
Lecture Notes 12 Context-Free Grammars 1

Context-Free Grammars

Read K & S 3.1
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Grammars
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars.
Do Homework 11.

Context-Free Grammars, Languages, and Pushdown Automata

 Context-Free
 Language
 L

 Context-Free
 Grammar

 Accepts

 Pushdown
 Automaton

Grammars Define Languages

Think of grammars as either generators or acceptors.

Example: L = {w ∈ {a, b}* : |w| is even}

Regular Expression

 (aa ∪ ab ∪ ba ∪ bb)*

Regular Grammar
 S → ε
 S → aT
 S → bT
 T → a
 T → b

 T → aS
 T → bS

Derivation
 (Generate)

choose aa
choose ab
 yields

 a a a b

 S
a T
 a S
 a T
 b
a a a b

Parse (Accept) use corresponding FSM

Lecture Notes 12 Context-Free Grammars 2

Derivation is Not Necessarily Unique

Example: L = {w ∈ {a, b}* : there is at least one a}

Regular Expression

(a ∪ b)*a (a ∪ b)*

choose a from (a ∪ b)
choose a from (a ∪ b)
choose a

choose a
choose a from (a ∪ b)
choose a from (a ∪ b)

Regular Grammar

 S → a
 S → bS
 S → aS
 S → aT
 T → a
 T → b
 T → aT
 T → bT

 S S
 a S a T
 a S a T
 a a

More Powerful Grammars

Regular grammars must always produce strings one character at a time, moving left to right.

But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

S → aBa
B → ε
B → bB

vs.

S → aB
B → a
B → bB

Example 2: L = anb*an

S → B
S → aSa
B → ε
B → bB

Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars

Remove all restrictions on the form of the right hand sides.

 S → abDeFGab

Keep requirement for single non-terminal on left hand side.

 S →

 but not ASB → or aSb → or ab →

Examples: balanced parentheses anbn

 S → ε S → a S b
 S → SS S → ε
 S → (S)

Lecture Notes 12 Context-Free Grammars 3

Context-Free Grammars

A context-free grammar G is a quadruple (V, Σ, R, S), where:
• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in strings in

the language) and terminals,
• Σ (the set of terminals) is a subset of V,
• R (the set of rules) is a finite subset of (V - Σ) × V*,
• S (the start symbol) is an element of V - Σ.

x ����G y is a binary relation where x, y ∈ V* such that x = αAβ and y = αχβ for some rule A→χ in R.

Any sequence of the form

w0 �G w1 �G w2 �G . . . �G wn

e.g., (S) � (SS) � ((S)S)
is called a derivation in G. Each wi is called a sentinel form.

The language generated by G is {w ∈ Σ* : S �G* w}

A language L is context free if L = L(G) for some context-free grammar G.

Example Derivations

G = (W, Σ, R, S), where
 W = {S} ∪ Σ,
 Σ = {a, b},
 R = { S → a,
 S → aS,
 S → aSb}

 S S
 a S a S b
 a S b a S b
 a S a S
 a S b a S
 a a

Another Example - Unequal a's and b's

L = {anbm : n ≠ m}

G = (W, Σ, R, S), where
 W = {a, b, S, A, B},
 Σ = {a, b},
 R =

S → A /* more a's than b's
S → B /* more b's than a's
A → a
A → aA
A → aAb
B → b
B → Bb
B → aBb

Lecture Notes 12 Context-Free Grammars 4

English
 S → NP VP
 NP → the NP1 | NP1
 NP1 → ADJ NP1 | N
 ADJ → big | youngest | oldest
 N → boy | boys
 VP →V | V NP
 V → run | runs

the boys run
big boys run
the youngest boy runs

the youngest oldest boy runs
the boy run

Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions

The Language of Simple Arithmetic Expressions

G = (V, Σ, R, E), where
 V = {+, *, id, T, F, E},
 Σ = {+, *, id},
 R = { E → id
 E → E + E
 E → E * E }

 E E

E + E E * E

id E * E E + E id

 id id id id

id + (id * id) (id + id) * id

Arithmetic Expressions -- A Better Way

The Language of Simple Arithmetic Expressions

G = (V, Σ, R, E), where
 V = {+, *, (,), id, T, F, E},
 Σ = {+, *, (,), id},
 R = { E → E + T

E→ T
T → T * F

 T → F
F → (E)

 F → id }

Examples:

id + id * id

id * id * id

Lecture Notes 12 Context-Free Grammars 5

BNF

Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars.

Main idea: give descriptive names to nonterminals and put them in angle brackets.

Example: arithmetic expressions:
�expression� → �expression� + �term�
�expression� → �term�

 �term� → �term� * �factor�
 �term� → �factor�

�factor� → (�expression�)
 �factor� → �id�

The Language of Boolean Logic

G = (V, Σ, R, E), where
 V = {∧ , ∨ , ¬ ,� , (,), id, E, E1, E2, E3, E4 },
 Σ = {∧ , ∨ , ¬ , �, (,), id},
 R = { E → E � E1
 E → E1
 E1 → E1 ∨ E2
 E1 →E2
 E2 → E2 ∧ E3
 E2 → E3
 E3 → ¬ E4
 E3 → E4
 E4 →(E)
 E4 → id }

Boolean Logic isn't Regular

Suppose it were regular. Then there is an N as specified in the pumping theorem.

Let w be a string of length 2N + 1 + 2|id| of the form:
w = ((((((id)))))) � id
 N
 x y

y = (k for some k > 0 because |xy| ≤ N.

Then the string that is identical to w except that it has k additional ('s at the beginning would also be in the language. But it can't
be because the parentheses would be mismatched. So the language is not regular.

Lecture Notes 12 Context-Free Grammars 6

All Regular Languages Are Context Free

(1) Every regular language can be described by a regular grammar. We know this because we can derive a regular grammar from
any FSM (as well as vice versa). Regular grammars are special cases of context-free grammars.

 a, b

 S T

 a, b

(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM is a PDA that doesn't bother
with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and ε and each single character in Σ are clearly
context free.

Lecture Notes 13 Parse Trees 1

Parse Trees

Read K & S 3.2
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Derivations and Parse Trees.
Do Homework 12.

Parse Trees

Regular languages:

We care about recognizing patterns and taking appropriate actions.

Example: A parity checker

Structure
Context free languages:

 We care about structure.
 E

 E + E

 id E * E

 id id

 id + (id * id)

Parse Trees Capture Essential Structure
 E → id
 E → E + E
 E → E * E

 E E

E + E E * E

id E * E E + E id

 id id id id

id + (id * id) (id + id) * id

Lecture Notes 13 Parse Trees 2

Parse Trees are Just Trees

 root

 height
nodes

 leaves

 yield

Leaves are all labeled with terminals or ε.
Other nodes are labeled with nonterminals.
A path is a sequence of nodes, starting at the root, ending at a leaf, and following branches in the tree.
The length of the yield of any tree T with height H and branching factor (fanout) B is ≤

Derivations
To capture structure, we must capture the path we took through the grammar. Derivations do that.
 S → ε
 S → SS
 S → (S)
 1 2 3 4 5 6
S � SS � (S)S � ((S))S � (())S � (())(S) � (())()
S � SS � (S)S � ((S))S � ((S))(S) � (())(S) � (())()
 1 2 3 5 4 6
 S

 S S

 (S) (S)

 (S) ε

 ε

Alternative Derivations
 S → ε
 S → SS
 S → (S)

S � SS � (S)S � ((S))S � (())S � (())(S) � (())()
S � SS � SSS � S(S)S � S((S))S � S(())S � S(())(S) � S(())()� (())()

