Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

Recursively
Enumerable
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Unrestricted
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Turing
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Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple

(V, 2, R, S), where

V isan alphabet,
> (the set of terminals) is a subset of V,
R (the set of rules) is afinite subset of
o (V* (V-2) V*) X V*,
context N context - result
S (the start symbol) isan element of V - 2.

We define derivations just as we did for context-free grammars.
The language generated by G is

{wOZx*:S=c* w}

There is no notion of a derivation tree or rightmost/Ieftmost derivation for unrestricted grammars.

Unrestricted Grammars

Example: L =ab"c", n>0

S - aBSc
S - aBc
Ba - aB
Bc - bc
Bb - bb
Another Example

L={w0O{a b, c}": number of as, b'sand c'sis the same}

S - ABCS CA - AC
S -~ ABC CB - BC
AB - BA A-a
BC - CB B-b
AC - CA C-c
BA - AB
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A Strong Procedural Feel
Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we'rein a
particular phase.

It's very common to have two main phases:

*  Generate the right number of the various symbols.

e Movethem around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammarsand Turing M achines

Theorem: A language is generated by an unrestricted grammar if and only if it isrecursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar — TM): by construction of a nondeterministic Turing machine.

If (TM - grammar): by construction of a grammar that mimics backward computations of M.
Proof that Grammar — Turing Machine
Given agrammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

olc|o|e
Flo g
ol|ln|o|w
o|H|o|T
olo |o|w
ol|o|o|g
o|0|o|Db

For each nondeterministic "incarnation":
e Tapel holdstheinput.
» Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses aruleto try to apply and a position on tape 2 to start looking for the left hand side

of therule. Or it chooses to check whether tape 2 equalstape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.
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Proof that Turing Machine - Grammar

Suppose that M semidecides alanguage L (it halts when fed stringsin L and loops otherwise). Then we can build M' that haltsin
the configuration (h, 0Q).

We will define G so that it simulates M backwards.
We will represent the configuration (g, Ouaw) as

>uagw<

M

goes from
O a a b b a a a a
O a a a a a a a a

Then, if w O L, we require that our grammar produce a derivation of the form
S=¢ >0h<  (producesfina state of M")

=s* >0abg< (some intermediate state of M")

=s* >Qsw< (theinitial state of M")

= W< (viaa specid ruleto clean up >Qs)
=c W (viaaspecia ruleto clean up <)
TheRulesof G
S - >0h<  (the halting configuration)
>0s - € (clean-up rules to be applied at the end)
< 5 8
Rules that correspond to &:
If &(a, &) = (p, b) : bp - aq
If &(g, @ =(p, »): abp-agp ObOZX
alp< - ag<
If (g, d=(p, ), az0 pa - aq
1f &(q, Q) =(p, <) pab - Qgb ObOX
p< - dg<
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A REALLY Simple Example

M'= (K, {a}, o, s, {h}), where
o={ ((s Q). (@ ~)). 1
((qr a-)! (qv _'))l 2
((qr D)! (t! ‘_))l 3
((t,a), (p,Q)), 4
((t, ), (h, ), 5
((pr D)! (t! ‘_)) 6
L=a
S - >0h< 3 taQ - Qg4
>Us - € tda - Uga
<5 € t< - Ug<
4 Qp - at
(1) Qdg- A4 (5) Qh - Qt
Qaq - Qsa (6) Q- Qpd
Udg< - Us< tQa - Upa
2 alq - ag t< - Qp<
aq - aga
alg< - ag<
Working It Out
S - >0h< 1 3 tQQ - QoA 10
>0s - € 2 tda - Uga 11
<€ 3 t< - Ug< 12
(4 Up - at 13
(1) Qdg- A4 4 (5) Qh - Qt 14
Oag - Qsa 5 (6) taa - Qpa 15
QQg< - As< 6 t0a - Qpa 16
(2 alq - ag 7 t< - Qp< 17
aq - aga 8
ado< - ag< 9
>0saa< 1 S = >0h< 1
>Qaga< 2 = >Ui< 14
>Uaag< 2 = >U0p< 17
>Qaalg< 3 = >Uat< 13
>Qaat< 4 = >0adp< 17
>0 p< 6 = >Laat< 13
>Qat< 4 = >Qaaldg< 12
>00p< 6 = >Uaag< 9
>0t< 5 = >0aga< 8
>0h< = >0saa< 5
= aa< 2
= aa 3
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An Alternative Proof
An dternative isto build agrammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols

to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

Thefirst (generate) part of G:
Creates all strings over >* of the form
w=000UQsaayawazaUl...

