Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple
(V, Σ, R, S), where

- V is an alphabet,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of
 $$(V^* \setminus (V \cdot \Sigma) \setminus V^*) \times V^*.$$
- S (the start symbol) is an element of $V - \Sigma$.

We define derivations just as we did for context-free grammars.

The language generated by G is

$$\{w \in \Sigma^* : S \Rightarrow^* G w\}$$

There is no notion of a derivation tree or rightmost/leftmost derivation for unrestricted grammars.

Unrestricted Grammars

Example: $L = a^n b^n c^n$, $n > 0$
- $S \rightarrow aBSc$
- $S \rightarrow aBc$
- $Ba \rightarrow aB$
- $Bc \rightarrow bc$
- $Bb \rightarrow bb$

Another Example

$L = \{w \in \{a, b, c\}^* : \text{number of a's, b's and c's is the same}\}$
- $S \rightarrow ABCS$
- $S \rightarrow ABC$
- $AB \rightarrow BA$
- $BC \rightarrow CB$
- $AC \rightarrow CA$
- $BA \rightarrow AB$
- $CA \rightarrow AC$
- $CB \rightarrow BC$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$
A Strong Procedural Feel

Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we're in a particular phase.

It's very common to have two main phases:
- Generate the right number of the various symbols.
- Move them around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is recursively enumerable (i.e., it is semidecided by some Turing machine M).

Proof:
- Only if (grammar → TM): by construction of a nondeterministic Turing machine.
- If (TM → grammar): by construction of a grammar that mimics backward computations of M.

Proof that Grammar → Turing Machine

Given a grammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

For each nondeterministic "incarnation":
- Tape 1 holds the input.
- Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep looking.
Proof that Turing Machine → Grammar

Suppose that M semidecides a language L (it halts when fed strings in L and loops otherwise). Then we can build M' that halts in the configuration (h, 0).

We will define G so that it simulates M' backwards.
We will represent the configuration (q, 0aw) as
>uaqw<

M'
goesto

Then, if w ∈ L, we require that our grammar produce a derivation of the form
S →_G_ >h< (produces final state of M')
⇒_G_* >abq< (some intermediate state of M')
⇒_G_* >sw< (the initial state of M')
⇒_G_ w< (via a special rule to clean up >s)
⇒_G_ w (via a special rule to clean up <)

The Rules of G

S → >h< (the halting configuration)
> → ε (clean-up rules to be applied at the end)
< → ε

Rules that correspond to δ:

If δ(q, a) = (p, b) :
bp → aq

If δ(q, a) = (p, −) :
abp → aqb ∀b ∈ Σ
aqp< → aq<

If δ(q, a) = (p, ←), a ≠ 0
pa → aq

If δ(q, 0) = (p, ←)
pqb → qpb ∀b ∈ Σ
p< → q<
A REALLY Simple Example

\[M' = (K, \{a\}, \delta, s, \{h\}) \]

\[
\delta = (\{(s, \Box), (q, \rightarrow)\}, 1 \\
(\{(q, a), (q, \rightarrow)\}, 2 \\
(\{(q, \Box), (t, \leftarrow)\}, 3 \\
(\{(t, a), (p, \Box)\}, 4 \\
(\{(t, \Box), (h, \Box)\}, 5 \\
(\{(p, \Box), (t, \leftarrow)\}) 6 \\
\]

\[L = a^* \]

\[
S \rightarrow >\Box h < \\
>\Box s \rightarrow \varepsilon \\
< \rightarrow \varepsilon \\
\]

(1) \[\Box q \rightarrow \Box s\Box \] \\
[\Box aq \rightarrow \Box sa \] \\
[\Box q< \rightarrow >\Box s< \]

(2) \[a\Box q \rightarrow aq\Box \] \\
[aaq \rightarrow aqa \] \\
[a\Box q< \rightarrow aq< \]

Working It Out

\[
S \rightarrow >\Box h < \\
>\Box s \rightarrow \varepsilon \\
< \rightarrow \varepsilon \\
\]

(1) \[\Box q \rightarrow \Box s\Box \] \\
[\Box aq \rightarrow \Box sa \] \\
[\Box q< \rightarrow >\Box s< \]

(2) \[a\Box q \rightarrow aq\Box \] \\
[aaq \rightarrow aqa \] \\
[a\Box q< \rightarrow aq< \]