 S S

 S S S S

(S) (S) S S (S)

 (S) ε ε (S) ε

 ε (S)

 ε

Lecture Notes 13 Parse Trees 3

Ordering Derivations
Consider two derivations:

1 2 3 4 5 6 7
S � SS � (S)S � ((S))S � (())S � (())(S) � (())()

S � SS � (S)S � ((S))S � ((S))(S) � (())(S) � (())()
1 2 3 4 5 6 7

We can write these, or any, derivation as
D1 = x1 � x2 � x3 � … � xn
D2 = x1' � x2' � x3' � … � xn'

We say that D1 precedes D2, written D1< D2, if:
• D1 and D2 are the same length > 1, and
• There is some integer k, 1 < k < n, such that:

• for all i ≠ k, xi = xi'
• xk-1 = x'k-1 = uAvBw : u, v, w ∈ V*,

and A, B ∈ V - Σ
• xk = uyvBw, where A → y ∈ R
• xk' = uAvzw where B → z ∈ R
• xk+1 = x'k+1 = uyvzw

Comparing Several Derivations
Consider three derivations:
 1 2 3 4 5 6 7
(1) S � SS � (S)S � ((S))S � (())S �(())(S) �(())()

(2) S � SS � (S)S � ((S))S � ((S))(S) � (())(S) �(())()

(3) S � SS � (S)S � ((S))S � ((S))(S) � ((S))() �(())()

D1 < D2
D2 < D3
But D1 does not precede D3.
All three seem similar though. We can define similarity:

D1 is similar to D2 iff the pair (D1, D2) is in the reflexive, symmetric, transitive closure of <.
Note: similar is an equivalence class.

In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule
applications.

Parse Trees Capture Similarity
 1 2 3 4 5 6 7
(1) S � SS � (S)S � ((S))S � (())S �(())(S) �(())()

(2) S � SS � (S)S � ((S))S � ((S))(S) �(())(S) �(())()

(3) S � SS � (S)S � ((S))S � ((S))(S) �((S))() �(())()

D1 < D2
D2 < D3

All three derivations are similar to each other. This parse tree describes this equivalence class of the similarity relation:
 S

 S S

 (S) (S)

 (S) ε

 ε

Lecture Notes 13 Parse Trees 4

The Maximal Element of <

 S

 S S

 (S) (S)

 (S) ε

ε

There's one derivation in this equivalence class that precedes all others in the class.

We call this the leftmost derivation. There is a corresponding rightmost derivation.

The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost
(rightmost) derivation.

Another Example

E → id
 E → E + E
 E → E * E

(1) E � E+E � E+E*E � E+E*id � E+id*id � id+id*id
(2) E � E*E � E*id � E+E*id � E+id*id � id+id*id

 E E

E + E E * E

id E * E E + E id

 id id id id
id + [id * id] [id + id] * id

Ambiguity

A grammar G for a language L is ambiguous if there exist strings in L for which G can generate more than one parse tree (note
that we don't care about the number of derivations).

The following grammar for arithmetic expressions is ambiguous:

E → id
 E → E + E
 E → E * E

Often, when this happens, we can find a different, unambiguous grammar to describe L.

Lecture Notes 13 Parse Trees 5

Resolving Ambiguity in the Grammar
G = (V, Σ, R, E), where
 V = {+, *, (,), id, T, F, E},
 Σ = {+, *, (,), id},
 R = { E → E + T

E→ T
 T → T * F

 T → F
F → (E)

 F → id }

Parse : id + id * id

Another Example

The following grammar for the language of matched parentheses is ambiguous:

 S → ε
 S → SS
 S → (S)

 S S

 S S S S

(S) (S) S S (S)

 (S) ε ε (S) ε

 ε (S)

 ε

Resolving the Ambiguity with a Different Grammar

One problem is the ε production.

A different grammar for the language of balanced parentheses:

 S → ε
 S → S1

 S1 → S1 S1
 S1 → (S1)

S1 → ()

 S

 S1

 S1 S1

(S1) ()
 ()

Lecture Notes 13 Parse Trees 6

A General Technique for Eliminating εεεε
If G is any context-free grammar for a language L and ε ∉ L then we can construct an alternative grammar G' for L by:

1. Find the set N of nullable variables:

A variable V is nullable if either:
there is a rule

(1) V → ε
or there is a rule

(2) V → PQR…such that P, Q, R, … are all nullable
So begin with N containing all the variables that satisfy (1). Evaluate all other variables with respect to (2). Continue until
no new variables can be added to N.

2. For every rule of the form
P → αQβ for some Q in N, add a rule
P → αβ

3. Delete all rules of the form
 V → ε

Sometimes Eliminating Ambiguity Isn't Possible

 S → NP VP
 NP → the NP1 | NP1 | NP2
 NP1 → ADJ NP1 | N

NP2 → NP1 PP
 ADJ → big | youngest | oldest
 N → boy | boys | ball | bat | autograph
 VP →V | V NP
 VP → VP PP
 V → hit| hits
 PP → with NP

The boys hit the ball with the bat.

The boys hit the ball with the autograph.

Why It's Not Possible
• We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want. Any grammar that is

capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in
the context-free framework.

Example: Our simple English grammar
 [[The boys] [hit [the ball] [with [the bat]]]]
 [[The boys] [hit [the ball] [with [the autograph]]]]
• There is no grammar that describes L that is not ambiguous.

Example: L = {anbncm} ∪ {anbmcm}

S → S1 | S2
S1 → S1c | A Now consider the strings anbncn
A → aAb | ε
S2 → aS2|B They have two distinct derivations
B → bBc | ε

Inherent Ambiguity of CFLs
A context free language with the property that all grammars that generate it are ambiguous is inherently ambiguous.

L = {anbncm} ∪ {anbmcm} is inherently ambiguous.

Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an
unambiguous grammar.

 Examples: Arithmetic Expressions
 Balanced Parentheses

Whenever we design practical languages, it is important that they not be inherently ambiguous.

Lecture Notes 14 Pushdown Automata 1

Pushdown Automata
Read K & S 3.3.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.
Do Homework 13.

Recognizing Context-Free Languages

Two notions of recognition:

(1) Say yes or no, just like with FSMs
(2) Say yes or no, AND

 if yes, describe the structure

 a + b * c

Just Recognizing

We need a device similar to an FSM except that it needs more power.

The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

((((()))) () (())

 (Finite
 (State
 (Controller
 (
 ((

Definition of a Pushdown Automaton

M = (K, Σ, Γ, ∆, s, F), where:
 K is a finite set of states
 Σ is the input alphabet
 Γ is the stack alphabet
 s ∈ K is the initial state
 F ⊆ K is the set of final states, and
 ∆ is the transition relation. It is a finite subset of

(K × (Σ ∪ {ε}) × Γ*) × (K × Γ*)

 state input or ε string of symbols to pop state string of symbols to
 from top of stack push on top of stack

M accepts a string w iff
 (s, w, ε) |-M* (p, ε, ε) for some state p ∈ F

Lecture Notes 14 Pushdown Automata 2

A PDA for Balanced Brackets

 [//[
 s
]/[/

M = (K, Σ, Γ, ∆, s, F), where:
 K = {s} the states
 Σ = {[,]} the input alphabet
 Γ = {[} the stack alphabet
 F = {s}
 ∆ contains:

 ((s, [, ε), (s, [))
 ((s,], [), (s, ε))

Important:

This does not mean that the stack is empty.
An Example of Accepting

 [//[
 s
]/[/

∆ contains:
[1] ((s, [, ε), (s, [))
[2] ((s,], [), (s, ε))
input = [[[] []]]

trans state unread input stack
 s [[[] []]] ε
 1 s [[] []]] [
 1 s [] []]] [[
 1 s] []]] [[[
 2 s []]] [[
 1 s]]] [[[
 2 s]] [[
 2 s] [
 2 s ε ε

An Example of Rejecting

 [//[
 s
]/[/
∆ contains:
[1] ((s, [, ε), (s, [))
[2] ((s,], [), (s, ε))
input = [[]]]

trans state unread input stack
 s [[]]] ε

1 s []]] [
1 s]]] [[
2 s]] [
2 s] ε

 none! s] ε
We're in s, a final state, but we cannot accept because the input string is not empty. So we reject.

