Pushdown Automata

Read K & S 3.3.

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.

Do Homework 13.

Recognizing Context-Free Languages

Two notions of recognition:

(1) Say yes or no, just like with FSMs

(2) Say yes or no, AND




if yes, describe the structure



                               a        +            b       *      c

Just Recognizing

We need a device similar to an FSM except that it needs more power.

The insight:  Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

(    (    (    (    (    )    )    )    )        (    )    (    (    )    )  



 (


Finite






 (
  

State







 (      


Controller





 (









 (





(


Definition of a Pushdown Automaton

M = (K, (, (, (, s, F), where:


K is a finite set of states


(  is the input alphabet


( is the stack alphabet


s ( K is the initial state


F ( K is the set of final states, and


( is the transition relation.  It is a finite subset of 

(K     (    (( ( {(})  (          (*                    )        (           (      K      (         (*                          )  


state       input or (    string of symbols to pop                         state             string of symbols to




      from  top of stack

                                 push on top of stack










M accepts a string w iff



(s, w, () |-M* (p, (, ()        for some state p ( F

A PDA for Balanced Brackets


                                                                [//[

                                             s

                       ]/[/
M = (K, (, (, (, s, F), where:


K = {s}



the states


( = {[, ]} 


the input alphabet


( = {[}



the stack alphabet


F = {s}


( contains:




((s, [, (), (s, [ ))







((s, ], [ ), (s, ())





Important:

This does not mean that the stack is empty.

An Example of Accepting


                                                                [//[

                                             s

                        ]/[/
( contains:

[1]

((s, [, (), (s, [ ))

[2]

((s, ], [ ), (s, ())

input =    [  [  [  ]  [  ]  ]  ]  

trans

state


unread input


stack

  

  s


  [ [ [ ] [ ] ] ]


(
    1    

  s


    [ [ ] [ ] ] ]


[


    1    

  s


      [ ] [ ] ] ]


[[

    1    

  s


        ] [ ] ] ]


[[[

    2    

  s


          [ ] ] ]


[[

    1    

  s


            ] ] ]


[[[

    2    

  s


              ] ]


[[

    2    

  s


                ]


[

    2    

  s


               (


(
An Example of Rejecting


                                                               [//[

                                             s

                       ]/[/

( contains:

[1]

((s, [, (), (s, [ ))

[2]

((s, ], [ ), (s, ())

input =    [  [  ]  ]  ]

trans

state


unread input


stack


    s


  [ [ ] ] ]



(
1

    s


    [ ] ] ]



[

1

    s


      ] ] ]



[[

2

    s


        ] ]



[

2

    s


          ]



(
    
none!

    s


          ]



(
We're in s, a final state, but we cannot accept because the input string is not empty.  So we reject.

A PDA for anbn
First we notice:

· We'll use the stack to count the a's.

· This time, all strings in L have two regions.  So we need two states so that a's can't follow b's.  Note the similarity to the regular language a*b*.

A PDA for wcwR
A PDA to accept strings of the form wcwR:


                                     a//a                                         a/a/

                                                                  c//

                                                 s                                             f


                                     b//b                                        b/b/

M = (K, (, (, (, s, F), where:


K = {s, f}



the states


( = {a, b, c} 



the input alphabet


( = {a, b}



the stack alphabet


F = {f}




the final states


( contains:



((s, a, (), (s, a))



((s, b, (), (s, b))



((s, c, (), (f, ())



((f, a, a), (f, ())



((f, b, b), (f, ())

An Example of Accepting


                                      a//a                                       a/a/

                                                                    c//

                                                 s                                             f


                                     b//b                                       b/b/

( contains:

[1]
((s, a, (), (s, a))

[2]
((s, b, (), (s, b))

[3]
((s, c, (), (f, ())

[4]
((f, a, a), (f, ())

[5]
((f, b, b), (f, ())

input = 
b a c a b

           trans

state

unread input
          stack


    s

b a c a b


(
2

    s

   a c a b


b

1

    s

      c a b


ab

3

    f

         a b


ab

5

    f

            b


b

6

    f
     
            (


(
A Nondeterministic PDA

L = wwR
S ( (
S ( aSa

S ( bSb

A PDA to accept strings of the form wwR:


                                    a//a                                       a/a/

                                                                 (//

                                                 s                                             f


                                   b//b                                       b/b/

M = (K, (, (, (, s, F), where:


K = {s, f}


the states


( = {a, b, c} 


the input alphabet


( = {a, b}


the stack alphabet


F = {f}



the final states


( contains:



((s, a, (), (s, a))



((s, b, (), (s, b))



((s, (, (), (f, ())



((f, a, a), (f, ())



((f, b, b), (f, ())

An Example of Accepting


                                      a//a                                        a/a/

                                                                      (//

                                                  s                                            f


                                     b//b                                        b/b/

[1]

((s, a, (), (s, a))

[2]

((s, b, (), (s, b))

[3]

((s, (, (), (f, ())

[4]

((f, a, a), (f, ())

[5]

