.
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Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure
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Diagonalization
Reduction

Pumping
Closure
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Introduction to Complexity Theory

Read K & S Chapter 6.
Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problemis
“easy” or “hard”. Complexity theory triesto answer this question.
Recall that a computational problem can be recast as a language recognition problem.
Some “easy” problems:

»  Pattern matching

*  Parsing

= Database operations (select, join, etc.)

= Sorting
Some “hard” problems:

»  Traveling salesman problem

»  Boolean satisfiability

»  Knapsack problem

= Optimal flight scheduling
“Hard” problems usually involve the examination of alarge search space.

Big-O Notation

=  Gives aquick-and-dirty measure of function size
»  Used for time and space metrics

A function f(n) is O(g(n)) whenever there exists a constant ¢, such that [f(n)| < cljg(n)| for all n= 0.
(We are usually most interested in the “smallest” and “simplest” function, g.)
Examples:
2n® + 3n’lbg(n) + 75n° + 7n + 2000 is O(n%)
752" + 200n° + 10000 is O(2")
A function f(n) is polynomial if f(n) is O(p(n)) for some polynomial function p.

If afunctionI f(n) is not polynomial, it is considered to be exponential, whether or not it is O of some exponentia function
(e.g.n'®").

In the above two examples, the first is polynomial and the second is exponential.
Comparison of Time Complexities

Speed of various time complexities for different values of n, taken to be a measure of problemsize. (Assumes 1 step per
microsecond.)

f(n)\n 10 20 30 40 50 60
n .00001 sec. .00002 sec. .00003 sec. .00004 sec. .00005 sec. .00006 sec.
n° .0001 sec. .0004 sec. .0009 sec. .0016 sec. .0025 sec. .0036 sec.
n° .001 sec. .008 sec. .027 sec. .064 sec. .125 sec. .216 sec.
n° .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2min. 13.0 min.
2" .001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 yr. 366 cent.
3" .059 sec. 58 min. 6.5 yr. 3855 cent. 2x10° cent. 1.3x10" cent.

Faster computers don't really help. Even taking into account Moore's Law, algorithms with exponential time complexity are
considered intractable. [ Polynomial time complexities are strongly desired.
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Polynomial Land

If f1(n) and f,(n) are polynomials, then so are;
= fi(n) +f2(n)
= fi(n) Oa(n)
= fu(fa(n)

This means that we can sequence and compose polynomial -time al gorithms with the resulting algorithms remaining polynomial -
time.
Computational Model

For formally describing the time (and space) complexities of algorithms, we will use our old friend, the deciding TM (decision
procedure).

There are two parts:
»= The problem to be solved must be translated into an equivalent language recognition problem.
= A TM to solve the language recognition problem takes an encoded instance of the problem (of size n symbols) as input
and decides the instance in at most Ty (n) steps.

We will classify the time complexity of an algorithm (TM) to solve it by its big-O bound on Ty(n).
We are most interested in polynomial time complexity algorithms for various types of problems.
Encoding a Problem

Traveling Salesman Problem: Given aset of cities and the distances between them, what is the minimum distance tour a
salesman can make that coversall cities and returns him to his starting city?

Stated as a decision question over graphs: Given agraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B? (Here aminimization problem was turned into a bound problem.)

A possible encoding the problem:

Give |V| as an integer.

Give B asan integer.

Enumerate al (v4, v,, d) asalist of triplets of integers (this gives both E and d).
All integers are expressed as Boolean numbers.

Separate these entries with commas.

Note that the sizes of most “reasonable” problem encodings are polynomially related.
What about Turing M achine Extensions?
Most TM extensions are can be simulated by a standard TM in atime polynomially related to the time of the extended machine.

»  k-tape TM can be simulated in O(T?(n))
»  Random Access Machine can be simulated in O(T3(n))

(Real programming languages can be polynomially related to the RAM.)
BUT... The nondeterminism TM extension is different.

A nondeterministic TM can be simulated by a standard TM in O(2"™) for some polynomial p(n).
Some faster simulation method might be possible, but we don’'t know it.