Lecture Notes 14 Pushdown Automata 3

A PDA for anbn

First we notice:
• We'll use the stack to count the a's.
• This time, all strings in L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the

regular language a*b*.

A PDA for wcwR

A PDA to accept strings of the form wcwR:

 a//a a/a/
 c//
 s f

 b//b b/b/

M = (K, Σ, Γ, ∆, s, F), where:
 K = {s, f} the states
 Σ = {a, b, c} the input alphabet
 Γ = {a, b} the stack alphabet
 F = {f} the final states
 ∆ contains:
 ((s, a, ε), (s, a))
 ((s, b, ε), (s, b))
 ((s, c, ε), (f, ε))
 ((f, a, a), (f, ε))
 ((f, b, b), (f, ε))

An Example of Accepting

 a//a a/a/
 c//
 s f

 b//b b/b/

∆ contains:
[1] ((s, a, ε), (s, a))
[2] ((s, b, ε), (s, b))
[3] ((s, c, ε), (f, ε))
[4] ((f, a, a), (f, ε))
[5] ((f, b, b), (f, ε))

input = b a c a b
 trans state unread input stack

 s b a c a b ε
2 s a c a b b
1 s c a b ab
3 f a b ab
5 f b b
6 f ε ε

Lecture Notes 14 Pushdown Automata 4

A Nondeterministic PDA
L = wwR

S → ε
S → aSa
S → bSb

A PDA to accept strings of the form wwR:

 a//a a/a/
 ε//
 s f

 b//b b/b/

M = (K, Σ, Γ, ∆, s, F), where:
 K = {s, f} the states
 Σ = {a, b, c} the input alphabet
 Γ = {a, b} the stack alphabet
 F = {f} the final states
 ∆ contains:
 ((s, a, ε), (s, a))
 ((s, b, ε), (s, b))
 ((s, ε, ε), (f, ε))
 ((f, a, a), (f, ε))
 ((f, b, b), (f, ε))

An Example of Accepting

 a//a a/a/
 ε//
 s f

 b//b b/b/

[1] ((s, a, ε), (s, a))
[2] ((s, b, ε), (s, b))
[3] ((s, ε, ε), (f, ε))

[4] ((f, a, a), (f, ε))
[5] ((f, b, b), (f, ε))

input: a a b b a a

trans state unread input stack
 s a a b b a a ε

1 s a b b a a a
3 f a b b a a a
4 f b b a a ε
none

trans state unread input stack

 s a a b b a a ε
1 s a b b a a a
1 s b b a a aa
2 s b a a baa
3 f b a a baa
5 f a a aa
4 f a a
4 f ε ε

Lecture Notes 14 Pushdown Automata 5

L = {ambn : m ≤≤≤≤ n}
A context-free grammar for L:

S → ε
S → Sb /* more b's
S → aSb

A PDA to accept L:

 a//a b/a/
 b/a/ b/ε/
 1 2
 b/ε/

Accepting Mismatches

L = {ambn m ≠ n; m, n >0}

 a//a b/a/
 b/a/
 1 2

• If stack and input are empty, halt and reject.

• If input is empty but stack is not (m > n) (accept):

 a//a b/a/ ε/a/
 b/a/ ε/a/
 1 2 3

• If stack is empty but input is not (m < n) (accept):

 a//a b/a/ ε/a/
 b/a/ ε/a/
 1 2 3

 b//
 4 b//

Lecture Notes 14 Pushdown Automata 6

Eliminating Nondeterminism

A PDA is deterministic if, for each input and state, there is at most one possible transition. Determinism implies uniquely
defined machine behavior.

 a//a b/a/ ε/a/
 b/a/ ε/a/
 1 2 3

 b//
 4 b//

• Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.

 a//a b/a/ ε/a/
 ε//Z b/a/ ε/a/
 0 1 2 3 ε/Z/

 b/Z/
 4 b//

• Jumping to the stack clearing state 3:

Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character
(e.g., $)

L = {anbmcp : n,m,p ≥≥≥≥ 0 and (n ≠≠≠≠ m or m ≠≠≠≠ p)}

S → NC /* n ≠ m, then arbitrary c's
S → QP /* arbitrary a's, then p ≠ m
N → A /* more a's than b's
N → B /* more b's than a's
A → a
A → aA
A → aAb
B → b
B → Bb
B → aBb

C → ε | cC /* add any number of c's
P → B' /* more b's than c's
P → C' /* more c's than b's
B' → b
B' → bB'
B' → bB'c
C' → c | C'c
C' → C'c
C' → bC'c
Q → ε | aQ /* prefix with any number of a's

L = {anbmcp : n,m,p ≥≥≥≥ 0 and (n ≠≠≠≠ m or m ≠≠≠≠ p)}

 ε//Z a//a
 S S' machine for N

 a// b,c

 clear and accept
 machine for P

Lecture Notes 14 Pushdown Automata 7

Another Deterministic CFL

L = {anbn} ∪ {bn an}

A CFG for L: A NDPDA for L:

S → A
S → B
A → ε
A → aAb
B → ε
B → bBa

A DPDA for L:

More on PDAs

What about a PDA to accept strings of the form ww?

Every FSM is (Trivially) a PDA

Given an FSM M = (K, Σ, ∆, s, F)
 and elements of ∆ of the form
 (p, i, q)
 old state, input, new state

We construct a PDA M' = (K, Σ, Γ, ∆, s, F)
 where Γ = ∅ /* stack alphabet
 and
 each transition (p, i, q) becomes
((p, i, ε), (q, ε))
 old state, input, don't look at stack new state don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA

Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:
1. Add a new state at the beginning that pushes # onto the stack.
2. Add a new final state and a transition to it that can be taken if the input string is empty and the top of the stack is #.
Converting the balanced parentheses machine:

 (//(ε//# (//(
 S S S'
)/(/)/(/

 ε/#/

 F

The new machine is nondeterministic:
 () ()
 �
The stack will be: #

Lecture Notes 14 Pushdown Automata 8

What About PDA's for Interesting Languages?

 E → E + T Arithmetic Expressions

E → T
 T → T * F ε/ε/E

 T → F 1 2
F → (E)

 F → id

(1) (2, ε, E), (2, E+T) Example:
(2) (2, ε, E), (2, T) a + b * c
(3) (2, ε, T), (2, T*F)
(4) (2, ε, T), (2, F)
(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id)
(7) (2, id, id), (2, ε)
(8) (2, (, (), (2, ε)
(9) (2,),)), (2, ε)
(10) (2, +, +), (2, ε)
(11) (2, *, *), (2, ε)

But what we really want to do with languages like this is to extract structure.

Comparing Regular and Context-Free Languages

Regular Languages

• regular expressions

- or -
• regular grammars
• recognize
• = DFSAs

Context-Free Languages

• context-free grammars

• parse
• = NDPDAs

Lecture Notes 15 Pushdown Automata and Context-Free Languages 1

Pushdown Automata and Context-Free Grammars

Read K & S 3.4.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs.
Do Homework 14.

