
Lecture Notes 19 Languages That Are and Are Not Context Free 1

Languages That Are and Are Not Context-Free
Read K & S 3.5, 3.6, 3.7.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free

Languages
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma.
Do Homework 16.

Deciding Whether a Language is Context-Free

Theorem: There exist languages that are not context-free.

Proof:
(1) There are a countably infinite number of context-free languages. This true because every description of a context-free
language is of finite length, so there are a countably infinite number of such descriptions.

(2) There are an uncountable number of languages.

Thus there are more languages than there are context-free languages.

So there must exist some languages that are not context-free.

Example: {anbncn}

Showing that a Language is Context-Free

Techniques for showing that a language L is context-free:

1. Exhibit a context-free grammar for L.
2. Exhibit a PDA for L.
3. Use the closure properties of context-free languages.

Unfortunately, these are weaker than they are for regular languages.

The Context-Free Languages are Closed Under Union

Let G1 = (V1, Σ1, R1, S1) and
 G2 = (V2, Σ2, R2, S2)

Assume that G1 and G2 have disjoint sets of nonterminals, not including S.

Let L = L(G1) ∪ L(G2)

We can show that L is context-free by exhibiting a CFG for it:

The Context-Free Languages are Closed Under Concatenation

Let G1 = (V1, Σ1, R1, S1) and
 G2 = (V2, Σ2, R2, S2)

Assume that G1 and G2 have disjoint sets of nonterminals, not including S.

Let L = L(G1) L(G2)

We can show that L is context-free by exhibiting a CFG for it:

Lecture Notes 19 Languages That Are and Are Not Context Free 2

The Context-Free Languages are Closed Under Kleene Star

Let G1 = (V1, Σ1, R1, S1)

Assume that G1 does not have the nonterminal S.

Let L = L(G1)*

We can show that L is context-free by exhibiting a CFG for it:

What About Intersection and Complement?

We know that they share a fate, since

L1 ∩ L2 = L1 ∪ L2

But what fate?

We proved closure for regular languages two different ways. Can we use either of them here:
1. Given a deterministic automaton for L, construct an automaton for its complement. Argue that, if closed under complement

and union, must be closed under intersection.
2. Given automata for L1 and L2, construct a new automaton for L1 ∩ L2 by simulating the parallel operation of the two original

machines, using states that are the Cartesian product of the sets of states of the two original machines.

More on this later.

 The Intersection of a Context-Free Language and a Regular Language is Context-Free

L = L(M1), a PDA = (K1, Σ, Γ1, ∆1, s1, F1)
R = L(M2), a deterministic FSA = (K2, Σ, δ, s2, F2)

We construct a new PDA, M3, that accepts L ∩ R by simulating the parallel execution of M1 and M2.

M = (K1 × K2, Σ, Γ1, ∆, (s1, s2), F1 × F2)

Insert into ∆:

For each rule ((q1, a, β), (p1, γ)) in ∆1,
and each rule (q2, a, p2) in δ,
 (((q1, q2), a, β), ((p1, p2), γ))

For each rule ((q1, ε, β), (p1, γ) in ∆1,
and each state q2 in K2,
 (((q1, q2), ε, β), ((p1, q2), γ))

This works because: we can get away with only one stack.

Lecture Notes 19 Languages That Are and Are Not Context Free 3

Example

L = anbn ∩ (aa)*(bb)*

 b/a/ a
 A B 1 2
 a//a b/a/ a
 b
 b
 3 4
 b
((A, a, ε), (A, a)) (1, a, 2)
((A, b, a), (B, ε)) (1, b, 3)
((B, b, a), (B, ε)) (2, a, 1)
 (3, b, 4)
 (4, b, 3)
A PDA for L:

Don’t Try to Use Closure Backwards

One Closure Theorem:
 If L1 and L2 are context free, then so is

 L3 = L1 ∪ L2.

But what if L3 and L1 are context free? What can we say about L2?

 L3 = L1 ∪ L2.

Example:

 anbnc* = anbnc* ∪ anbncn

The Context-Free Pumping Lemma

This time we use parse trees, not automata as the basis for our argument.