<table>
<thead>
<tr>
<th>Production</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>S \rightarrow >\Box h <</td>
<td>1</td>
</tr>
<tr>
<td>>\Box s \rightarrow \varepsilon</td>
<td>2</td>
</tr>
<tr>
<td>< \rightarrow \varepsilon</td>
<td>3</td>
</tr>
<tr>
<td>(1) \Box q \rightarrow \Box s\Box</td>
<td>4</td>
</tr>
<tr>
<td>\Box aq \rightarrow \Box sa</td>
<td>5</td>
</tr>
<tr>
<td>\Box q< \rightarrow >\Box s<</td>
<td>6</td>
</tr>
<tr>
<td>(2) a\Box q \rightarrow aq\Box</td>
<td>7</td>
</tr>
<tr>
<td>aaq \rightarrow aqa</td>
<td>8</td>
</tr>
<tr>
<td>a\Box q< \rightarrow aq<</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>>\Box saa<</td>
<td>1</td>
</tr>
<tr>
<td>>\Box aqa<</td>
<td>2</td>
</tr>
<tr>
<td>>\Box aaq<</td>
<td>2</td>
</tr>
<tr>
<td>>\Box aaq<</td>
<td>2</td>
</tr>
<tr>
<td>>\Box aat<</td>
<td>4</td>
</tr>
<tr>
<td>>\Box a\Box q<</td>
<td>5</td>
</tr>
<tr>
<td>>\Box q<</td>
<td>6</td>
</tr>
<tr>
<td>>\Box t<</td>
<td>5</td>
</tr>
<tr>
<td>>\Box h<</td>
<td>5</td>
</tr>
</tbody>
</table>

Lecture Notes 25 Grammars and Turing Machines 4
An Alternative Proof

An alternative is to build a grammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the machine.

The first (generate) part of G:
Creates all strings over Σ^* of the form
\[w = \text{# } \text{# } Q_s a_1 a_1 a_2 a_2 a_3 a_3 \ldots \]

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
\[\text{# } \text{# } Q_s a_1 b_2 c b_4 Q_3 a_3 \]

Examples of rules:
- $b b Q_4 \rightarrow b 4 Q_4$ (rewrite b as 4)
- $b 4 Q_3 \rightarrow Q_3 b 4$ (move left)

The third (cleanup) part of G erases the junk if M ever reaches h.

Example rule:
- $\# h a_1 \rightarrow a_1 \# h$ (sweep $\# h$ to the right erasing the working “tape”)

Computing with Grammars

We say that G computes f if, for all $w, v \in \Sigma^*$,
\[SwS \Rightarrow_{G^*} v \iff v = f(w) \]
Example:
- $S1S \Rightarrow_{G^*} 11$
- $S11S \Rightarrow_{G^*} 111$ \hspace{1cm} $f(x) = \text{succ}(x)$

A function f is called grammatically computable iff there is a grammar G that computes it.

Theorem: A function f is recursive iff it is grammatically computable.
In other words, if a Turing machine can do it, so can a grammar.

Example of Computing with a Grammar

$f(x) = 2x$, where x is an integer represented in unary

$G = (\{S, 1\}, \{1\}, R, S)$, where $R =$
- $S1 \rightarrow 11S$
- $SS \rightarrow \varepsilon$

Example:

Input: $S111S$

Output:
More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?

Primitive Recursive Functions

Define a set of basic functions:
- \(\text{zero}_k(n_1, n_2, \ldots n_k) = 0 \)
- \(\text{id}_{j,k}(n_1, n_2, \ldots n_k) = n_j \)
- \(\text{successor}(n) = n + 1 \)

Combining functions:
- Composition of \(g \) with \(h_1, h_2, \ldots h_k \) is
 \[g(h_1(\quad), h_2(\quad), \ldots h_k(\quad)) \]
- Primitive recursion of \(f \) in terms of \(g \) and \(h \):
 \[f(n_1, n_2, \ldots n_k, 0) = g(n_1, n_2, \ldots n_k) \]
 \[f(n_1, n_2, \ldots n_k, m+1) = h(n_1, n_2, \ldots n_k, m, f(n_1, n_2, \ldots n_k, m)) \]

Example:
- \(\text{plus}(n, 0) = n \)
- \(\text{plus}(n, m+1) = \text{succ(plus}(n, m)) \)

Primitive Recursive Functions and Computability

Trivially true: all primitive recursive functions are Turing computable.

What about the other way: Not all Turing computable functions are primitive recursive.

