Pushdown Automata and Context-Free Grammars

Read K & S 3.4.

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs.

Do Homework 14.

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem: Can describe with context-free grammar (Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction by “top-down parse” conversion algorithm):

The idea: Let the stack do the work.

Example: Arithmetic expressions

E (E + T

E (T

T (T * F

(/(/E

T (F

1

2

F ((E)

F (id

(1) (2, (, E), (2, E+T)

(2) (2, (, E), (2, T)

(3) (2, (, T), (2, T*F)

(4) (2, (, T), (2, F)

(5) (2, (, F), (2, (E))

(6) (2, (, F), (2, id)

(7) (2, id, id), (2, ()

(8) (2, (, (), (2, ()

(9) (2,),)), (2, ()

(10) (2, +, +), (2, ()

(11) (2, *, *), (2, ()

The Top-down Parse Conversion Algorithm

Given G = (V, (, R, S)

Construct M such that L(M) = L(G)

M = ({p, q}, (, V, (, p, {q}), where (contains:

(1) ((p, (, (), (q, S))

push the start symbol on the stack

(2) ((q, (, A), (q, x)) for each rule A (x in R

replace left hand side with right hand side

(3) ((q, a, a), (q, ()) for each a ((

read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Example of the Algorithm
L = {anb*an}

(1)
S ((

(2)
S (B

(3)
S (aSa

(4)
B ((
(5)
B (bB

input = a a b b a a

0
(p, (, (), (q, S)

1
(q, (, S), (q, ()

2
(q, (, S), (q, B)

3
(q, (, S), (q, aSa)

4
(q, (, B), (q, ()

5
(q, (, B), (q, bB)

6
(q, a, a), (q, ()

7
(q, b, b), (q, ()

trans

state

 unread input

 stack

 p

a a b b a a

(
0

 q

a a b b a a

S

3

 q

a a b b a a

aSa

6

 q

 a b b a a

Sa

3

 q

 a b b a a

aSaa

6

 q

 b b a a

Saa

2

 q

 b b a a

Baa

5

 q

 b b a a

bBaa

7

 q

 b a a

Baa

5

 q

 b a a

bBaa

7

 q

 a a

Baa

4

 q

 a a

aa

6

 q

 a

a

6

 q

 (

(
Another Example

L = {anbmcpdq : m + n = p + q}

(1)
S (aSd

(2)
S (T

(3)
S (U

(4)
T (aTc

(5)
T (V

(6)
U (bUd

(7)
U (V

(8)
V (bVc

(9)
V ((
input = a a b c d d

0
(p, (, (), (q, S)

1
(q, (, S), (q, aSd)

2
(q, (, S), (q,T)

3
(q, (, S), (q,U)

4
(q, (, T), (q, aTc)

5
(q, (, T), (q, V)

6
(q, (, U), (q, bUd)

7
(q, (, U), (q, V)

8
(q, (, V), (q, bVc

9
(q, (, V), (q, ()

10
(q, a, a), (q, ()

11
(q, b, b), (q, ()

12
(q, c, c), (q, ()

13
(q, d, d), (q, ()

The Other Way—Build a PDA Directly

L = {anbmcpdq : m + n = p + q}

(1)
S (aSd

(2)
S (T

(3)
S (U

(4)
T (aTc

(5)
T (V

(6)
U (bUd

(7)
U (V

(8)
V (bVc

(9)
V ((

 a//a b//a c/a/ d/a/

 b//a c/a/ d/a/

1

 2

 3

 4

 (/(/ (/(/ (/(/

input = a a b c d d

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial languages.

Example: L = anbn

A grammar for L is:

[1] S (aSb

[2] S ((

A machine M for L is:

(0) ((p, (, (), (q, S))

(1) ((q, (, S), (q, aSb))

(2) ((q, (, S), (q, ())

(3) ((q, a, a), (q, ())

(4) ((q, b, b), (q, ())

But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same configuration. A PDA is nondeterministic if it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way

Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-free grammar).

