Pushdown Automata and Context-Free Grammars

Read K & S 3.4.

Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs.

Do Homework 14.

PDAs and Context-Free Grammars

Theorem:  The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:       Can describe with context-free grammar ( Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction by “top-down parse” conversion algorithm):

The idea:  Let the stack do the work.

Example: Arithmetic expressions
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(1)   (2, (, E), (2, E+T)

(2)   (2, (, E), (2, T)


(3)   (2, (, T), (2, T*F)

(4)   (2, (, T), (2, F)

(5)   (2, (, F), (2, (E) )

(6)   (2, (, F), (2, id) 

(7)   (2, id, id), (2, ()

(8)   (2, (, (  ), (2, ()

(9)   (2, ), )  ), (2, ()

(10) (2, +, +), (2, ()

(11) (2, *, *), (2, ()

The Top-down Parse Conversion Algorithm

Given G = (V, (, R, S)

Construct M such that L(M) = L(G)

M = ({p, q}, (, V, (, p, {q}), where ( contains:

(1) ((p, (, (), (q, S))



push the start symbol on the stack

(2) ((q, (, A), (q, x)) for each rule A ( x in R



replace left hand side with right hand side

(3) ((q, a, a), (q, ()) for each a ( (


read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Example of the Algorithm
L = {anb*an}

(1)
S ( (



(2)
S ( B

(3)
S ( aSa

(4)
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(5)
B ( bB

input = a a b b a a


0
(p, (, (), (q, S)

1
(q, (, S), (q, ()

2
(q, (, S), (q, B)

3
(q, (, S), (q, aSa)

4
(q, (, B), (q, ()

5
(q, (, B), (q, bB)

6
(q, a, a), (q, ()

7
(q, b, b), (q, ()
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Another Example

L = {anbmcpdq : m + n = p + q}

(1)
S ( aSd

(2)
S ( T

(3)
S ( U

(4)
T ( aTc

(5)
T ( V

(6)
U ( bUd

(7)
U ( V

(8)
V ( bVc

(9)
V ( (
input = a a b c d d


0
(p, (, (), (q, S)

1
(q, (, S), (q, aSd)

2
(q, (, S), (q,T)

3
(q, (, S), (q,U)

4
(q, (, T), (q, aTc)

5
(q, (, T), (q, V)

6
(q, (, U), (q, bUd)

7
(q, (, U), (q, V)

8
(q, (, V), (q, bVc

9
(q, (, V), (q, ()

10
(q, a, a), (q, ()

11
(q, b, b), (q, ()

12
(q, c, c), (q, ()

13
(q, d, d), (q, ()

The Other Way—Build a PDA Directly

L = {anbmcpdq : m + n = p + q}

(1)
S ( aSd

(2)
S ( T

(3)
S ( U

(4)
T ( aTc

(5)
T ( V



(6)
U ( bUd

(7)
U ( V

(8)
V ( bVc

(9)
V ( (
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                                        b//a                        c/a/                           d/a/
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input = a a b c d d

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be.  This happens even with trivial languages.

Example:  L = anbn

A grammar for L is:

[1] S ( aSb

[2] S ( (

A machine M for L is:

(0)  ((p, (, (), (q, S))

(1)  ((q, (, S), (q, aSb))

(2)  ((q, (, S), (q, ())

(3)  ((q, a, a), (q, ())

(4)  ((q, b, b), (q, ())

But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same configuration.  A PDA is nondeterministic if it has any nondeterministic transition groups.

A directly constructed machine for L: 

Going The Other Way

Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-free grammar).

Proof (by construction)

Example:  L = {wcwR : w ( {a, b}*}


        a//a                                      a/a/

                                  c//

                  s                                          f


       b//b                                     b/b/

M = ({s, f}, {a, b, c}, {a, b}, (, s,{f}), where:


( contains:



((s, a, (), (s, a))



((s, b, (), (s, b))



((s, c, (), (f, ())



((f, a, a), (f, ())



((f, b, b), (f, ())

First Step: Make M Simple

A PDA M is simple iff:

1. there are no transitions into the start state, and

2. whenever ((q, x, (), (p, () is a transition of M and q is not the start state, then ( ( (, and |(| ( 2.