Recall that a nondeterministic TM can use a“guess and test” approach, which is computationally efficient at the expense of
many paralléel instances.
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TheClassP
P ={ L : thereisapolynomial-time deterministic TM, M that decidesL }

Roughly speaking, P isthe class of problems that can be solved by deterministic algorithmsin atime that is polynomially related
to the size of the respective problem instance.

The way the problem is encoded or the computational abilities of the machine carrying out the algorithm are not very important.
Example: Given an integer n, isthere a positive integer m, such that n = 4m?
Problemsin P are considered tractable or “easy”.
The Class NP
NP ={ L: thereisapolynomial time nondeterministic TM, M that decidesL }

Roughly speaking, NP is the class of problems that can be solved by nondeterministic algorithmsin atime that is polynomially
related to the size of the respective problem instance.

Many problemsin NP are considered “intractable” or “hard”.
Examples:

» Traveling salesman problem: Givenagraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B?

= Subgraph isomor phism problem: Given two graphs G; and G,, does G, contain a subgraph isomorphic to G,?

The Relationship of P and NP

Recursive

NP

WEe're considering only solvable (decidable) problems.
Clearly PO NP.

Pisclosed under complement.

NP probably isn’t closed under complement. Why?

Whether P = NP is considered computer science' s greatest unsolved problem.
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Why NP isso Interesting

= Todate, nearly all decidable problems with polynomial bounds on the size of the solution arein this class.
»  Most NP problems have simple nondeterministic solutions.
»  Thehardest problemsin NP have exponential deterministic time complexities.
»  Nondeterminism doesn’t influence decidability, so maybe it shouldn’t have a big impact on complexity.
= Showing that P = NP would dramatically change the computational power of our algorithms.

Stephen Cook’s Contribution (1971)
»  Emphasized the importance of polynomial time reducibility.
= Pointed out the importance of NP.

»  Showed that the Boolean Satisfiability (SAT) problem has the property that every other NP problem can be
polynomially reduced to it. Thus, SAT can be considered the hardest problem in NP.

»  Suggested that other NP problems may also be among the “hardest problemsin NP”.
This“hardest problemsin NP” classis called the class of “NP-complete” problems.

Further, if any of these NP-complete problems can be solved in deterministic polynomial time, they all can and, by implication,
P=NP.

Nearly all of complexity theory relies on the assumption that P # NP.
Polynomial Time Reducibility

A language L, is polynomial time reducibleto L, if there is a polynomial-time recursive function t such that Ox O L, iff t(x) O
L,.

If L, ispolynomial time reducibleto L,, we say L, reducesto L, (“polynomial time” is assumed) and we writeitasL; [ L.
Lemma: If Ly 0L, then (L, O P) = (L, O P). And conversaly, (L, OP) = (L, OP).

Lemma: If Ly 0LyandL, O0Lszthenl, OLs.

L, and L, are polynomially equivalent whenever both L; (0 L, and L, O L;.

Polynomially equivalent languages form an equivalence class. The partitions of this equivalence class are related by the partial
order [.

Pisthe“least” element in this partial order.

What isthe “maximal” element in the partial order?
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The Class NP-Complete
A language L isNP-complete if L [0 NP and for all other languagesL’ O NP, L’ O L.
NP-Complete problems are the “hardest” problemsin NP.
Lemma: If L;and L, belongto NP, L, is NP-complete and L, (I L,, then L, is NP-complete.
Thusto prove alanguage L, is NP-complete, you must do the following:
1. Show that L, O NP.
Select a known NP-complete language L ;.

2
3.  Construct areduction T from L, to L.
4.  Show that T is polynomial-time function.
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How do we get started? |sthere alanguage that is NP-complete?
Boolean Satisfiability (SAT)

Given a set of Boolean variables U = {uy, U,, ..., Uy} and a Boolean expression in conjunctive normal form (conjunctions of
clauses—disjunctions of variables or their negatives), is there atruth assignment to U that makes the Boolean expression true
(satisfies the expression)?

Note: All Boolean expressions can be converted to conjunctive normal form.
Example: (x;00-X, Ox3) O (=x3 OX4 OXy)

Cook’s Theorem: SAT is NP-complete.
1. Clearly SAT O NP.
2. The proof constructs a complex Boolean expression that satisfied exactly when aNDTM accepts an input string X
where |w| = n. Becausethe NDTM isin NP, its running timeis O(p(n)). The number of variablesis polynomially
related to p(n).