Proof (by construction)

Example: L = {wcwR : w ({a, b}*}

 a//a a/a/

 c//

 s f

 b//b b/b/

M = ({s, f}, {a, b, c}, {a, b}, (, s,{f}), where:

(contains:

((s, a, (), (s, a))

((s, b, (), (s, b))

((s, c, (), (f, ())

((f, a, a), (f, ())

((f, b, b), (f, ())

First Step: Make M Simple

A PDA M is simple iff:

1. there are no transitions into the start state, and

2. whenever ((q, x, (), (p, () is a transition of M and q is not the start state, then (((, and |(| (2.

Step 1: Add s' and f':

 a/(/a a/a/

 (/(/Z c// (/Z/

 s' s f f'

 b/(/b b/b/

Step 2:

(1) Assure that |(| (1.

(2) Assure that |(| (2.

(3) Assure that |(| = 1.

Making M Simple

 a/(/a a/a/

 (/(/Z c// (/Z/

 s' s f f'

 b/(/b b/b/

M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, (, s',{f'}), (=

((s', (, (), (s, Z))

((s, a, (), (s, a))

((s, a, Z), (s, aZ))

((s, a, a), (s, aa))

((s, a, b), (s, ab))

((s, b, (), (s, b))

((s, b, Z), (s, bZ))

((s, b, a), (s, ba))

((s, b, b), (s, bb))

((s, c, (), (f, ())

((s, c, Z), (f, Z))

((s, c, a), (f, a))

((s, c, b), (f, b))

((f, a, a), (f, ())

((f, a, a), (f, ())

((f, b, b), (f, ())

((f, b, b), (f, ())

((f, (, Z), (f', ())

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.

Example: abcba

 S [1]

 <s, Z, f'> [2]

a <s, a, f> [4] <f, Z, f'> [8]

 b <s, b, f> [5] <f, a, f> [6] (<f', (, f'> [10]

 c <f, b, f> [7] a <f, (, f> [9] (

 b <f, (, f> [9] (

 (

If the nonterminal <s1, X, s2> (* w, then the PDA starts in state s1 with (at least) X on the stack and after consuming w and popping the X off the stack, it ends up in state s2.

Start with the rule:

S (<s, Z, f’> where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol.

Transitions ((s1, a, X), (s2, YX)) become a set of rules:

<s1, X, q> (a <s2, Y, r> <r, X, q> for a ((({(}, (q,r (K

Transitions ((s1, a, X), (s2, Y)) becomes a set of rules:

<s1, X, q> (a <s2, Y, q> for a ((({(}, (q (K

Transitions ((s1, a, X), (s2, ()) become a rule:

<s1, X, s2> (a for a ((({(}
Creating Productions from Transitions

S (<s, Z, f'>

[1]

((s', (, (), (s, Z))

((s, a, Z), (s, aZ))

<s, Z, f'> (a <s, a, f> <f, Z, f'>

[2]

<s, Z, s> (a <s, a, f> <f, Z, s>

[x]

<s, Z, f> (a <s, a, s> <s, Z, f>

[x]

<s, Z, s> (a <s, a, s> <s, Z, f>

[x]

<s, Z, s'> (a <s, a, f> <f, Z, s'>

[x]

((s, a, a), (s, aa))

<s, a, f> (a <s, a, f> <f, a, f>

[3]

((s, a, b), (s, ab))

…

((s, b, Z), (s, bZ))

…

((s, b, a), (s, ba))

<s, a, f> (b <s, b, f> <f, a, f>

[4]

((s, b, b), (s, bb))

…

((s, c, Z), (f, Z))

…

((s, c, a), (f, a))

<s, a, f> (c <f, a, f>

((s, c, b), (f, b))

<s, b, f> (c <f, b, f>

[5]

((f, a, a), (f, ())

<f, a, f> (a <f, (, f>

[6]

((f, b, b), (f, ())

<f, b, f> (b <f, (, f>

[7]

((f, (, Z), (f', ())

<f, Z, f'> ((<f', (, f'>

[8]

<f, (, f> ((

[9]

<f' (, f'> ((

[10]

Comparing Regular and Context-Free Languages

Regular Languages
· regular exprs.

· or

· regular grammars

· recognize

· = DFSAs

Context-Free Languages
· context-free grammars

· parse

· = NDPDAs

Lecture Notes 15
 Pushdown Automata and Context-Free Languages

 5

