Equivalence of Regular Languages and FSMs

ReadK & S2.4
Read Supplementary Materials. Regular Languages and Finite State Machines: Generating Regular Expressions from Finite
State Machines.

Do Homework 8.
Equivalence of Regular Languagesand FSMs

Theorem: The set of languages expressible using regular expressions (the regular languages) equals the class of languages
recognizable by finite state machines. Alternatively, alanguageisregular if and only if it is accepted by afinite state machine.

Proof Strategies
Possible Proof Strategies for showing that two sets, a and b are equal (also for iff):

1. Start with a and apply valid transformation operators until b is produced.

Example:
Prove:
An(BOC=(AnB)OANC
An(BOC) =BOC)NnA commutativity

=(BnA)O(CnA) distributivity
=(AnB)O(ANCQC) commutativity

2. Do two separate proofs: (1) a= b, and (2) b =a, possibly using totally different techniques. In this case, we show first (by
construction) that for every regular expression there is a corresponding FSM. Then we show, by induction on the number of
states, that for every FSM, there is a corresponding regular expression.

For Every Regular Expression Thereisa Corresponding FSM

Well show this by construction.

Example:

a*(b O g)a

Review - Regular Expressions

The regular expressions over an aphabet >* are all strings over the alphabet > [0 {(, ), O, [, *} that can be obtained as follows:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is af.
3.1f a, B areregular expressions, thensoisap .
4. If a isaregular expression, then soisa*.
5. If a isaregular expression, then so is (a).
6. Nothing elseis aregular expression.

We also allow € and o™, etc. but these are just shorthands for 0* and aa*, etc. so they do not need to be considered for
completeness.

Lecture Notes 7 Equivalence of Regular Languages and FSMs



For Every Regular Expression Thereisa Corresponding FSM

Formalizing the Construction: The class of regular languages is the smallest class of languages that contains [0 and each of the
singleton strings drawn from Z, and that is closed under

e Union

»  Concatenation, and

* Kleenestar

Clearly we can construct an FSM for any finite language, and thus for O and all the singleton strings. If we could show that the
class of languages accepted by FSMsis also closed under the operations of union, concatenation, and Kleene star, then we could
recursively construct, for any regular expression, the corresponding FSM, starting with the singleton strings and building up the
machine as required by the operations used to express the regular expression.

FSMsfor Primitive Regular Expressions

AnFSM for O; An FSM for € (O*):

An FSM for asingle element of

Closure of FSMsUnder Union

To create a FSM that accepts the union of the languages accepted by machines M1 and M2:
1. Create anew start state, and, from it, add e-transitions to the start states of M1 and M2.

Closure of FSM s Under Concatenation

To create a FSM that accepts the concatenation of the languages accepted by machines M1 and M2:
1. StatwithM1.

2. Fromevery final state of M1, create an e-transition to the start state of M2.

3. Thefinal states are the final states of M2.

Lecture Notes 7 Equivalence of Regular Languages and FSMs



Closure of FSMsUnder Kleene Star

To create an FSM that accepts the Kleene star of the language accepted by machine M1:
Start with M1.

Create a new start state SO and make it afinal state (so that we can accept €).
Create an e-transition from SO to the start state of M 1.

Create e-transitions from all of M1'sfinal states back to its start state.

Make all of M1'sfinal statesfinal.

SAE I A

Note: we need a new start state, SO, because the start state of the new machine must be afinal state, and this may not be true of
M1's start state.

Closure of FSMs Under Complementation
To create an FSM that accepts the complement of the language accepted by machine M 1.

1. Make M1 deterministic.
2. Reversefina and nonfinal states.

A Complementation Example

il X(@®@

Closure of FSM s Under |nter section

L1nL2= .

Write thisin terms of operations we have already proved closure for:

e Union
»  Concatenation
e Kleenestar
e Complementation
An Example

(b O ab*a)*ab*

Lecture Notes 7 Equivalence of Regular Languages and FSMs



For Every FSM Thereisa Corresponding Regular Expression

Pr oof:

(1) Thereisatrivial regular expression that describes the strings that can be recognized in going from one state to itself ({€} plus
any other single characters for which there are loops) or from one state to another directly (i.e., without passing through any other
states), namely all the single characters for which there are transitions.

(2) Using (1) asthe base case, we can build up aregular expression for an entire FSM by induction on the number assigned to
possible intermediate states we can pass through. By adding them in only one at atime, we always get simple regular
expressions, which can then be combined using union, concatenation, and Kleene star.

Key ldeasin the Proof

Idea 1: Number the states and, at each induction step, increase by one the states that can serve as intermediate states.