SAT isNP-complete because SAT O NP and for all other languagesL’ O NP, L’ O SAT.

Reduction Roadmap
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PARTITION HC CLIQUE

The early NP-complete reductions took this structure. Each phrase represents a problem. The arrow represents a reduction from
one problem to another.

Today, thousands of diverse problems have been shown to be NP-compl ete.

Let’s now look at these problems.
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3SAT (3-satisfiability)
Boolean satisfiability where each clause has exactly 3 terms.
3DM (3-Dimensional Matching)

Consider aset M O X x Y x Z of digoint sets, X, Y, & Z, suchthat |X|=|Y|=[Z| = . Doesthere exist amatching, a subset
M’ M such that [M’| = qand M’ partitions X, Y, and Z?

Thisis ageneralization of the marriage problem, which has two sets men & women and a relation describing acceptable
marriages. |sthere apairing that marries everyone acceptably?

The marriage problem isin P, but this “3-sex version” of the problem is NP-complete.
PARTITION

Given aset A and a positive integer size, (@) 0 N*, for each element, a0 A. Isthere asubset A’ 0 A such that

2 sa=2 3a) ?
alA”  alA-A’

VC (Vertex Cover)

Given agraph G = (V, E) and an integer K, such that 0 < K < |V|, isthere a vertex cover of sizeK or lessfor G, that is, a subset
V' OV suchthat [V'| < K and for each edge, (u, v) O E, at least one of uand v belongsto V'?

CLIQUE
Given agraph G = (V, E) and an integer J, such that
0 < J< V|, does G contain aclique of size Jor more, that isasubset V' 00V such that [V'| = Jand every two verticesin V' are
joined by an edgein E?

HC (Hamiltononian Circuit)

Given agraph G = (V, E), does there exist a Hamiltonian circuit, that is an ordering <v;, v», ..., v,> of al V such that
(vyvp vi) OEand (v, visg) O Eforali, 1<i<|V[?

Traveling Salesman Prob. is NP-complete

Given agraph G = (V, E), apositive distance function for each edge d: E - N+, and abound B, is there a circuit that coversall V
where sd(e) < B?

To prove alanguage TSP is NP-complete, you must do the following:
1. Show that TSP O NP.
2. Select aknown NP-complete language L ;.
3. Construct areduction t from L, to TSP.
4. Show that T is polynomial-time function.

TSP O NP: Guessaset of roads. Verify that the roads form atour that hits all cities. Answer “yes’ if the guessisatour and the
sum of the distancesis< B.

Reduction from HC: Answer the Hamiltonian circuit question on G = (V, E) by constructing a complete graph where “roads’
have distance 1 if the edgeisin E and 2 otherwise. Pose the TSP problem, isthere atour of length < |V|?
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Notes on NP-complete Proofs
The more NP-complete problems are known, the easier it isto find a NP-complete problem to reduce from.
Most reductions are somewhat complex.
It is sufficient to show that arestricted version of the problem is NP-compl ete.
More Theory

NP has arich structure that includes more than just P and NP-complete. This structureis studied in later courses on the theory of
computation.

The set of recursive problems outside of NP (and including NP-complete) are called NP-hard. Thereisa proof techniqueto
show that such problems are at least as hard as NP-complete problems.

Space complexity addresses how much tape doesa TM usein deciding alanguage. Thereisarich set of theories surrounding
space complexity.

Recursive

2

Dealing with NP-completeness
You will likely run into NP-complete problemsin your career. For example, most optimization problems are NP-complete.

Some techniques for dealing with intractable problems:

= Recognize when there is atractable special case of the general problem.

= Use other techniques to limit the search space.

= For optimization problems, seek a near-optimal solution.
Thefield of linear optimization springs out of the latter approach. Some linear optimization solutions can be proven to be “near”
optimal.

A branch of complexity theory deals with solving problems within some error bound or probability.

For more: Read Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S.
Johnson, 1979.
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