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem: Can describe with context-free grammar ⇔ Can accept by PDA

Going One Way

Lemma: Each context-free language is accepted by some PDA.
Proof (by construction by “top-down parse” conversion algorithm):

The idea: Let the stack do the work.

Example: Arithmetic expressions

 E → E + T

E → T
 T → T * F ε/ε/E

 T → F 1 2
F → (E)

 F → id

(1) (2, ε, E), (2, E+T)
(2) (2, ε, E), (2, T)
(3) (2, ε, T), (2, T*F)
(4) (2, ε, T), (2, F)
(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id)

(7) (2, id, id), (2, ε)
(8) (2, (, (), (2, ε)
(9) (2,),)), (2, ε)
(10) (2, +, +), (2, ε)
(11) (2, *, *), (2, ε)

The Top-down Parse Conversion Algorithm

Given G = (V, Σ, R, S)
Construct M such that L(M) = L(G)

M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains:

(1) ((p, ε, ε), (q, S))
 push the start symbol on the stack

(2) ((q, ε, A), (q, x)) for each rule A → x in R
 replace left hand side with right hand side

(3) ((q, a, a), (q, ε)) for each a ∈ Σ
 read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 2

Example of the Algorithm
L = {anb*an}

(1) S → ε
(2) S → B
(3) S → aSa
(4) B → ε
(5) B → bB

input = a a b b a a

0 (p, ε, ε), (q, S)
1 (q, ε, S), (q, ε)
2 (q, ε, S), (q, B)
3 (q, ε, S), (q, aSa)
4 (q, ε, B), (q, ε)
5 (q, ε, B), (q, bB)
6 (q, a, a), (q, ε)
7 (q, b, b), (q, ε)

trans state unread input stack
 p a a b b a a ε

0 q a a b b a a S
3 q a a b b a a aSa
6 q a b b a a Sa
3 q a b b a a aSaa
6 q b b a a Saa
2 q b b a a Baa
5 q b b a a bBaa
7 q b a a Baa
5 q b a a bBaa
7 q a a Baa
4 q a a aa
6 q a a
6 q ε ε

Another Example

L = {anbmcpdq : m + n = p + q}

(1) S → aSd
(2) S → T
(3) S → U
(4) T → aTc
(5) T → V
(6) U → bUd
(7) U → V
(8) V → bVc
(9) V → ε

input = a a b c d d

0 (p, ε, ε), (q, S)
1 (q, ε, S), (q, aSd)
2 (q, ε, S), (q,T)
3 (q, ε, S), (q,U)
4 (q, ε, T), (q, aTc)
5 (q, ε, T), (q, V)
6 (q, ε, U), (q, bUd)
7 (q, ε, U), (q, V)
8 (q, ε, V), (q, bVc
9 (q, ε, V), (q, ε)
10 (q, a, a), (q, ε)
11 (q, b, b), (q, ε)
12 (q, c, c), (q, ε)
13 (q, d, d), (q, ε)

The Other Way—Build a PDA Directly

L = {anbmcpdq : m + n = p + q}

(1) S → aSd
(2) S → T
(3) S → U
(4) T → aTc
(5) T → V

(6) U → bUd
(7) U → V
(8) V → bVc
(9) V → ε

 a//a b//a c/a/ d/a/
 b//a c/a/ d/a/
 1 2 3 4
 ε/ε/ ε/ε/ ε/ε/
input = a a b c d d

Lecture Notes 15 Pushdown Automata and Context-Free Languages 3

Notice Nondeterminism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial
languages.

Example: L = anbn

A grammar for L is:

[1] S → aSb
[2] S → ε

A machine M for L is:
(0) ((p, ε, ε), (q, S))
(1) ((q, ε, S), (q, aSb))
(2) ((q, ε, S), (q, ε))
(3) ((q, a, a), (q, ε))
(4) ((q, b, b), (q, ε))

But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same
configuration. A PDA is nondeterministic if it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way

Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar).
Proof (by construction)

Example: L = {wcwR : w ∈ {a, b}*}

 a//a a/a/
 c//
 s f

 b//b b/b/

M = ({s, f}, {a, b, c}, {a, b}, ∆, s,{f}), where:

 ∆ contains:
 ((s, a, ε), (s, a))
 ((s, b, ε), (s, b))
 ((s, c, ε), (f, ε))
 ((f, a, a), (f, ε))
 ((f, b, b), (f, ε))

First Step: Make M Simple

A PDA M is simple iff:
1. there are no transitions into the start state, and
2. whenever ((q, x, β), (p, γ) is a transition of M and q is not the start state, then β ∈ Γ, and |γ| ≤ 2.

Step 1: Add s' and f':

 a/ε/a a/a/
 ε/ε/Z c// ε/Z/
 s' s f f'

 b/ε/b b/b/

Step 2:
(1) Assure that |β| ≤ 1.

(2) Assure that |γ| ≤ 2.

(3) Assure that |β| = 1.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 4

Making M Simple

 a/ε/a a/a/
 ε/ε/Z c// ε/Z/
 s' s f f'

 b/ε/b b/b/

M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, ∆, s',{f'}), ∆=
 ((s', ε, ε), (s, Z))

((s, a, ε), (s, a)) ((s, a, Z), (s, aZ))
 ((s, a, a), (s, aa))

((s, a, b), (s, ab))
((s, b, ε), (s, b)) ((s, b, Z), (s, bZ))

 ((s, b, a), (s, ba))
((s, b, b), (s, bb))

((s, c, ε), (f, ε)) ((s, c, Z), (f, Z))
 ((s, c, a), (f, a))

((s, c, b), (f, b))
((f, a, a), (f, ε)) ((f, a, a), (f, ε))

 ((f, b, b), (f, ε)) ((f, b, b), (f, ε))
 ((f, ε, Z), (f', ε))

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.
Example: abcba
 S [1]

 <s, Z, f'> [2]

a <s, a, f> [4] <f, Z, f'> [8]

 b <s, b, f> [5] <f, a, f> [6] ε <f', ε, f'> [10]

 c <f, b, f> [7] a <f, ε, f> [9] ε

 b <f, ε, f> [9] ε

 ε

If the nonterminal <s1, X, s2> �* w, then the PDA starts in state s1

 with (at least) X on the stack and after consuming w and
popping the X off the stack, it ends up in state s2.

Start with the rule:
 S → <s, Z, f’> where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol.

Transitions ((s1, a, X), (s2, YX)) become a set of rules:
 <s1, X, q> → a <s2, Y, r> <r, X, q> for a ∈ Σ ∪ {ε}, ∀ q,r ∈ K

Transitions ((s1, a, X), (s2, Y)) becomes a set of rules:
 <s1, X, q> → a <s2, Y, q> for a ∈ Σ ∪ {ε}, ∀ q ∈ K

Transitions ((s1, a, X), (s2, ε)) become a rule:
 <s1, X, s2> → a for a ∈ Σ ∪ {ε}

Lecture Notes 15 Pushdown Automata and Context-Free Languages 5

Creating Productions from Transitions

 S → <s, Z, f'> [1]
((s', ε, ε), (s, Z))
((s, a, Z), (s, aZ)) <s, Z, f'> → a <s, a, f> <f, Z, f'> [2]
 <s, Z, s> → a <s, a, f> <f, Z, s> [x]
 <s, Z, f> → a <s, a, s> <s, Z, f> [x]
 <s, Z, s> → a <s, a, s> <s, Z, f> [x]
 <s, Z, s'> → a <s, a, f> <f, Z, s'> [x]
((s, a, a), (s, aa)) <s, a, f> → a <s, a, f> <f, a, f> [3]
((s, a, b), (s, ab)) …
((s, b, Z), (s, bZ)) …
((s, b, a), (s, ba)) <s, a, f> → b <s, b, f> <f, a, f> [4]
((s, b, b), (s, bb)) …
((s, c, Z), (f, Z)) …
((s, c, a), (f, a)) <s, a, f> → c <f, a, f>
((s, c, b), (f, b)) <s, b, f> → c <f, b, f> [5]
((f, a, a), (f, ε)) <f, a, f> → a <f, ε, f> [6]
((f, b, b), (f, ε)) <f, b, f> → b <f, ε, f> [7]
((f, ε, Z), (f', ε)) <f, Z, f'> → ε <f', ε, f'> [8]
 <f, ε, f> → ε [9]
 <f' ε, f'> → ε [10]

Comparing Regular and Context-Free Languages

Regular Languages

• regular exprs.