Step 1:  Add s' and f':


                                             a/(/a                 a/a/

                         (/(/Z                      c//                                 (/Z/

                   s'                  s                                       f                            f'

                          b/(/b                                  b/b/

Step 2:

(1) Assure that |(| ( 1.

(2) Assure that |(| ( 2.

(3) Assure that |(| = 1.

Making M Simple


                                             a/(/a                 a/a/

                         (/(/Z                   c//                                 (/Z/

                  s'                   s                                       f                            f'

                            b/(/b                                b/b/

M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, (, s',{f'}), (= 






((s', (, (), (s, Z))


((s, a, (), (s, a))


((s, a, Z), (s, aZ))
 






((s, a, a), (s, aa))

((s, a, b), (s, ab))

((s, b, (), (s, b))


((s, b, Z), (s, bZ)) 






((s, b, a), (s, ba)) 

((s, b, b), (s, bb)) 

((s, c, (), (f, ())


((s, c, Z), (f, Z))







((s, c, a), (f, a)) 


((s, c, b), (f, b)) 


((f, a, a), (f, ())


((f, a, a), (f, ())


((f, b, b), (f, ())


((f, b, b), (f, ())






((f, (, Z), (f', ())


Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.

Example:                 abcba

                                                     S [1]


                                               <s, Z, f'> [2]


a                         <s, a, f> [4]                                                          <f, Z, f'> [8]


       b                  <s, b, f> [5]                   <f, a, f> [6]                 (                <f', (, f'> [10]


                     c           <f, b, f> [7]           a       <f, (, f> [9]                                 (

                               b     <f, (, f> [9]                     (

                                            ( 

If the nonterminal <s1, X, s2> (* w, then the PDA starts in state s1 with (at least) X on the stack and after consuming w and popping the X off the stack, it ends up in state s2.

Start with the rule:


S ( <s, Z, f’>  where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol.

Transitions ((s1, a, X), (s2, YX)) become a set of rules:


<s1, X, q> ( a <s2, Y, r> <r, X, q>   for a ( ( ( {(}, (q,r ( K

Transitions ((s1, a, X), (s2, Y)) becomes a set of rules:


<s1, X, q> ( a <s2, Y, q>    for a ( ( ( {(}, (q ( K

Transitions ((s1, a, X), (s2, ()) become a rule:


<s1, X, s2> ( a      for a ( ( ( {(}
Creating Productions from Transitions




S ( <s, Z, f'>



[1]

((s', (, (), (s, Z))



((s, a, Z), (s, aZ))

<s, Z, f'> ( a <s, a, f> <f, Z, f'>

[2]




<s, Z, s> ( a <s, a, f> <f, Z, s> 

[x]




<s, Z, f> ( a <s, a, s> <s, Z, f>

[x]




<s, Z, s> ( a <s, a, s> <s, Z, f>

[x]




<s, Z, s'> ( a <s, a, f> <f, Z, s'>

[x]

((s, a, a), (s, aa))

<s, a, f> ( a <s, a, f> <f, a, f> 

[3]

((s, a, b), (s, ab))

…

((s, b, Z), (s, bZ))

…

((s, b, a), (s, ba)) 

<s, a, f> ( b <s, b, f> <f, a, f> 

[4]

((s, b, b), (s, bb)) 

…

((s, c, Z), (f, Z))

…

((s, c, a), (f, a)) 

<s, a, f> ( c <f, a, f>

((s, c, b), (f, b)) 

<s, b, f> ( c <f, b, f>


[5]

((f, a, a), (f, ())

<f, a, f> ( a <f, (, f>


[6]

((f, b, b), (f, ())

<f, b, f> ( b <f, (, f>


[7]

((f, (, Z), (f', ())

<f, Z, f'> ( ( <f', (, f'>


[8]




<f, (, f> ( (



[9]




<f' (, f'> ( (



[10]

Comparing Regular and Context-Free Languages

Regular Languages
· regular exprs.

· or

· regular grammars

· recognize

· = DFSAs


Context-Free Languages
· context-free grammars

· parse

· = NDPDAs
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