 S

 A

 A

 u v x y z

If L is a context-free language, and if w is a string in L where |w| > K, for some value of K, then w can be rewritten as uvxyz,
where |vy| > 0 and |vxy| ≤ M, for some value of M.

uxz, uvxyz, uvvxyyz, uvvvxyyyz, etc. (i.e., uvnxynz, for n ≥ 0) are all in L.

Lecture Notes 19 Languages That Are and Are Not Context Free 4

Some Tree Basics

 root

 height
nodes

 leaves

 yield

Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is ≤ BH.

Proof: By induction on H. If H is 1, then just a single rule applies. By definition of fanout, the longest yield is B.
Assume true for H = n.
Consider a tree with H = n + 1. It consists of a root, and some number of subtrees, each of which is of height ≤ n (so induction
hypothesis holds) and yield ≤ Bn. The number of subtrees ≤ B. So the yield must be ≤ B(Bn) or Bn+1.

What Is K?

 S

 A

 A

 u v x y z

Let T be the number of nonterminals in G.
If there is a tree of height > T, then some nonterminal occurs more than once on some path. If it does, we can pump its yield.
Since a tree of height = T can produce only strings of length ≤ BT, any string of length > BT must have a repeated nonterminal and
thus be pumpable.

So K = BT, where T is the number of nonterminals in G and B is the branching factor (fanout).

What is M?

 S

 A

 A

 u v x y z

Assume that we are considering the bottom most two occurrences of some nonterminal. Then the yield of the upper one is at
most BT+1 (since only one nonterminal repeats).

So M = BT+1.

Lecture Notes 19 Languages That Are and Are Not Context Free 5

The Context-Free Pumping Lemma

Theorem: Let G = (V, Σ, R, S) be a context-free grammar with T nonterminal symbols and fanout B. Then any string w ∈ L(G)
where |w| > K (BT) can be rewritten as w = uvxyz in such a way that:
• |vy| > 0,
• |vxy| ≤ M (BT+1), (making this the "strong" form),
• for every n ≥ 0, uvnxynz is in L(G).

Proof:
Let w be such a string and let T be the parse tree with root labeled S and with yield w that has the smallest number of leaves
among all parse trees with the same root and yield. T has a path of length at least T+1, with a bottommost repeated nonterminal,
which we'll call A. Clearly v and y can be repeated any number of times (including 0). If |vy| = 0, then there would be a tree with
root S and yield w with fewer leaves than T. Finally, |vxy| ≤ BT+1.

An Example of Pumping

L = {anbncn : n≥ 0}

Choose w = aibici where i > �K/3� (making |w| > K)

 S

 A

 A

 u v x y z

Unfortunately, we don't know where v and y fall. But there are two possibilities:
1. If vy contains all three symbols, then at least one of v or y must contain two of them. But then uvvxyyz contains at least one

out of order symbol.
2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols.

Using the Strong Pumping Lemma for Context Free Languages
If L is context free, then
 There exist K and M (with M ≥ K) such that
 For all strings w, where |w| > K,
 (Since true for all such w, it must be true for any paricular one, so you pick w)
 (Hint: describe w in terms of K or M)

 there exist u, v, x, y, z such that w = uvxyz and |vy| > 0, and
 |vxy| ≤ M, and
 for all n ≥ 0, uvnxynz is in L.

We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria. To do that, we just need to
focus on possible values for v and y, the pumpable parts. So we show that all possible picks for v and y violate at least one of
the criteria.

Write out a single string, w (in terms of K or M) Divide w into regions.

For each possibility for v and y (described in terms of the regions defined above), find some value n such that uvnxynz is not in L.
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in). Your value for n may differ for different cases.

Lecture Notes 19 Languages That Are and Are Not Context Free 6

 v y n why the resulting string is not in L

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

Convince the reader that there are no other cases.

Q. E. D.

A Pumping Lemma Proof in Full Detail

Proof that L = {anbncn : n≥ 0} is not context free.

Suppose L is context free. The context free pumping lemma applies to L. Let M be the number from the pumping lemma.
Choose w = aMbMcM. Now w ∈ L and |w| > M ≥ K. From the pumping lemma, for all strings w, where |w| > K, there exist u, v, x,
y, z such that w = uvxyz and |vy| > 0, and |vxy| ≤ M, and for all n ≥ 0, uvnxynz is in L. There are two main cases:

1. Either v or y contains two or more different types of symbols (“a”, “b” or “c”). In this case, uv2xy2z is not of the form
a*b*c* and hence uv2xy2z ∉ L.