• or
• regular grammars
• recognize
• = DFSAs

Context-Free Languages

• context-free grammars

• parse
• = NDPDAs

Lecture Notes 16 Grammars and Normal Forms 1

Grammars and Normal Forms

Read K & S 3.7.

Recognizing Context-Free Languages

Two notions of recognition:

(1) Say yes or no, just like with FSMs

(2) Say yes or no, AND

 if yes, describe the structure

 a + b * c

Now it's time to worry about extracting structure (and doing so efficiently).

Optimizing Context-Free Languages

For regular languages:
Computation = operation of FSMs. So,

Optimization = Operations on FSMs:
 Conversion to deterministic FSMs
 Minimization of FSMs
For context-free languages:
Computation = operation of parsers. So,
 Optimization = Operations on languages

 Operations on grammars
 Parser design

Before We Start: Operations on Grammars

There are lots of ways to transform grammars so that they are more useful for a particular purpose.
the basic idea:
1. Apply transformation 1 to G to get of undesirable property 1. Show that the language generated by G is unchanged.
2. Apply transformation 2 to G to get rid of undesirable property 2. Show that the language generated by G is unchanged AND

that undesirable property 1 has not been reintroduced.
3. Continue until the grammar is in the desired form.

Examples:
• Getting rid of ε rules (nullable rules)
• Getting rid of sets of rules with a common initial terminal, e.g.,

• A → aB, A → aC become A → aD, D → B | C
• Conversion to normal forms

Lecture Notes 16 Grammars and Normal Forms 2

Normal Forms

If you want to design algorithms, it is often useful to have a limited number of input forms that you have to deal with.

Normal forms are designed to do just that. Various ones have been developed for various purposes.

Examples:

• Clause form for logical expressions to be used in resolution theorem proving
• Disjunctive normal form for database queries so that they can be entered in a query by example grid.
• Various normal forms for grammars to support specific parsing techniques.

Clause Form for Logical Expressions

∀ x : [Roman(x) ∧ know(x, Marcus)] → [hate(x, Caesar) ∨ (∀ y : ∃ z : hate(y, z) → thinkcrazy(x, y))]

becomes

¬Roman(x) ∨ ¬know(x, Marcus) ∨ hate(x, Caesar) ∨ ¬hate(y, z) ∨ thinkcrazy(x, z)

Disjunctive Normal Form for Queries

(category = fruit or category = vegetable)
 and
(supplier = A or supplier = B)

becomes

(category = fruit and supplier = A) or
(category = fruit and supplier = B) or
(category = vegetable and supplier = A) or
(category = vegetable and supplier = B)

Category Supplier Price
fruit A
fruit B
vegetable A
vegetable B

Normal Forms for Grammars

Two of the most common are:

• Chomsky Normal Form, in which all rules are of one of the following two forms:

• X → a, where a ∈ Σ, or
• X → BC, where B and C are nonterminals in G

• Greibach Normal Form, in which all rules are of the following form:
• X → a β, where a ∈ Σ and β is a (possibly empty) string of nonterminals

If L is a context-free language that does not contain ε, then if G is a grammar for L, G can be rewritten into both of these normal
forms.

Lecture Notes 16 Grammars and Normal Forms 3

What Are Normal Forms Good For?
Examples:
• Chomsky Normal Form:

• X → a, where a ∈ Σ, or
• X → BC, where B and C are nonterminals in G

♦ The branching factor is precisely 2. Tree building algorithms can take advantage of that.

• Greibach Normal Form

• X → a β, where a ∈ Σ and β is a (possibly empty) string of nonterminals
♦ Precisely one nonterminal is generated for each rule application. This means that we can put a bound on the number of rule
applications in any successful derivation.

Conversion to Chomsky Normal Form

Let G be a grammar for the context-free language L where ε ∉ L.
We construct G', an equivalent grammar in Chomsky Normal Form by:
0. Initially, let G' = G.
1. Remove from G' all ε productions:

1.1. If there is a rule A → αBβ and B is nullable, add the rule A → αβ and delete the rule B → ε.
Example:

S → aA
A → B | CD
B → ε
B → a
C → BD
D → b
D → ε

Conversion to Chomsky Normal Form

2. Remove from G' all unit productions (rules of the form A → B, where B is a nonterminal):

2.1. Remove from G' all unit productions of the form A → A.
2.2. For all nonterminals A, find all nonterminals B such that A �* B, A ≠ B.
2.3. Create G'' and add to it all rules in G' that are not unit productions.
2.4. For all A and B satisfying 3.2, add to G''

A → y1 | y2 | … where B → y1 | y2 | is in G".
2.5. Set G' to G''.
Example: A → a

 A → B
 A → EF
 B → A
 B → CD
 B → C
 C → ab

At this point, all rules whose right hand sides have length 1 are in Chomsky Normal Form.

Lecture Notes 16 Grammars and Normal Forms 4

Conversion to Chomsky Normal Form

3. Remove from G' all productions P whose right hand sides have length greater than 1 and include a terminal (e.g., A →

aB or A → BaC):
3.1. Create a new nonterminal Ta for each terminal a in Σ.
3.2. Modify each production P by substituting Ta for each terminal a.
3.3. Add to G', for each Ta, the rule Ta → a

Example:

A → aB
A → BaC
A → BbC

Ta → a
Tb → b

Conversion to Chomsky Normal Form

4. Remove from G' all productions P whose right hand sides have length greater than 2 (e.g., A → BCDE)

4.1. For each P of the form A → N1N2N3N4…Nn, n > 2, create new nonterminals M2, M3, … Mn-1.
4.2. Replace P with the rule A → N1M2.
4.3. Add the rules M2 → N2M3, M3 → N3M4, … Mn-1 → Nn-1Nn

Example:

A → BCDE (n = 4)

A → BM2
M2 → C M3
M3 → DE

Lecture Notes 17 Top Down Parsing 1

Top Down Parsing

Read K & S 3.8.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2.
Do Homework 15.

Parsing

Two basic approaches:

Top Down

E � E � E

 E + T . + T
 .
 .
 id

Bottom Up
 E

 E

 T T

 F F F

id + id � id + id � id + id

A Simple Parsing Example

A simple top-down parser for arithmetic expressions, given the grammar

[1] E → E + T
[2] E → T
[3] T → T * F
[4] T → F
[5] F → (E)
[6] F → id
[7] F → id(E)

A PDA that does a top down parse:

(0) (1, ε, ε), (2, E)
(1) (2, ε, E), (2, E+T)
(2) (2, ε, E), (2, T)
(3) (2, ε, T), (2, T*F)
(4) (2, ε, T), (2, F)
(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id)

(7) (2, ε, F), (2, id(E))
(8) (2, id, id), (2, ε)
(9) (2, (, (), (2, ε)
(10) (2,),)), (2, ε)
(11) (2, +, +), (2, ε)
(12) (2, *, *), (2, ε)

Lecture Notes 17 Top Down Parsing

2

How Does It Work?