((f, b, b), (f, ())

input:
a a b b a a

trans

state

unread input


stack


    s

a a b b a a 


(
1

    s

   a b b a a


a

3

    f

   a b b a a


a

4

    f

      b b a a


(
none

trans

state

unread input


stack


    s

a a b b a a 


(
1

    s

   a b b a a


a

1

    s

      b b a a


aa

2

    s

         b a a


baa

3

    f

         b a a


baa

5

    f

            a a


aa

4

    f

               a


a

4

    f


 (


(
L = {ambn : m ( n}

A context-free grammar for L:

S ( (
S ( Sb


/* more b's

S ( aSb

A PDA to accept L:


               a//a                                b/a/                           

                                  b/a/                                         b/(/ 

                  1                                            2                                           

                                  b/(/

Accepting Mismatches

L = {ambn m ( n; m, n >0}


               a//a                                 b/a/                                    

                                  b/a/                                       

                  1                                            2               

· If stack and input are empty, halt and reject.

· If input is empty but stack is not (m > n) (accept):


               a//a                                b/a/                                      (/a/

                                  b/a/                                        (/a/

                  1                                            2                                          3

· If stack is empty but input is not (m < n) (accept):


               a//a                                b/a/                                      (/a/

                                  b/a/                                        (/a/

                 1                                              2                                         3

                                                                            

                       



  b//







   4                    b//

Eliminating Nondeterminism

A PDA is deterministic if, for each input and state, there is at most one possible transition.  Determinism implies uniquely defined machine behavior.


               a//a                                b/a/                                       (/a/

                                  b/a/                                        (/a/

                 1                                              2                                         3

                                                                            

                       



  b//







   4                    b//

· Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.


                                         a//a                                          b/a/                                      (/a/

                        (//Z                                        b/a/                                        (/a/

            0                                       1                                             2                                          3                    (/Z/

                  

                       



                                b/Z/







                                      4                     b//

· Jumping to the stack clearing state 3:

Need to detect end of input.  To do that, we actually need to modify the definition of L to add a termination character (e.g., $)

L = {anbmcp : n,m,p ( 0 and (n ( m or m ( p)}

S ( NC

/* n ( m, then arbitrary c's

S ( QP

/* arbitrary a's, then p ( m

N ( A

/* more a's than b's

N ( B

/* more b's than a's

A ( a



A ( aA

A ( aAb

B ( b


B ( Bb

B ( aBb

C ( ( | cC
/* add any number of c's

P ( B'

/* more b's than c's

P ( C'

/* more c's than b's

B' ( b 



B' ( bB'

B' ( bB'c

C' ( c | C'c



C' ( C'c

C' ( bC'c

Q ( ( | aQ
/* prefix with any number of a's

L = {anbmcp : n,m,p ( 0 and (n ( m or m ( p)}


                   (//Z                           a//a

      S                              S'                                          machine for N

                                          a//                   b,c

                                                                                                                 

        clear and accept 
                               machine for P

Another Deterministic CFL

L = {anbn} ( {bn an}

A CFG for L:



A NDPDA for L:

S ( A

S ( B

A ( (
A ( aAb

B ( (
B ( bBa

A DPDA for L:

More on PDAs

What about a PDA to accept strings of the form ww?

Every FSM is (Trivially) a PDA

Given an FSM M = (K, (, (, s, F) 


and elements of ( of the form



(
p,               
i, 
         q
       )



          old state, 
            input, 
   new state

We construct a PDA M' = (K, (, (, (, s, F) 


where ( = (

/* stack alphabet



and


each transition (p, i, q) 
becomes

(  (       p,               i,                      (                     ),                      (       q,           
          (                   )    )

     old state,       input, 
don't look at stack

     new state
don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA

Example:  Accept by final state at end of string (i.e., we don't care about the stack being empty)

We can easily convert from one of our machines to one of these:

1. Add a new state at the beginning that pushes # onto the stack.

2. Add a new final state and a transition to it that can be taken if the input string is empty and the top of the stack is #.

Converting the balanced parentheses machine:


                                                                (//(                                          (//#                              (//(

                                              S                                                  S                             S'

                       )/(/                                                                                 )/(/




                (/#/












F


The new machine is nondeterministic:

      (    )     (    )

              (
The stack will be:                                                        #   


What About PDA's for Interesting Languages?



E ( E + T


Arithmetic Expressions

E ( T


T ( T * F





       (/(/E



T ( F





             1 

2

F ( (E)



F ( id





(1)   (2, (, E), (2, E+T)



Example:
(2)   (2, (, E), (2, T)




a + b * c

(3)   (2, (, T), (2, T*F)

(4)   (2, (, T), (2, F)

(5)   (2, (, F), (2, (E) )

(6)   (2, (, F), (2, id) 

(7)   (2, id, id), (2, ()

(8)   (2, (, (  ), (2, ()

(9)   (2, ), )  ), (2, ()

(10) (2, +, +), (2, ()

(11) (2, *, *), (2, ()

But what we really want to do with languages like this is to extract structure.

Comparing Regular and Context-Free Languages

Regular Languages
· regular expressions

- or -

· regular grammars

· recognize

· = DFSAs


Context-Free Languages
· context-free grammars

· parse

· = NDPDAs

Lecture Notes 14
                              Pushdown Automata


4