2. Neither v nor y contains two or more different types of symbols. In this case, vy may contain at most two types of
symbols. The string uv0xy0z will decrease the count of one or two types of symbols, but not the third, so uv0xy0z ∉ L

Cases 1 and 2 cover all the possibilities. Therefore, regardless of how w is partitioned, there is some uvnxynz that is not in L.
Contradiction. Therefore L is not context free.

Note: the underlined parts of the above proof is “boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

Context-Free Languages Over a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.
Examples:

L = {anbn}
L′ = {anan}

= {a2n}
= {w ∈ {a}* : |w| is even}

L = {wwR : w ∈ {a, b}*}
L′ = {wwR : w ∈ {a}*}
 = {ww: w ∈ {a}*}
 = {w ∈ {a}* : |w| is even}

L = {anbm : n, m ≥ 0 and n ≠ m}
L′ = {anam : n, m ≥ 0 and n ≠ m}
 =

Proof: See Parikh's Theorem

Lecture Notes 19 Languages That Are and Are Not Context Free 7

 Another Language That Is Not Context Free
L = {an : n ≥ 1 is prime}

Two ways to prove that L is not context free:

1. Use the pumping lemma:
Choose a string w = an such that n is prime and n > K.

w = aaaaaaaaaaaaaaaaaaaaaaa
 u v x y z
Let vy = ap and uxz = ar. Then r + kp must be prime for all values of k. This can't be true, as we argued to show that L was not

regular.

2. |ΣL| = 1. So if L were context free, it would also be regular. But we know that it is not. So it is not context free either.

Using Pumping and Closure

L = {w ∈ {a, b, c}* : w has an equal number of a's, b's, and c's}

L is not context free.
Try pumping: Let w = aKbKcK

Now what?

Using Intersection with a Regular Language to Make Pumping Tractable

L = {tt : t ∈ {a, b}* }

Let's try pumping: |w| > K

 t t
 u v x y z

What if u is ε,
 v is w,
 x is ε,
 y is w, and
 z is ε

Then all pumping tells us is that tntn is in L.

Lecture Notes 19 Languages That Are and Are Not Context Free 8

L = {tt : t ∈∈∈∈ {a, b}* }

What if we let |w| > M, i.e. choose to pump the string aMbaMb:

Now v and y can't be t, since |vxy| ≤ M:

 t t
 u v x y z

Suppose |v| = |y|. Now we have to show that repeating them makes the two copies of t different. But we can’t.

L = {tt : t ∈∈∈∈ {a, b}* }

But let's consider L' = L ∩ a*b*a*b*

This time, we let |w| > 2M, and the number of both a's and b's in w >M:

 1 2 3 4
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb
 t t
 u v x y z

Now we use pumping to show that L' is not context free.

First, notice that if either v or y contains both a's and b's, then we immediately violate the rules for L' when we pump.

So now we know that v and y must each fall completely in one of the four marked regions.

L' = {tt : t ∈∈∈∈ {a, b}* } ∩∩∩∩ a*b*a*b*

|w| > 2M, and the number of both a's and b's in w >M:

 1 2 3 4
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb
 t t
 u v x y z

Consider the combinations of (v, y):

(1,1)

(2,2)

(3,3)

(4,4)

(1,2)

(2,3)

(3,4)

(1,3)

(2,4)

(1,4)

Lecture Notes 19 Languages That Are and Are Not Context Free 9

The Context-Free Languages Are Not Closed Under Intersection

Proof: (by counterexample)

Consider L = {anbncn: n ≥ 0}

L is not context-free.

Let L1 = {anbncm: n, m ≥ 0} /* equal a's and b's

L2 = {ambncn: n, m ≥ 0} /* equal b's and c's

Both L1 and L2 are context-free.

But L = L1 ∩ L2.

So, if the context-free languages were closed under intersection, L would have to be context-free. But it isn't.

The Context-Free Languages Are Not Closed Under Complementation

Proof: (by contradiction)

By definition:

L1 ∩ L2 = L1 ∪ L2

Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily
be closed under intersection. But we just showed that they are not. Thus they are not closed under complementation.