Example: id + id * id(id)

Stack:

 E

What Does It Produce?

The leftmost derivation of the string. Why?

E � E + T � T + T � F + T � id + T �
 id + T * F � id + F * F � id + id * F �
 id + id * id(E) � id + id * id(T) �

 id + id * id(F) � id + id * id(id)

 E

 E + T

 T T * F

 F F id (E)

 id id T

 F

 id

But the Process Isn't Deterministic

(0) (1, ε, ε), (2, E)
(1) (2, ε, E), (2, E+T) nondeterministic
(2) (2, ε, E), (2, T)
(3) (2, ε, T), (2, T*F) nondeterministic
(4) (2, ε, T), (2, F)
(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id) nondeterministic
(7) (2, ε, F), (2, id(E))
(8) (2, id, id), (2, ε)
(9) (2, (, (), (2, ε)
(10) (2,),)), (2, ε)
(11) (2, +, +), (2, ε)
(12) (2, *, *), (2, ε)

Lecture Notes 17 Top Down Parsing

3

Is Nondeterminism A Problem?
Yes.

In the case of regular languages, we could cope with nondeterminism in either of two ways:
• Create an equivalent deterministic recognizer (FSM)
• Simulate the nondeterministic FSM in a number of steps that was still linear in the length of the input string.

For context-free languages, however,
• The best straightforward general algorithm for recognizing a string is O(n3) and the best (very complicated) algorithm is

based on a reduction to matrix multiplication, which may get close to O(n2).

We'd really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string.

Is It Possible to Eliminate Nondeterminism?

In this case: Yes

In general: No

Some definitions:

• A PDA M is deterministic if it has no two transitions such that for some (state, input, stack sequence) the two transitions

could both be taken.

• A language L is deterministic context-free if L$ = L(M) for some deterministic PDA M.

Theorem: The class of deterministic context-free languages is a proper subset of the class of context-free languages.

Proof: Later.

Adding a Terminator to the Language

We define the class of deterministic context-free languages with respect to a terminator ($) because we want that class to be as
large as possible.

Theorem: Every deterministic CFL (as just defined) is a context-free language.

Proof:

Without the terminator ($), many seemingly deterministic cfls aren't. Example:
 a* ∪ {anbn : n> 0}

Possible Solutions to the Nondeterminism Problem

1) Modify the language

• Add a terminator $
2) Change the parsing algorithm
3) Modify the grammar

Lecture Notes 17 Top Down Parsing

4

Modifying the Parsing Algorithm

What if we add the ability to look one character ahead in the input string?

Example: id + id * id(id)
 ����
E � E + T � T + T � F + T � id + T �
 id + T * F � id + F * F � id + id * F

Considering transitions:

(5) (2, ε, F), (2, (E))
(6) (2, ε, F), (2, id)
(7) (2, ε, F), (2, id(E))

If we add to the state an indication of what character is next, we have:

(5) (2, (, ε, F), (2, (E))
(6) (2, id, ε, F), (2, id)
(7) (2, id, ε, F), (2, id(E))

Modifying the Language

So we've solved part of the problem. But what do we do when we come to the end of the input? What will be the state indicator
then?

The solution is to modify the language. Instead of building a machine to accept L, we will build a machine to accept L$.

Using Lookahead

[1] E → E + T
[2] E → T
[3] T → T * F
[4] T → F
[5] F → (E)
[6] F → id
[7] F → id(E)

(0) (1, ε, ε), (2, E))
(1) (2, ε, E), (2, E+T)
(2) (2, ε, E), (2, T)
(3) (2, ε, T), (2, T*F)
(4) (2, ε, T), (2, F)
(5) (2, (, ε, F), (2, (E))
(6) (2, id, ε, F), (2, id)
(7) (2, id, ε, F),(2, id(E))
(8) (2, id, id), (2, ε)
(9) (2, (, (), (2, ε)
(10) (2,),)), (2, ε)
(11) (2, +, +), (2, ε)
(12) (2, *, *), (2, ε)

For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol
on the stack is F.

Possible Solutions to the Nondeterminism Problem

1) Modify the language

• Add a terminator $
2) Change the parsing algorithm

• Add one character look ahead
3) Modify the grammar

Lecture Notes 17 Top Down Parsing

5

Modifying the Grammar

Getting rid of identical first symbols:

[6] F → id
[7] F → id(E)

(6) (2, id, ε, F),(2, id)
(7) (2, id, ε, F),(2, id(E))

Replace with:

[6'] F → id A
[7'] A → ε
[8'] A → (E)

(6') (2, id, ε, F), (2, id A)
(7') (2, ¬¬¬¬ (, ε, A), (2, ε)
(8') (2, (, ε, A), (2, (E))

The general rule for left factoring:

Whenever A → αβ1
 A → αβ2 …
 A → αβn
are rules with α ≠ ε and n ≥ 2, then replace them by the rules:

A → αA'
 A' → β1
 A' → β2 …
 A' → βn

Modifying the Grammar

Getting rid of left recursion:

[1] E → E + T
[2] E → T

(1) (2, ε, E), (2, E+T)
(2) (2, ε, E), (2, T)

The problem:
 E

 E + T

 E + T
Replace with:

[1] E → T E'
[2] E' → + T E'
[3] E' → ε

(1) (2, ε, E), (2, T E')
(2) (2, ε, E'), (2, + T E')
(3) (2, ε, E'), (2, ε)

Lecture Notes 17 Top Down Parsing

6

Getting Rid of Left Recursion

The general rule for eliminating left recursion:
If G contains the following rules:

A → Aα1
A → Aα2 …
A → Aα3
A → Aαn

A → β1 (where β's do not start with Aα)
A → β2
…
A → βm

and n > 0, then

Replace them with:

A' → α1A'
A' → α2A' …
A' → α3A'
A' → αnA'
A' → ε
A → β1A'
A → β2A'
 …
A → βmA'

Possible Solutions to the Nondeterminism Problem

I. Modify the language

A. Add a terminator $
II. Change the parsing algorithm

A. Add one character look ahead
III. Modify the grammar

A. Left factor
B. Get rid of left recursion

LL(k) Languages

We have just offered heuristic rules for getting rid of some nondeterminism.

We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work.

We define a grammar to be LL(k) if it is possible to decide what production to apply by looking ahead at most k symbols in the
input string.

Specifically, a grammar G is LL(1) iff, whenever
A → α | β are two rules in G:
1. For no terminal a do α and β derive strings beginning with a.
2. At most one of α | β can derive ε.
3. If β �* ε, then α does not derive any strings beginning with a terminal in FOLLOW(A), defined to be the set of terminals

that can immediately follow A in some sentential form.

We define a language to be LL(k) if there exists an LL(k) grammar for it.

Lecture Notes 17 Top Down Parsing

7

Implementing an LL(1) Parser

If a language L has an LL(1) grammar, then we can build a deterministic LL(1) parser for it. Such a parser scans the input Left to
right and builds a Leftmost derivation.

The heart of an LL(1) parser is the parsing table, which tells it which production to apply at each step.
For example, here is the parsing table for our revised grammar of arithmetic expressions without function calls:

V\ΣΣΣΣ id + * () $
E E→TE' E→TE'
E' E'→+TE' E'→ε E'→ε
T T→FT' T→FT'
T' T'→ε T'→*FT' T'→ε T'→ε
F F→id F→(E)

Given input id + id * id, the first few moves of this parser will be:
 E id + id * id$
E→TE' TE' id + id * id$
T→FT' FT'E' id + id * id$
F→id idT'E' id + id * id$
 T'E' + id * id$
T'→ε E' + id * id$

But What If We Need a Language That Isn't LL(1)?

