State Minimization for DFAs

ReadK & S2.7
Do Homework 10.

State Minimization

Consider:

I's this a minimal machine?

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can't easily find the unreachable states directly. But we can find the reachable ones and determine the unreachable ones from
there. An algorithm for finding the reachable states:

2
@

a b

©

Lecture Notes 10 State Minimization 1

Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and thus one is redundant) if all stringsin 2* have the same fate, regardless of
which of the two states the machine isin. But how can wetell this?

The simple case:

b a
ab

Two states have identical sets of transitions out.

Getting Rid of Redundant States
The harder case:

The outcomes are the same, even though the states aren't.
Finding an Algorithm for Minimization
Capture the notion of equivalence classes of strings with respect to alanguage.
Capture the (weaker) notion of equivalence classes of strings with respect to alanguage and a particular FSA.
Prove that we can always find a deterministic FSA with a number of states equal to the number of equivalence classes of strings.
Describe an agorithm for finding that deterministic FSA.
Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent with respect to alanguage L if, no matter what is tacked on to them
on theright, either they will both bein L or neither will. Why isthis the right notion? Because it corresponds naturally to what
the states of arecognizing FSM have to remember.
Example:

(1) a b b a b

(2 b a b a b

SupposeL ={w O {ab}* : w|iseven}. Are (1) and (2) equivalent?

Suppose L ={w O {ab}* : every aisimmediately followed by b}. Are (1) and (2) equivaent?

Lecture Notes 10 State Minimization 2

Defining Equivalence for Strings

If two strings are equivalent with respect to L, wewritex = y. Formally, x =_ y if, 0z 00 2*,
xzOLiffyzOL.
Notice that = is an equivalence relation.

Example:
Z={a b}
L ={wOZXZ* : every aisimmediately followed by b }
€ aa bbb
a bb baa
b aba
aab

The equivalence classes of = :

[z | isthe number of equivalence classes of =.

Another Example of =_

Z={a b}
L={wOZX*: |w|iseven}
€ bb aabb
a aba bbaa
b aab aabaa
aa bbb
baa

The equivalence classes of = :

Yet Another Example of =

z ={a b}

L = aab*a
€ ba aabb
a bb aabaa
b asa aabbba
aa aba aabbaa
ab aab

bab

The equivalence classes of = :

An Example of = Where All Elementsof L Are Not in the Same Equivalence Class

Z={a b}
L ={w O {a, b}* : no two adjacent characters are the same}
€ bb aabaa
a aba aabbba
b aab aabbaa
aa baa
aabb

The equivalence classes of = :

Lecture Notes 10 State Minimization

Is|= | Always Finite?

Z={ab}

L=4dab"
€ aa acaa
a aba acooa
b aca

The equivalence classes of = :
Bringing FSMsinto the Picture
=_isanidea relation.

What if we now consider what happens to strings when they are being processed by areal FSM?

()

> ={a b} L={wOZXZ*: jw|iseven}

Define ~y to relate pairs of strings that drive M from s to the same state.

Formally, if M isadeterministic FSM, then x ~y y if thereis some state qin M such that (s, x) |- ' (g, €) and (s, y) | w (q, €).

Noticethat M is an equivalence relation.

An Example of ~M

)

> ={a b} L={wOZX*: |w|iseven}

€ bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa
The equivalence classes of ~: [~ml=

Lecture Notes 10 State Minimization

Z={a b}

3
a
b
aa

The equivalence classes of ~:

~. [e, aa bb, asbb, bbag]

L={w0OZx*:|w|]iseven}

o

Ancther Example of ~M

fwl

bb
aba

bbb

The Relationship Between = and ~y

iseven

[, b, aba, agb, bbb, baa, agbag] jw] is odd

~u, 3 State machine:
ql: [g, aa, bb, aabb, bbaa]
g2: [a, aba, baa, aabaa] (ab 0 ball aall bb)*a

q3: [b, agb, bbb]

~u, 2 State machine;
gl: [, aa, bb, aabb, bbaa]
g2: [a, b, aba, aab, bbb, baa, aabaa] |w|is odd

= [even length]

I

(3 state)

M [even length]

[

i

seven

=0

|~ml =

(ab 0 ba aa] bb)*b

i

ina

seven

~u isarefinement of =.

The Refinement

[odd length]

N\

odd endi ng:l

odd ending
inb

An equivalence relation R is a refinement of another one Siff

XRy - xSy

In other words, R makes all the same distinctions S does, plus possibly more.

IRI= S|

Lecture Notes 10

State Minimization

bbaa
aabaa

©)

R

~v isa Refinement of =.
Theorem: For any deterministic finite automaton M and any stringsx, y [0 2*, if X ~y y, then x = y.
Proof: If x ~y y, then x and y drive m to the same state g. From @, any continuation string w will drive M to some stater. Thus
xw and yw both drive M tor. Either risafinal state, in which case they both accept, or it is not, in which case they both reject.
But thisis exactly the definition of = .

Corallary: v |2 =L |-

Going the Other Way
When is this true?

If X = mythenx —yy.
Finding the Minimal FSM for L
What's the smallest number of states we can get away with in a machine to accept L?
Example: L={wOZXZ*: jw|iseven}

The equivalence classes of = :

Minimal number of statesfor M(L) =
Thisfollows directly from the theorem that says that, for any machine M that acceptsL, |~y| must be at least aslarge as =, |.
Can we aways find a machine with this minimal number of states?

