Pushdown Automata

Read K & S3.3.

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.
Do Homework 13.

Recognizing Context-Free L anguages

Two notions of recognition:
(1) Say yesor no, just like with FSMs
(2) Say yesor no, AND
if yes, describe the structure

Just Recognizing
We need adevice similar to an FSM except that it needs more power.

Theinsight: Precisely what it needsis a stack, which givesit an unlimited amount of memory with arestricted structure.
[T qqODDD [T OD

t

(' Finite
(| State
(Controller
T (
(

Definition of a Pushdown Automaton

M=(K,Z,T,A,s F),where
K isafinite set of states
> istheinput aphabet
I" isthe stack alphabet
sOK istheinitial state
F O K isthe set of final states, and
Aisthetransition relation. It isafinite subset of

(K x (Z0O{g}) x r*) X (K x T)
state inputor € string of symbolsto pop State string of symbolsto
I from top of stack I I push on top of stack I

M accepts astring w iff
(s W, €) [v* (p,g,g) forsomestatep OF

Lecture Notes 14 Pushdown Automata

A PDA for Balanced Brackets

b i) U
e ‘@

M=(K,Z T, A, s F), where:
K={s} the states
Z={[.1} the input al phabet
r={[} the stack alphabet
F={s}

A contains:

(s[.8).(s[))
(s1.0). (s¢)

I mportant:
This does not mean that the stack is empty.

An Example of Accepting
. v

A contains:
(1] (s [.€). (s)
[2] ((s1.1) (s 8)
input="[[[1[11]
trans dtate unread input stack
s [CLI01]] €
1 S [[1011] [
1 s [1011] ([
1 S 11111 [[[
2 s [11] [[
1 s 111 ([
2 s 11 [l
2 s] [
2 S € €
An Example of Rejecting
W [
W ‘@
A contains:
(1] (s [.€). (s)
(2] (s 1.1) (s ¢)
input="[[]1]]
trans state unread input stack
s [[11] €
1 s [111] [
1 s 111 ([
2 s 1] [
2 S] €
none! S] €

Werein s, afina state, but we cannot accept because the input string is not empty. So we reject.

Lecture Notes 14 Pushdown Automata

A PDA for a™b"

First we notice:

« Well usethe stack to count the as.

e Thistime, al stringsin L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the
regular language a*b*.

A PDA for wewR

A PDA to accept strings of the form wew"™:

alla alal .
c//
N >

bi/lb b/b/ .

M=(K,Z,T,A,s F),where

K={sf} the states
>={ab,c} the input al phabet
r={a b} the stack alphabet
F={f} the final states

A contains:

((sa¢)(sa)
((s,b,€), (s b))
((s,ce), (f, €)
((f, a a), (f, €)
((f, b, b), (f,)
An Example of Accepting

§a alal .
b//b b/b/ '
A contains:

[1] (s ac¢),(sa)
[2] ((s b, €), (s b))
3] (s c.e), (f, €)
[4] ((f, a a), (f,)
(9] ((f, b, b), (f, &)

input= bacab

trans state unread input stack
S bacab €
2 S acab b

1 S cab ab

3 f ab ab
5 f b b
6 f € €

Lecture Notes 14 Pushdown Automata

L =ww

A Nondeter ministic PDA

S-¢
S . aSa
S - bSb

A PDA to accept strings of the form ww":

alla

bi/b

M=(K,ZTI,A, s F), where:

(1]
(2]
(3]

trans

none

trans

A DDOOTWNPREBE

K={sf}

Z={abc}

r={ab}

F={f}

A contains:
(s aeg),(sa)
((s, b, €), (s b))
((s & ¢), (f, €)
((f, & a), (f, &)
((f, b, b), (f,)

alla

bi/lb

(s a¢),(sa)
((s b, €), (s b))
(s &9, (f,€)

w

ell }

b/b/ .