Example:

ST → if C then ST else ST
ST → if C then ST

We can apply left factoring to yield:
 ST → if C then ST S'
 S' → else ST | ε

Now we've procrastinated the decision. But the language is still ambiguous. What if the input is

 if C1 then if C2 then ST1 else ST2

Which bracketing (rule) should we choose?

A common practice is to choose S' → else ST

We can force this if we create the parsing table by hand.

Possible Solutions to the Nondeterminism Problem

I. Modify the language

A. Add a terminator $
II. Change the parsing algorithm

A. Add one character look ahead
B. Use a parsing table
C. Tailor parsing table entries by hand

III. Modify the grammar
A. Left factor
B. Get rid of left recursion

Lecture Notes 17 Top Down Parsing

8

The Price We Pay

Old Grammar
[1] E → E + T
[2] E → T

[3] T → T * F
[4] T → F

[5] F → (E)
[6] F → id
[7] F → id(E)

New Grammar
E → TE'
E' → +TE'
E' → ε
T → FT'
T' → *FT'
T' → ε
F → (E)
F → idA
A → ε
A → (E)

input = id + id + id

 E

 T E'

 F T' + T E'

 id A ε F T' + T E'

 ε id A ε F T' ε

 ε id A ε

Comparing Regular and Context-Free Languages

Regular Languages

• regular exprs.

or
• regular grammars
• = DFSAs
• recognize
• minimize FSAs

Context-Free Languages

• context-free grammars

• = NDPDAs
• parse
• find deterministic grammars
• find efficient parsers

Lecture Notes 18 Bottom Up Parsing 1

Bottom Up Parsing
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Parsing, Section 3.

Bottom Up Parsing
An Example:

[1] E → E + T
[2] E → T
[3] T → T * F
[4] T → F
[5] F → (E)
[6] F → id

id + id * id $

Creating a Bottom Up PDA

There are two basic actions:
1. Shift an input symbol onto the stack
2. Reduce a string of stack symbols to a nonterminal

M will be:
 $/S/
 p q

So, to construct M from a grammar G, we need the following transitions:

(1) The shift transitions:

((p, a, ε), (p, a)), for each a ∈ Σ

(2) The reduce transitions:
 ((p, ε, αR), (p, A)), for each rule A → α in G.

(3) The finish up transition (accept):
 ((p, $, S), (q, ε))

(This is the “bottom-up” CFG to PDA conversion algorithm.)

Lecture Notes 18 Bottom Up Parsing 2

M for Expressions
0 (p, a, ε), (p, a) for each a ∈ Σ
1 (p, ε, T + E), (p, E)
2 (p, ε, T), (p, E)
3 (p, ε, F * T), (p, T)
4 (p, ε, F), (p, T)
5 (p, ε, “)”E”(“), (p, F)
6 (p, ε, id), (p, F)
7 (p, $, E), (q, ε)

trans (action) state unread input stack
 p id + id * id$ ε
 0 (shift) p + id * id$ id
 6 (reduce F → id) p + id * id$ F
 4 (reduce T → F) p + id * id$ T
 2 (reduce E → T) p + id * id$ E
 0 (shift) p id * id$ +E
 0 (shift) p * id$ id+E
 6 (reduce F → id) p * id$ F+E
 4 (reduce T → F) p * id$ T+E (could also reduce)
 0 (shift) p id$ *T+E
 0 (shift) p $ id*T+E
 6 (reduce F → id) p $ F*T+E (could also reduce T → F)
 3 (reduce T → T * F) p $ T+E
 1 (reduce E → E + T) p $ E
 7 (accept) q $ ε

The Parse Tree

 E

 E T

 T T F

 F F

 id + id * id $

Producing the Rightmost Derivation

We can reconstruct the derivation that we found by reading the results of the parse bottom to top, producing:

E �
E+ T �
E+ T* F�
E+ T* id�
E+ F* id�

E+ id* id�
T+ id*id�
F+ id*id�
id+ id*id

This is exactly the rightmost derivation of the input string.

Lecture Notes 18 Bottom Up Parsing 3

Possible Solutions to the Nondeterminism Problem

1) Modify the language

• Add a terminator $

2) Change the parsing algorithm

• Add one character look ahead
• Use a parsing table
• Tailor parsing table entries by hand
•••• Switch to a bottom-up parser

3) Modify the grammar

• Left factor
• Get rid of left recursion

Solving the Shift vs. Reduce Ambiguity With a Precedence Relation

Let's return to the problem of deciding when to shift and when to reduce (as in our example).

We chose, correctly, to shift * onto the stack, instead of reducing T+E to E.

This corresponds to knowing that “+” has low precedence, so if there are any other operations, we need to do them first.

Solution:
1. Add a one character lookahead capability.
2. Define the precedence relation
 P ⊆ (V × {Σ ∪ $})
 top next
 stack input
 symbol symbol

If (a,b) is in P, we reduce (without consuming the input) . Otherwise we shift (consuming the input).

How Does It Work?

We're reconstructing rightmost derivations backwards. So suppose a rightmost derivation contains

βγabx
 � corresponding to a rule A →γa and not some rule X → ab
βAbx
 �*
S

We want to undo rule A. So if the top of the stack is

 a
 γ and the next input character is b, we reduce
 now, before we put the b on the stack.

To make this happen, we put (a, b) in P. That means we'll try to reduce if a is on top of the stack and b is the next character. We
will actually succeed if the next part of the stack is γ.

Lecture Notes 18 Bottom Up Parsing 4

Example

T*F
 � corresponding to a rule T→T*F
 T
 �* Input: id * id * id
 E

We want to undo rule T. So if the top of the stack is
 F
 * and the next input character is anything legal, we reduce.
 T

The precedence relation for expressions:

V\Σ () id + * $
(
) • • • •
id • • • •
+
*
E
T • • •
F • • • •

A Different Example

E+T
 �* corresponding to a rule E→E+T
 E

We want to undo rule E if the input is E + T $
 or E + T + id
 but not E + T * id

The top of the stack is
 T
 +
 E

The precedence relation for expressions:

V\Σ () id + * $
(
) • • • •
id • • • •
+
*
E
T • • •
F • • • •

Lecture Notes 18 Bottom Up Parsing 5

What About If Then Else?

ST → if C then ST else ST
ST → if C then ST

What if the input is

 if C1 then if C2 then ST1 else ST2

 1 2

Which bracketing (rule) should we choose?

We don't put (ST, else) in the precedence relation, so we will not reduce at 1. At 2, we reduce:

ST2 2
else
ST1 1
then
C2
if
then
C1
if

Resolving Reduce vs. Reduce Ambiguities

0 (p, a, ε), (p, a) for each a ∈ Σ
1 (p, ε, T + E), (p, E)
2 (p, ε, T), (p, E)
3 (p, ε, F * T), (p, T)
4 (p, ε, F), (p, T)
5 (p, ε, “)” E “(“), (p, F)
6 (p, ε, id), (p, F)
7 (p, $, E), (q, ε)

trans (action) state unread input stack
 p id + id * id$ ε
 0 (shift) p + id * id$ id
 6 (reduce F → id) p + id * id$ F
 4 (reduce T → F) p + id * id$ T
 2 (reduce E → T) p + id * id$ E
 0 (shift) p id * id$ +E
 0 (shift) p * id$ id+E
 6 (reduce F → id) p * id$ F+E
 4 (reduce T → F) p * id$ T+E (could also reduce)
 0 (shift) p id$ *T+E
 0 (shift) p $ id*T+E
 6 (reduce F → id) p $ F*T+E (could also reduce T →→→→ F)
 3 (reduce T → T * F) p $ T+E
 1 (reduce E → E + T) p $ E
 7 (accept) q $ ε

Lecture Notes 18 Bottom Up Parsing 6

The Longest Prefix Heuristic

A simple to implement heuristic rule, when faced with competing reductions, is:

 Choose the longest possible stack string to reduce.
Example:
 T
 �
Suppose the stack has F * T + E
 �
 T

We call grammars that become unambiguous with the addition of a precedence relation and the longest string reduction heuristic
weak precedence grammars.

