What Is a Language?
Do Homework 2.

Grammars, Languages, and M achines

Language
L
Accepts
Machine
Strings: the Building Blocks of Languages
An alphabet isafinite set of symbols: English alphabet: {A,B,C, ...

Binary alphabet: {0, 1}
A string over an alphabet is afinite sequence of symbols drawn from the al phabet.

English string: happynewyear
binary string: 1001101

We will generally omit “ " from strings unless doing so would lead to confusion.

The set of all possible strings over an alphabet X iswritten Z*.
binary string: 1001101 0 {0,1} *

The shortest string contains no characters. It is called the empty string and is written
The set of all possible strings over an alphabet X iswritten >*.
Moreon Strings

The length of a string is the number of symbolsin it.

le|=0
[1001101| =7
A string aisasubstring of astring b if aoccurs contiguously as part of b.
aaa isasubstring of aaabbbaaa
aaaaaa isnot asubstring of aaabbbaaa

Every string is a substring (although not a proper substring) of itself.

€ isasubstring of every string. Alternatively, we can match € anywhere.

Notice the analogy with sets here.

Lecture Notes 2 What is a Language?

2}

“" or g (epsilon).

Operationson Strings

Concatenation: The concatenation of two strings x and y iswritten x || y, X4/, or xy and is the string formed by appending the
string y to the string x.

Iyl = Ix| + Iyl

If x=¢andy="food”, then xy =
If x="good” andy = “bye", then |xy| =

Note: x[8=¢elX =x for al strings x.

Replication: For each string w and each natural number i, the string W is defined recursively as
0

W =¢

w=wtw foreachi > 1
Like exponentiation, the replication operator has a high precedence.

Examples:

a=

(bye)* =

a0b3 —

String Rever sal

An inductive definition:
(1) If w|=0thenw®=w=¢
(2) If w|=1then Dal>: w=ula
(aisthe last character of w)
and
wR = am®
Example:
(abe)"” =
Moreon String Rever sal
Theorem: If w, x are strings, then (WX)® = x?m”
Example: (dogcat)® = (cat)(dog)" = tacgod
Proof (by induction on [x]):
Basis: [x| = 0. Thenx = ¢, and (WX)® = (WE)R = (W)" = el = eFR = X
Induction Hypothesis: If [x| < n, then ()R = xRW®

Induction Step: Let [x] = n+ 1. Then x = u afor some character aand |u| = n

W) = (w(u@)"

= (wm)@*° associativity
= al(wm)® definition of reversal
= an"mR induction hypothesis
= (Lé@)zw2 definition of reversal
=X W
dogcat
-

X
u

Q1

Lecture Notes 2 What is a Language? 2

Defining a Language
A languageisa (finite or infinite) set of finite length strings over afinite alphabet >.
Example: Let 2 ={a, b}
Some languages over >: [1, {€}, {a b}, {&, a, aa, asa, asaa, asaaa}
The language Z* contains an infinite number of strings, including: €, a, b, ab, ababaaa

Example L anguage Definitions
L={x0O{a b}*:al asprecede all b's}

L={x:0yO{a b}*:x=ya}

L={d,n=0}

L =a" (If we say nothing about the range of n, we will assumethat it is drawn from N, i.e., n>0.)

L ={x#y: x,y 0 {0-9}* and square(x) =y}

L={} =0 (the empty language—not to be confused with { €}, the language of the empty string)
Techniquesfor Defining L anguages

Languages are sets. Recall that, for sets, it makes sense to talk about enumerations and decision procedures. So, if we want
to provide a computationally effective definition of alanguage we could specify either a

» Language generator, which enumerates (lists) the elements of the language, or a
» Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and
Falseif it isn't.

Example: Thelogical definition: L ={x: 0Oy O{a, b}* : x =ya} can beturned into either alanguage generator or a
language recognizer.