Idea 2: To get from state | to state J without passing through any intermediate state numbered greater than K, a machine may

either:

1. Gofrom to Jwithout passing through any state numbered greater than K-1 (which we'll take as the induction hypothesis), or

2. Gofroml to K, then from K to K any number of times, then from K to J, in each case without passing through any
intermediate states numbered greater than K-1 (the induction hypothesis, again).

So well start with no intermediate states allowed, then add them in one at atime, each time building up the regular expression

with operations under which regular languages are closed.

The Formula

Adding in state k as an intermediate state we can use to go fromii to j, described using paths that don't use k:

(O—(—O

R@,j, k) =R(i,j,k-1) /* what you could do without k

R(, k, k-1) - /* go from i to the new intermediate state without using k or higher

R(k, k, k-1)* /* then go from the new intermediate state back to itself as many times as you want
R(k, j, k-1) /* then go from the new intermediate state to j without using k or higher

Solution: [J R(s,q,N) OqOF

Lecture Notes 7 Equivalence of Regular Languages and FSMs 4



An Example of the Induction

g

a a a

O—O0—0—0
_/ A/

Going through no intermediate states:

(1,1,0) =¢ (1,20 =a (1,3,00=0 (2,30 =a (330)=¢0b (34,0)=a
Allow 1 as an intermediate state:

Allow 2 as an intermediate state:
(1,3,2=(4,3,1)0(1,2 12,2, D)*(2,3,1)
= 0O O a e* a
= aa
Allow 3 as an intermediate state:
(1,3,3)=(4,3,2 0(1,3,2)(3,3,2*(3, 3,2
aa 0O a (¢0b* (¢0Ob)
aab*
(14,4,20(1,3,2)(3,3,2*3,4,2
0 a (0b* a

(1,4,3)

O
:
Q

An Easier Way - See Packet

Lecture Notes 7 Equivalence of Regular Languages and FSMs



(2) Remove states and arcs and replace with arcs labelled with larger and larger regular expressions. States can be removed in
any order, but don’t remove either the start or final state.

(Notice that the removal of state 3 resulted in two new paths because there were two incoming paths to 3 from another state and 1
outgoing path to another state, so 2x1 =2.) Thetwo pathsfrom 2 to 1 should be coalesced by unioning their regular expressions

(not shown).
Ncl) € IabDaaa*bDba*b

(ab O aaa*b O ba*b)*(a O €)
RO O

Thus, the equivalent regular expression is:
(ab O aaa*b O ba*b)*(a O €)

Using Regular Expressionsin the Real World (PERL)
M atching floating point numbers:

-2 ([0-9]+(\.[0-9]*)? | \.[0-9]+)

Matching | P addr esses:

([0-9]+ (\. [0-9]+) {3})

Finding doubled words:

\< ([A-ZaZ]+) \s+\1\>

From Friedl, J., Mastering Regular Expressions, O’ Reilly,1997.

Note that some of these constructs are more powerful than regular expressions.
Lecture Notes 7 Equivalence of Regular Languages and FSMs 6



Regular Grammar s and Nondeter ministic FSAs

Any regular language can be defined by aregular grammar, in which all rules
* havealeft hand side that is a single nonterminal

e havearight hand side that is €, asingle terminal, a single nonterminal, or a single terminal followed by a single nonterminal .
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) 0 (ba) U (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

: ab I
ab

An Algorithm to Generate the NDFSM from a Regular Grammar

1. Create anonterminal for each state in the NDFSM.
2. sisthe start state.
3. |If thereareany rules of theform X — w, for somew(X , then create an additional state labeled #.
4. For eachrule of theform X - w'Y, add atransition from X to Y labeledw (w0 X [ €).
5. For eachrule of theform X — w, add atransition from X to # labeled w (w O ).
6. For eachrule of theform X - ¢, mark state X final.
7. Mark state # final.
Example 1 - Even Length Strings
S-¢ T a
S ar T->b
S- bT T aS
Example 2 - One Character Missing
So¢ A - bA C-aC
S- aB A 5 CcA C - bC
S aC A - ¢ Coe
S - bA B - aB
S - bC B - cB
S~ cCcA B¢
S-cB

Lecture Notes 7 Equivalence of Regular Languages and FSMs 7



An Algorithm to Generate a Regular Grammar from an NDFSM

1. Create anonterminal for each state in the NDFSM.

2. The start state becomes the starting nonterminal

3. For eachtransition &(T, a) = U, make arule of theform T - aU.
4. For eachfinal state T, makearule of theform T - «.

Example:

Conversion Algorithms between Regular Language For malisms

Regular
Grammar

|

NFSM

(NFA)
Regular /

Expression

DFSM
(DFA)

Lecture Notes 7 Equivalence of Regular Languages and FSMs