 The Deterministic Context-Free Languages Are Closed Under Complement
Proof:

Let L be a language such that L$ is accepted by the deterministic PDA M. We construct a deterministic PDA M' to accept (the
complement of L)$, just as we did for FSMs:

1. Initially, let M' = M.
2. M' is already deterministic.
3. Make M' simple. Why?
4. Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including:

• Transitions that are required to assure that for all input, stack combinations some transition can be followed.
• If some state q has a transition on (ε, ε) and if it does not later lead to a state that does consume something then

make a transiton on (ε, ε) to the dead state.
5. Swap final and nonfinal states.
6. Notice that M′ is still deterministic.

Lecture Notes 19 Languages That Are and Are Not Context Free 10

An Example of the Construction

L = anbn M accepts L$ (and is deterministic):

 a//a b/a/
 b/a/ $/ε/
 1 2 3

 $/ε/

Set M = M'. Make M simple.
 a/a/aa
 a/Z/aZ b/a/
 ε/ε/Z b/a/ $/Z/
 0 1 2 3

 $/Z/

The Construction, Continued

Add dead state(s) and swap final and nonfinal states:
 a/a/aa
 a/Z/aZ b/a/
 ε/ε/Z b/a/ $/Z/
 0 1 2 3

 $/Z/

 b/Z/, $/a/
 a//, $/a/, b/Z/
 4

 a//, b//, $//, ε/a/, ε/Z/

Issues: 1) Never having the machine die

2) ¬ (L$) ≠ (¬L)$
3) Keeping the machine deterministic

Deterministic vs. Nondeterministic Context-Free Languages

Theorem: The class of deterministic context-free languages is a proper subset of the class of context-free languages.

Proof: Consider L = {anbmcp : m ≠ n or m ≠ p} L is context free (we have shown a grammar for it).

But L is not deterministic. If it were, then its complement L1 would be deterministic context free, and thus certainly context free.
But then

L2 = L1 ∩ a*b*c* (a regular language)
would be context free. But
 L2 = {anbncn : n ≥ 0}, which we know is not context free.

Thus there exists at least one context-free language that is not deterministic context free.

Note that deterministic context-free languages are not closed under union, intersection, or difference.

Lecture Notes 19 Languages That Are and Are Not Context Free 11

Decision Procedures for CFLs & PDAs

Decision Procedures for CFLs

There are decision procedures for the following (G is a CFG):

• Deciding whether w ∈ L(G).
• Deciding whether L(G) = ∅ .
• Deciding whether L(G) is finite/infinite.

Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form. Why?

Theorem: For any context free grammar G, there exists a number n such that:

1. If L(G) ≠ ∅ , then there exists a w ∈ L(G) such that |w| < n.
2. If L(G) is infinite, then there exists w ∈ L(G) such that n ≤ |w| < 2n.

There are not decision procedures for the following:

• Deciding whether L(G) = Σ*.
• Deciding whether L(G1) = L(G2).

If we could decide these problems, we could decide the halting problem. (More later.)

Decision Procedures for PDA’s

There are decision procedures for the following (M is a PDA):

• Deciding whether w ∈ L(M).
• Deciding whether L(M) = ∅ .
• Deciding whether L(M) is finite/infinite.

Convert M to its equivalent PDA and use the corresponding CFG decision procedure. Why avoid using PDA’s directly?

There are not decision procedures for the following:

• Deciding whether L(M) = Σ*.
• Deciding whether L(M1) = L(M2).

If we could decide these problems, we could decide the halting problem. (More later.)

Lecture Notes 19 Languages That Are and Are Not Context Free 12

Comparing Regular and Context-Free Languages

Regular Languages

• regular exprs.

• or
• regular grammars
• recognize
• = DFSAs
• recognize
• minimize FSAs

• closed under:

∗ concatenation
∗ union
∗ Kleene star
∗ complement
∗ intersection

• pumping lemma
• deterministic = nondeterministic

Context-Free Languages

• context-free grammars

• parse
• = NDPDAs
• parse
• find deterministic grammars
• find efficient parsers
• closed under:

∗ concatenation
∗ union
∗ Kleene star

• intersection w/ reg. langs
• pumping lemma
• deterministic ≠ nondeterministic

Languages and Machines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular

Languages

FSMs
 D ND

PDAs