How Large are Languages?

e Thesmalest language over any alphabet is . [d]=0
» Thelargest language over any alphabet is >*. [Z*|="7
-IfZ=0thenx* ={¢} and [2*|=1
- If Z # 0 then |2*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the
integers as follows:
1. Enumerate all strings of length O, then length 1, then length 2, and so forth.
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb

» Soall languages are either finite or countably infinite. Alternatively, all languages are countable.

Operationson Languages 1

Normal set operations: union, inter section, difference, complement...
Examples: 2 ={a, b} L, = strings with an even number of as

L, = stringswith no b's
Ll O L2:
Ll al L2 =
|_2 - Ll =
(Lz-Ly=

Lecture Notes 2 What is a Language?

Operations on Languages 2
Concatenation: (based on the definition of concatenation of strings)

If L, and L, are languages over Z, their concatenation L =L L,, sometimesL,(,, is
{wOX*:w=xyforsomexOL;andy 0Ly}

Examples:

L, = {cat, dog} L, ={apple, pear} L, L, ={catapple, catpear, dogapple, dogpear}
L1={an:n21} L2={a”:ns3} LiL,=

I dentities:

LO=0L=0 0L (anaogousto multiplication by 0)
L{e}={e}L =L 0OL (analogousto multiplication by 1)

Replicated concatenation:
L"=LOMO... M (ntimes)
L'=L
L°={¢g}
Example:
L ={dog, cat, fish}
LO={g}
L' ={dog, cat, fish}
L? = { dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish}
Concatenating L anguages Defined Using Variables

L,=a" ={d":n=0} L,=b"={b":n>0}
Lil,={a":n=0}{b":n=20} ={ a"b™:nm=0} (commonmistake:) Zab" ={ a'b":n=0}

Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.
L=1"2"
L =ah"d"
Operationson Languages 3
Kleene Star (or Kleeneclosure): L* ={w O X* : w=w; W, ... wy for some k = 0 and some wy, Wy, ... w, 0L}
Alternative definition: L* =L°O L' OL*0 L3O ...
Note: 0L, e O L*
Example:
L ={dog, cat, fish}
* ={¢, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...}
Another useful definition: L*=L L* (L" isthe closure of L under concatenation)
Alternatively, L*= L' 0 L20 L3O ...
L"=L*-{g} if e0L

L"=L* if e0OL

Lecture Notes 2 What is a Language?

Regular Languages

Read Supplementary Materials. Regular Languages and Finite State Machines: Regular Languages
Do Homework 3.

Regular Grammars, L anguages, and M achines

Regular
Language

Regular Expression
or
Regular Grammar

Finite
State
M achine

“Pure” Regular Expressions

Theregular expressions over an aphabet Z are all strings over the alphabet ~ 00 {“(*,)", O, O, *} that can be obtained as
follows:

1. 0 and each member of X isaregular expression.
2. 1f a, B areregular expressions, then so is aff
3.1f a, B areregular expressions, then soisal .
4. If a isaregular expression, then soisa*.

5. If a isaregular expression, then so is (a).

6. Nothing else isaregular expression.

If ~ ={ab} thenthese are regular expressions: O, a, bab, allb, (aldb)*a*b*
So far, regular expressions are just (finite) strings over some alphabet, > 00 {“(*,)", O, O, *}.
Regular Expressions Define Languages

Regular expressions define languages via a semantic inter pretation function we'll call L:
1.L(O)=0andL(a)={a} foreachal >
2.1f a, B areregular expressions, then

L(ap) = L(o)@(B)

= al strings that can be formed by concatenating to some string from L (o) some string from L([3).

Note that if either a or B is 0, then itslanguage is [1, so there is nothing to concatenate and the result is (1.
3.1f a, B areregular expressions, then L(al) =L(a) O L(B)
4. If a isaregular expression, then L(a*) = L(a)*
5.L((0)) =L(a)

A languageisregular if and only if it can be described by aregular expression.