The Myhill-Nerode Theorem

Theorem: Let L be aregular language. Then thereis a deterministic FSA that accepts L and that has precisely |z | states.
Proof: (by construction)
M= K states, corresponding to the equivalence classes of =, .

s=[g], the equivalence class of € under =,.

F={[x]:xOL}

O([x], a) = [xal

For this construction to prove the theorem, we must show:

1. Kisfinite
2. diswell defined, i.e., 8([X], @ = [xd] isindependent of x.
3. L=L(M)

Lecture Notes 10 State Minimization 6

The Proof
(1) K isfinite.
Since L isregular, there must exist amachine M, with |~y| finite. We know that
Il Z =
Thus |=_ | isfinite.
(2) diswell defined.
Thisisassured by the definition of =_, which groups together precisely those strings that have the same fate with respect to L.

The Proof, Continued
) L=L(M)
Suppose we knew that ([x], y) Fu* ([xy], €).
Now let [X] be[€] and let sbeastringin >*.
Then

(€], o) [u* ([S], €)

M will accept sif [g] O F.
By the definition of F, [s] O Fiff al stringsin[s] areinL.
So M accepts precisely the stringsin L.

The Proof, Continued

Lemma: ([x], y) Fv* ([xy], €)
By induction on |y|:
Trivia if ly]=0.
Suppose true for ly| = n.
Show truefor |y| = n+1
Lety =y'a, for some character a. Then,

lyl=n
(X1, ya) Im* ([xy], & (induction hypothesis)
(Ixy'] @ Fv* ([xy'd, €) (definition of &)
(€1, y'a) Fw* ([xy'dl, €) (trans. of |w*)
(X1, y) Fw* ([xy], €) (definition of y)

Another Version of the Myhill-Nerode Theorem

Theorem: A language isregular iff |= | isfinite.

Example:
Consider: L=ab"
a, aa, ada, adaa, asaaa . ..
Equivalence classes:
Pr oof:

Regular - |+ | isfinite: If L isregular, then there exists an accepting machine M with afinite number of statesN. We know that
N = [z |. Thus|=_|isfinite.

|= | isfinite - regular: If |z |isfinite, then the standard DFSA M, acceptsL. Since L isaccepted by aFSA, itisregular.

Lecture Notes 10 State Minimization 7

Constructing the Minimal DFA from =_

z={ab}
L ={w O {a b}* : no two adjacent characters are the same}

The equivalence classes of = :

1: [€] €

2: [a, ba, aba, baba, ababa, ...] (big)(ab)*a
3: [b, ab, bab, abab, ...] (ad)(ba)*b
4: [bb, aa, bba, bbb, ...] the rest

» Equivalence classes become states
o Start stateis[e]
e Fina dtatesare al equivalence classesin L

© 0([x], @) =[xd]

Using Myhill-Nerode to Prove that L isnot Regular
L={a": nisprime}

Consider: €
a

aa
aaa
acaa

Equivalence classes:

So Where Do We Stand?
1. Weknow that for any regular language L there exists a minimal accepting machine M, .
2. Weknow that |K| of M equals [=|.
3. Weknow how to construct M, from=,.
But is this good enough?

Consider:

Lecture Notes 10 State Minimization

Constructing a Minimal FSA Without Knowing =_
We want to take as input any DFSA M' that accepts L, and output a minimal, equivalent DFSA M.

What we need is adefinition for "equivalent”, i.e., mergeable states.

Define g = p iff for al stringsw O 2*, either w drives M to an accepting state from both g and p or it drives M to arejecting state
from both g and p.

Example:
> ={a b} L={wOZx*: |w|]iseven}

Constructing = asthe Limit of a Sequence of Approximating Equivalence Relations =,

(Where nisthe length of the input strings that have been considered so far)

WEe'll consider input strings, starting with €, and increasing in length by 1 at each iteration. Well start by way overgrouping
states. Then we'll split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical.

Initially, =, has only two equivalence classes: [F] and [K - F], since on input €, there are only two possible outcomes, accept or
reject.

Next consider strings of length 1, i.e., each element of 2. Split any equivalence classes of =, that don't behave identically on all
inputs. Notethat in all cases, =, isarefinement of = ;.

Continue, until no splitting occurs, computing =, from =,,5.
Constructing =, Continued
More precisely, for any two statespand q 0 K andany n= 1, q =, p iff:

1. q=,1p, AND
2. foradlalZ, d(p, a) =, 0(q, a

Lecture Notes 10 State Minimization 9

The Construction Algorithm
The equivalence classes of = are F and K-F.
Repeat forn=1,2,3 ...
For each equivalence class C of =, do
For each pair of elementsp and qin C do
For eachain X do
Seeif &(p, &) =n-13(q,)
If there are any differences in the behavior of p and g, then split them and create a new equivalence
class.
Until =, ==,,. =isthisanswer. Then use these equivalence classes to coal esce states.

An Example

Z={ab}
b A
O —©
b a
a bj
a a
4 b O e b 6

ab
S =
El =
==

Another Example

(a*b*)*

Minimal machine:

Lecture Notes 10 State Minimization 10

Another Example
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) O (ba) T (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

Anocther Example, Continued

Minimize:

ab

"(T

ab ab

Minima machine:

Lecture Notes 10 State Minimization 11

