Parse Trees

Read K & S 3.2

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Derivations and Parse Trees.

Do Homework 12.

Parse Trees

Regular languages:

We care about recognizing patterns and taking appropriate actions.

Example: A parity checker

Structure

Context free languages:

We care about structure.

E

E

+

E

id

 E
*
E

 id

id

id

+
 (id
*
id)

Parse Trees Capture Essential Structure

E (id

E (E + E

E (E * E

E

E

E

+

E

E

*

E

id

E
*
E

E
+
E

id

id

id

id

id

id

+ (id
*
id)

(id
+
id)
*

id

Parse Trees are Just Trees

 root

 height
nodes

leaves

 yield

Leaves are all labeled with terminals or (.

Other nodes are labeled with nonterminals.

A path is a sequence of nodes, starting at the root, ending at a leaf, and following branches in the tree.

The length of the yield of any tree T with height H and branching factor (fanout) B is (

Derivations

To capture structure, we must capture the path we took through the grammar. Derivations do that.

S ((

S (SS

S ((S)

 1 2 3 4 5 6

S (SS ((S)S (((S))S ((())S ((())(S) ((())()

S (SS ((S)S (((S))S (((S))(S) ((())(S) ((())()

 1 2 3 5 4 6

S

S

S

(

S

)

(

S

)

(
S
)

(

(
Alternative Derivations

S ((

S (SS

S ((S)

S (SS ((S)S (((S))S ((())S ((())(S) ((())()

S (SS (SSS (S(S)S (S((S))S (S(())S (S(())(S) (S(())()((())()

S

S

 S

S

S

S

(
 S
)

 (
S
)

 S S

 (
S)

 (
 S)

(

 ((S)

 (

 (

 (S)

 (
Ordering Derivations

Consider two derivations:

1 2 3 4 5 6 7

S (SS ((S)S (((S))S ((())S ((())(S) ((())()

S (SS ((S)S (((S))S (((S))(S) ((())(S) ((())()

1 2 3 4 5 6 7

We can write these, or any, derivation as

D1 = x1 (x2 (x3 (… (xn
D2 = x1' (x2' (x3' (… (xn'
We say that D1 precedes D2, written D1< D2, if:

· D1 and D2 are the same length > 1, and

· There is some integer k, 1 < k < n, such that:

· for all i (k, xi = xi'

· xk-1 = x'k-1 = uAvBw : u, v, w (V*,

and A, B (V - (
· xk = uyvBw, where A (y (R

· xk' = uAvzw where B (z (R

· xk+1 = x'k+1 = uyvzw

Comparing Several Derivations

Consider three derivations:

 1 2 3 4 5 6 7

(1) S (SS ((S)S (((S))S ((())S ((())(S) ((())()

(2) S (SS ((S)S (((S))S (((S))(S) ((())(S) ((())()

(3) S (SS ((S)S (((S))S (((S))(S) (((S))() ((())()

D1 < D2

D2 < D3

But D1 does not precede D3.

All three seem similar though. We can define similarity:

D1 is similar to D2 iff the pair (D1, D2) is in the reflexive, symmetric, transitive closure of <.

Note: similar is an equivalence class.

In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule applications.

Parse Trees Capture Similarity

 1 2 3 4 5 6 7

(1) S (SS ((S)S (((S))S ((())S ((())(S) ((())()

(2) S (SS ((S)S (((S))S (((S))(S) ((())(S) ((())()

(3) S (SS ((S)S (((S))S (((S))(S) (((S))() ((())()

D1 < D2

D2 < D3

All three derivations are similar to each other. This parse tree describes this equivalence class of the similarity relation:

S

S

S

(

S

)

(

S

)

(
S
)

(

(
The Maximal Element of <

S

S

S

(

S

)

(

S

)

(
S
)

(

(

There's one derivation in this equivalence class that precedes all others in the class.

We call this the leftmost derivation. There is a corresponding rightmost derivation.

The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost (rightmost) derivation.

Another Example

E (id

E (E + E

E (E * E

(1) E (E+E (E+E*E (E+E*id (E+id*id (id+id*id

(2) E (E*E (E*id (E+E*id (E+id*id (id+id*id

E

E

E

+

E

E

*

E

id

E
*
E

E
+
E

id

id

id

id

id

id

+ [id
*
id]

[id
+
id]
*

id

Ambiguity

A grammar G for a language L is ambiguous if there exist strings in L for which G can generate more than one parse tree (note that we don't care about the number of derivations).

The following grammar for arithmetic expressions is ambiguous:

E (id

E (E + E

E (E * E

Often, when this happens, we can find a different, unambiguous grammar to describe L.

Resolving Ambiguity in the Grammar

G = (V, (, R, E), where

V = {+, *, (,), id, T, F, E},

(= {+, *, (,), id},

R = {
E (E + T

E(T

T (T * F

T (F

F ((E)

F (id
}

Parse : id + id * id

Another Example

The following grammar for the language of matched parentheses is ambiguous:

S ((

S (SS

S ((S)

S

S

 S

S

S

S

(
 S
)

 (
S
)

 S S

 (
S)

 (
 S)

(

 ((S)

 (

 (

 (S)

 (
Resolving the Ambiguity with a Different Grammar

One problem is the (production.

A different grammar for the language of balanced parentheses:

S ((

S (S1

S1 (S1 S1

S1 ((S1)

S1 (()

S

S1

S1

S1

(
S1
)

 (
)

 ()

A General Technique for Eliminating (
If G is any context-free grammar for a language L and ((L then we can construct an alternative grammar G' for L by:

1. Find the set N of nullable variables:

A variable V is nullable if either:

there is a rule

(1) V ((
or there is a rule

(2) V (PQR…such that P, Q, R, … are all nullable

So begin with N containing all the variables that satisfy (1). Evaluate all other variables with respect to (2). Continue until no new variables can be added to N.

2. For every rule of the form

P ((Q(for some Q in N, add a rule

P (((

3. Delete all rules of the form

 V ((
Sometimes Eliminating Ambiguity Isn't Possible

S (NP VP

NP (the NP1 | NP1 | NP2

NP1 (ADJ NP1 | N

NP2 (NP1 PP

ADJ (big | youngest | oldest

N (boy | boys | ball | bat | autograph

VP (V | V NP

VP (VP PP

V (hit| hits

PP (with NP

The boys hit the ball with the bat.

The boys hit the ball with the autograph.

Why It's Not Possible

· We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want. Any grammar that is capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in the context-free framework.

Example: Our simple English grammar

[[The boys] [hit [the ball] [with [the bat]]]]

[[The boys] [hit [the ball] [with [the autograph]]]]

· There is no grammar that describes L that is not ambiguous.

Example: L = {anbncm} ({anbmcm}

S (S1 | S2
S1 (S1c | A

Now consider the strings anbncn
A (aAb | (
S2 (aS2|B

They have two distinct derivations

B (bBc | (
Inherent Ambiguity of CFLs

A context free language with the property that all grammars that generate it are ambiguous is inherently ambiguous.

L = {anbncm} ({anbmcm} is inherently ambiguous.

Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an unambiguous grammar.

Examples:

Arithmetic Expressions

Balanced Parentheses

Whenever we design practical languages, it is important that they not be inherently ambiguous.

Lecture Notes 13
 Parse Trees

5