Proof:
Lexicographically enumerate the unary primitive recursive functions, \(f_0, f_1, f_2, f_3, \ldots \).
Define \(g(n) = f_n(n) + 1 \).
\(G \) is clearly computable, but it is not on the list. Suppose it were \(f_m \) for some \(m \). Then
\(f_m(m) = f_m(m) + 1 \), which is absurd.

Suppose \(g \) is \(f_3 \). Then \(g(3) = 27 + 1 = 28 \). Contradiction.

Functions that Aren’t Primitive Recursive

Example: Ackermann’s function:
- \(A(0, y) = y + 1 \)
- \(A(x + 1, 0) = A(x, 1) \)
- \(A(x + 1, y + 1) = A(x, A(x + 1, y)) \)

Thus writing digits at the speed of light on all protons and neutrons in the universe (all lined up) starting at the big bang would have produced \(10^{127} \) digits.
Recursive Functions

A function is \textbf{\(\mu\)-recursive} if it can be obtained from the basic functions using the operations of:
- Composition,
- Recursive definition, and
- Minimalization of minimalizable functions:

The \textbf{minimalization} of \(g\) (of \(k + 1\) arguments) is a function \(f\) of \(k\) arguments defined as:
\[
f(n_1,n_2,\ldots,n_k) = \begin{cases}
\text{the least } m \text{ such at } g(n_1,n_2,\ldots,n_k,m)=1, & \text{if such an } m \text{ exists,} \\
0 & \text{otherwise}
\end{cases}
\]

A function \(g\) is \textbf{minimalizable} iff for every \(n_1,n_2,\ldots,n_k\), there is an \(m\) such that \(g(n_1,n_2,\ldots,n_k,m)=1\).

\textbf{Theorem}: A function is \(\mu\)-recursive iff it is recursive (i.e., computable by a Turing machine).

Partial Recursive Functions

Consider the following function \(f\):
\[
f(n) = \begin{cases}
1 & \text{if } \text{TM}(n) \text{ halts on a blank tape} \\
0 & \text{otherwise}
\end{cases}
\]

The domain of \(f\) is the natural numbers. Is \(f\) recursive?

\textbf{Theorem}: There are uncountably many partially recursive functions (but only countably many Turing machines).

Functions and Machines

![Diagram of Functions and Machines](image-url)
Is There Anything In Between CFGs and Unrestricted Grammars?

Answer: yes, various things have been proposed.

Context-Sensitive Grammars and Languages:

A grammar G is context sensitive if all productions are of the form

$$x \rightarrow y$$

and $|x| \leq |y|$.

In other words, there are no length-reducing rules.

A language is context sensitive if there exists a context-sensitive grammar for it.

Examples:

- $L = \{a^n b^n c^n, n > 0\}$
- $L = \{w \in \{a, b, c\}^*: \text{number of } a's, b's \text{ and } c's \text{ is the same}\}$
Context-Sensitive Languages are Recursive

The basic idea: To decide if a string w is in L, start generating strings systematically, shortest first. If you generate w, accept. If you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k times the length of the input.

Example: \[L = \{a^n b^n c^n : n \geq 0\} \]

\[
\begin{array}{l}
\emptyset \xrightarrow{aabbcc} \\
\Rightarrow a' \xrightarrow{a} a' \xrightarrow{b} b' \xrightarrow{c} c' \xrightarrow{L_2}
\end{array}
\]

Context-Sensitive Languages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bound automaton B for any context-sensitive language L defined by some grammar G. We build a machine B with a two track tape. On input w, B keeps w on the first tape. On the second tape, it nondeterministically constructs all derivations of G. The key is that as soon as any derivation becomes longer than \(|w|\) we stop, since we know it can never get any shorter and thus match w. There is also a proof that from any lba we can construct a context-sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.
Languages and Machines

- Recursively Enumerable Languages
- Recursive Languages
- Context-Sensitive Languages
- Context-Free Languages
- Deterministic Context-Free Languages
- Regular Languages
 - FSMs
 - DPDAs
 - NDPDAs
- Linear Bounded Automata
- Turing Machines
The Chomsky Hierarchy

Type 0 | Type 1 | Type 2

Regular (Type 3) Languages
FSMs
PDAs
Linear Bounded Automata
Turing Machines

Recursively Enumerable Languages
Context-Sensitive Languages
Context-Free Languages
Regular Languages
FSMs
PDAs
Linear Bounded Automata
Turing Machines