A regular expression is always finite, but it may describe a (countably) infinite language.

Lecture Notes 3 Regular Languages

Regular Languages
An equivalent definition of the class of regular languages over an alphabet 3
The closure of the languages

{a} Dalx and O [1]
with respect to the functions:
e concatenation, 2]
e union, and [3]
e Kleene star. [4]

In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2],
[3], and [4].

“Closure” and “ Closed”
Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.
The functions are applied to members of the set, and if anything new arises, it’'s added to the set. The resulting set is called
the closure over the initial set and the functions. Note that the functions(s) may only be applied afinite number of times.

Examples:
The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.
Regular languages can be defined asthe closure of {a} DalX and [0 and the functions of concatenation, union, and
Kleene star.

We say aset isclosed over afunction if applying the function to arbitrary elementsin the set does not yield any new elements.

Examples:
The set of natural numbers N is closed under multiplication.
Regular languages are closed under intersection.

See Supplementary Material s—Review of Mathematical Concepts for more formal definitions of these terms.

Examples of Regular Languages
L(a*b*)=
L((a0b))=
L((a0b)*)=
L((aOb)*a*b*) =
L ={wO{ab}* : w|iseven}
L ={w O {ab}* : w contains an odd number of a's}

Augmenting Our Notation
It would be really useful to be able to write € in aregular expression.
Example: (a0 €) b (Optiona afollowed by b)

But we'd also like aminimal definition of what constitutes aregular expression. Why?

Observe that
0°={¢€} (since 0 occurrences of the elements of any set generates the empty string), so
O ={¢}

So, without changing the set of languages that can be defined, we can add € to our notation for regular expressions if we
specify that
L(e) ={&}
We're essentially treating € the same way that we treat the charactersin the alphabet.
Having done this, you'll probably find that you rarely need [0 in any regular expression.

Lecture Notes 3 Regular Languages 2

More Regular Expression Examples

L((aa)O¢e)=

L(@O¢g*)=

L ={ wO{ab}* : thereisno more than one b}

L ={ wO{ab}* : notwo consecutive letters are the same}

Further Notational Extensions of Regular Expressions

« A fixed number of concatenations: a" means aoaa ...a (n times).

+ AtlLeast 1: a" means 1 or more occurrences of a concatenated together.

» Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter)
Example: L = (A-Z2)"((A-Z2)0(0-9))*

« A replicated regular expression a", where n is a constant.
Example: L = (0 0 1)®

e Intersection: anf (we'll prove later that regular languages are closed under intersection)
Example: L = (&)* n (&)*

Operator Precedencein Regular Expressions

Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to:

1. Parsethestring

2. Assign ameaning to the parse tree

Parsing regular expressionsisalot like parsing arithmetic expressions. To do it, we must assign precedence to the operators:

Regular Arithmetic
Expressions Expressions
Highest Kleene star exponentiation
concatenation
. . multiplication
intersection
L owest union addition
ab* O cd* Xy?+ij?

Regular Expressionsand Grammars
Recall that grammars are language generators. A grammar isarecipe for creating stringsin alanguage.
Regular expressions are analogous to grammars, but with two special properties:

1. Thehavelimited power. They can be used to define only regular languages.
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules.

But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.
Specifically, any such grammar must be composed of rules that:

e havealeft hand side that is a single nonterminal
* havearight hand side that is€, or asingle terminal, or asingle terminal followed by a single nonterminal.

Lecture Notes 3 Regular Languages

Regular Grammar Example
L={w O {a b}* : jw|iseven}

((@a@) O (ab) O (ba) O (bb))* Notice how these rules correspond naturally to a FSM:
So¢ ~ ab
S afl /
L 1
T-a
T-b ab
T aS
T - bS

Generators and Recognizers

Generator Recognizer

\ Language /

Regular Languages

_—— “‘-\\\~

Regular Expressions
Regular Grammars ?

Lecture Notes 3 Regular Languages