the states

the input al phabet
the stack alphabet
thefinal states

An Example of Accepting

e

ell }

b/b/ '

[4]
(5]

input: aabbaa

State
S

s
f
f

State

—~ = = =) N N

Lecture Notes 14

unread input stack
aabbaa €
abbaa a
abbaa a
bbaa €
unread input stack
aabbaa €
abbaa a
bbaa aa
baa baa
baa baa
aa aa
a a
3 €
Pushdown Automata

((f. a a), (f, &)
((f, b, b), (f, €))

L={a"™": m<n}
A context-free grammar for L:
So ¢
S- Sb /* more b's
S nd a&)
A PDA to accept L:

o
f b/a/ b/s/
@ b/e/

y Q

—1
N

Accepting Mismatches

L ={ad""m# n; m, n>0}

o
f b/al A
1 '

e |f stack and input are empty, halt and reject.

e If input isempty but stack is not (m > n) (accept):

elal
elal
U

e |f stack isempty but input is not (m < n) (accept):

blal \ elal
" 2

g
)

b/al

v

Lecture Notes 14 Pushdown Automata

Eliminating Nondeter minism

A PDA isdeterminigtic if, for each input and state, there is at most one possible transition. Determinism implies uniquely
defined machine behavior.

b/a/Q elal
blal \ glal
" 2

bl/
b/l
e Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.

alla s/a/
ellz
elzl
b/z/

b/l

e Jumping to the stack clearing state 3:
Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character

(e.g. 9
L ={a""c’: nm,p=0and (n# mor m# p)}

S - NC /* n# m, then arbitrary c's C-¢g|cC /* add any number of c's
S- QP /* arbitrary as, thenp# m P- B /* moreb'sthan c's
N - A /* more asthan b's P-C [* more c'sthan b's
N - B /* more b'sthan a's B'-b
Ao a B' - bB'
A - aA B' - bB'c
A - aAb C - c|Cc
B-b C - Cc
B - Bb C' - bCc
B - aBb Q- ¢elaQ /* prefix with any number of a's

L ={a"h"c’: nm,p=0and (n#mor m#p)}

b,c
clear and accept

Lecture Notes 14 Pushdown Automata

Another Deterministic CFL
L={a'""} O{b"a}

A CFG for L: A NDPDA for L:

A DPDA for L:

Moreon PDAs
What about a PDA to accept strings of the form ww?
Every FSM is(Trivially) a PDA

GivenanFSM M = (K, Z, A, s, F)
and elements of A of the form

(P, i q)
old state, input, new state

We construct aPDA M'= (K, Z, T, A, s, F)
wherel =0 /* stack alphabet
and
each transition (p,i,q) becomes

(C P i €) (a €))
old state, input, don't look at stack new state don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA
Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:
1. Addanew state at the beginning that pushes # onto the stack.

2. Addanew fina state and atransition to it that can be taken if the input string is empty and the top of the stack is #.
Converting the balanced parentheses machine:

" ((\@
e ©:

The new machine is nondeterministic:

() ()
0

The stack will be: #

&

Lecture Notes 14 Pushdown Automata

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

What About PDA'sfor Interesting L anguages?

Arithmetic Expressions

“ elelE @

S

—
1) (2&E), (2 E+T)
(2 (2.¢E),@2T)
(B) (2&T), (2T
4 (2&T),(2F)
®) (2&F). (2 (F)
(6) (2.&F) (2id)
(7) (2.id,id), (2,€)
® (2(()(2e
©) (2).)). 29
(10) (2, +, +), (2.)
(11 (2% 7). (28

Example:
atb*c

But what we really want to do with languages like thisisto extract structure.

Regular Languages

e regular expressions
- Or -

e regular grammars

* recognize

+ =DFSAs

Lecture Notes 14

Comparing Regular and Context-Free L anguages

Context-Free Languages

» context-free grammars

e pase
« =NDPDAs
Pushdown Automata