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
¢00d0alb2cch4Q3a3

Examples of rules:
bbQ4 - b4Q4 (rewritebas4)
b4Q3 - Q3b4 (moveleft)

Thethird (cleanup) part of G erasesthejunk if M ever reaches h.

Examplerule:
#hal - a#h  (sweep# hto theright erasing the working “tape”)

Computing with Grammars
We say that G computesf if, for all w, v X *,
SWS =c* v iff v =1f(w)
Example:
S1S =c* 11
S11S =6 111 f(x) = succ(x)
A function f is called grammatically computable iff there is agrammar G that computesit.

Theorem: A function f isrecursiveiff it is grammatically computable.
In other words, if a Turing machine can do it, so can agrammar.

Example of Computing with a Grammar
f(x) = 2x, where x is an integer represented in unary
G=({S 1},{1},R,S), whereR =
Sl - 11S
SS- ¢
Example:

Input: S111S

Output:
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More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
e zerog(ng, Ny, ...NY) =0
o identity; (N, My, ... MY =1y
e successor(n)=n+1
Combining functions:
»  Composition of g with hy, hy, ... h¢is
g(ha( ), ho( ), ... hi( )
e Primitiverecursion of f intermsof g and h:
f(ng,No,...Nk,  0) = g(Ng,Na,...1NK)
f(ny,Ny,...Nk,M+1) = h(ng,Ny,...N, M, f(Nyg, Ny,...NK,M))

Example: plus(n, 0) =n
plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivialy true; al primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:

Lexicographically enumerate the unary primitive recursive functions, fo, fy, o, 3, ....

Define g(n) = f,(n) + 1.

Gisclearly computable, but it isnot on thelist. Supposeit were f,, for somem. Then
fm(m) = fi(m) + 1, which is absurd.

0 1 2 3 4
fo

fy

fa

fa 27

fa

Suppose gisfs. Theng(3) =27 + 1 =28. Contradiction.
Functionsthat Aren't Primitive Recursive

Example: Ackermann's function: A, y)=y+1
Ax+1,0)=A(x1)
Ax+1Ly+1)=AX AX+1Y))

0 1 2 3

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 65533 2203«

27 -3 ¢ 22 -3 %

* 19,729 digits 10*" seconds since big bang
# 10 digits 10% protons and neutrons
% 10" digits 102 light seconds = width

of proton or neutron
Thus writing digits at the speed of light on all protons and neutronsin the universe (al lined up) starting at the big bang would
have produced 10'’ digits.
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Recursive Functions

A functionis p-recursiveif it can be obtained from the basic functions using the operations of:
e Composition,

* Recursive definition, and

*  Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is afunction f of k arguments defined as:
f(ng,ny,...nK) = theleast m such at g(ng,ny,. .. Nk,M)=1, if such an m exists,
0 otherwise
A function g is minimalizable iff for every ny,n,,...ny, there isan m such that g(ny,ny, ... N, M)=1.
Theorem: A functionis p-recursiveiff it isrecursive (i.e., computable by a Turing machine).
Partial Recursive Functions
Consider the following function f:
f(n) = 1if TM(n) halts on ablank tape
0 otherwise

The domain of f isthe natural numbers. Isf recursive?

domain range

Theorem: There are uncountably many partialy recursive functions (but only countably many Turing machines).

Functions and M achines

Partial Recursive
Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Turing Machines

IsThere Anything In Between CFGs and Unrestricted Grammar s?

Answer: yes, various things have been proposed.
Context-Sensitive Grammar s and L anguages:
A grammar G is context sensitiveif all productions are of the form

X -y

and [x| < ly|
In other words, there are no length-reducing rules.
A language is context senditive if there exists a context-sensitive grammar for it.
Examples:

L ={a%"c",n>0}
L={wO{a b,c}" : number of as, b'sand c'sis the same}
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Context-Sensitive L anguages are Recursive

Thebasicidea: Todecideif astringw isinL, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L={db"c¢":n=0}

0Qaabbcc10000000a0a

(¥ e (3
> a }'a’ R h }b’ R—e) C L,

ca ,c&/
Q,ab'.a
n

Context-Sensitive L anguages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build amachine B with atwo track tape. Oninput w, B keepsw on thefirst tape. On the second tape, it
nondeterministically constructs all derivations of G. The key isthat as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. Thereis also a proof that from any |ba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Linear Bounded Automata

Turing Machines
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The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive
Languages

Context-Free
Languages

Regular
(Type?3)
Languages
FSMs

TypeO [ Typel [Type2

Linear Bounded Automata

Turing Machines
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