Possible Solutions to the Nondeterminism Problem in a Bottom Up Parser

1) Modify the language

• Add a terminator $

2) Change the parsing algorithm

• Add one character lookahead
• Use a precedence table
• Add the longest first heuristic for reduction
• Use an LR parser

3) Modify the grammar

LR Parsers

LR parsers scan each input Left to right and build a Rightmost derivation. They operate bottom up and deterministically using a
parsing table derived from a grammar for the language to be recognized.

A grammar that can be parsed by an LR parser examining up to k input symbols on each move is an LR(k) grammar. Practical
LR parsers set k to 1.

An LALR (or Look Ahead LR) parser is a specific kind of LR parser that has two desirable properties:
• The parsing table is not huge.
• Most useful languages can be parsed.

Another big reason to use an LALR parser:

There are automatic tools that will construct the required parsing table from a grammar and some optional additional
information.

We will be using such a tool: yacc

Lecture Notes 18 Bottom Up Parsing 7

How an LR Parser Works

 Input String

 state
 state Lexical Analyzer
 state
 state
 Output Token
 Stack

 Parsing Table

In simple cases, think of the "states" on the stack as corresponding to either terminal or nonterminal characters.

In more complicated cases, the states contain more information: they encode both the top stack symbol and some facts about
lower objects in the stack. This information is used to determine which action to take in situations that would otherwise be
ambiguous.

The Actions the Parser Can Take

At each step of its operation, an LR parser does the following two things:

1) Based on its current state, it decides whether it needs a lookahead token. If it does, it gets one.
2) Based on its current state and the lookahead token if there is one, it chooses one of four possible actions:

• Shift the lookahead token onto the stack and clear the lookahead token.
• Reduce the top elements of the stack according to some rule of the grammar.
• Detect the end of the input and accept the input string.
• Detect an error in the input.

Lecture Notes 18 Bottom Up Parsing 8

A Simple Example
0: S → rhyme $end ;
1: rhyme → sound place ;
2: sound → DING DONG ;
3: place → DELL

state 0 (empty)
 $accept : _rhyme $end
 DING shift 3
 . error
 rhyme goto 1
 sound goto 2
state 1 (rhyme)
 $accept : rhyme_$end
 $end accept
 . error
state 2 (sound)
 rhyme : sound_place
 DELL shift 5
 . error
 place goto 4
state 3 (DING)
 sound : DING_DONG
 DONG shift 6
 . error
state 4 (place)
 rhyme : sound place_ (1)
 . reduce 1

⇐ the rule this came from
 state 3
 current position of input
 if none of the others match
 push state 2

 if we see EOF, accept

 by rule 1

state 5 (DELL)
 place : DELL_ (3)
 . reduce 3
state 6 (DONG)
 sound : DING DONG_ (2)
 . reduce 2

When the States Are More than Just Stack Symbols

[1] <stmt> → procname (<paramlist>)
[2] <stmt> → <exp> := <exp>
[3] <paramlist> → <paramlist>, <param> | <param>
[4] <param> → id
[5] <exp> → arrayname (<subscriptlist>)
[6] <subscriptlist> → <subscriptlist>, <sub> | <sub>
[7] <sub> → id

Example:
 id
 procname (id) (
 procname

Should we reduce id by rule 4 or rule 7?

 procid
 proc(
 procname

The parsing table can get complicated as we incorporate more stack history into the states.

Lecture Notes 18 Bottom Up Parsing 9

The Language Interpretation Problem:

 Input: -(17 * 83.56) + 72 / 12

 Output: -1414.52

The Language Interpretation Problem:

 Input: -(17 * 83.56) + 72 / 12

 Compute the answer

 Output: -1414.52

The Language Interpretation Problem:

 Input: -(17 * 83.56) + 72 / 12

 Parse the input ✸2

 A tree of actions, whose structure corresponds to the structure of the input.

 Compute the answer

 Output: -1414.52

Lecture Notes 18 Bottom Up Parsing 10

The Language Interpretation Problem:

 Input: -(17 * 83.56) + 72 / 12

 Lexical analysis of the input ✸1

A string of input tokens, corresponding to the primitive objects of which the input is composed:
 -(id * id) + id / id

 Parse the input ✸2

 A tree of actions, whose structure corresponds to the structure of the input.

 Compute the answer

 Output: -1414.52

yacc and lex

 Lexical analysis of the input ✸1

 Parse the input ✸2

Where do the procedures to do these things come from?

 regular expressions that describe patterns

 lex

 lexical analyzer ✸1

 grammar rules and other facts about the language

 yacc

 parser ✸2

Lecture Notes 18 Bottom Up Parsing 11

lex

The input to lex: definitions
 %%
 rules
 %%
 user routines

All strings that are not matched by any rule are simply copied to the output.

Rules:

[\t]+; get rid of blanks and tabs

[A-Za-z][A-Za-z0-9]* return(ID); find identifiers

[0-9]+ { sscanf(yytext, "%d", &yylval);
 return (INTEGER); } return INTEGER and put the value in yylval

How Does lex Deal with Ambiguity in Rules?

lex invokes two disambiguating rules:

1. The longest match is prefered.
2. Among rules that matched the same number of characters, the rule given first is preferred.

Example:
 integer action 1
 [a-z]+ action 2

input: integers take action 2
 integer take action 1

yacc

(Yet Another Compiler Compiler)
The input to yacc:

 declarations
 %%
 rules
 %%
 #include "lex.yy.c"
 any other programs

This structure means that lex.yy.c will be compiled as part of y.tab.c, so it will have access to the same token names.

Declarations:

 %token name1 name2 …

Rules:

 V : a b c
 V : a b c {action}
 V : a b c {$$ = $2} returns the value of b

Lecture Notes 18 Bottom Up Parsing 12

Example
Input to yacc:
 %token DING DONG DELL
 %%
 rhyme : sound place ;
 sound : DING DONG ;
 place : DELL
 %%
 #include "lex.yy.c"

state 0 (empty)
 $accept : _rhyme $end
 DING shift 3
 . error
 rhyme goto 1
 sound goto 2
state 1 (rhyme)
 $accept : rhyme_$end
 $end accept
 . error
state 2 (sound)
 rhyme : sound_place
 DELL shift 5
 . error
 place goto 4

state 3 (DING)
 sound : DING_DONG
 DONG shift 6
 . error
state 4 (place)
 rhyme : sound place_ (1)
 . reduce 1
state 5 (DELL)
 place : DELL_ (3)
 . reduce 3
state 6 (DONG)
 sound : DING DONG_ (2)
 . reduce 2

How Does yacc Deal with Ambiguity in Grammars?

The parser table that yacc creates represents some decision about what to do if there is ambiguity in the input grammar rules.
How does yacc make those decisions? By default, yacc invokes two disambiguating rules:
1. In the case of a shift/reduce conflict, shift.
2. In the case of a reduce/reduce conflict, reduce by the earlier grammar rule.
yacc tells you when it has had to invoke these rules.

Shift/Reduce Conflicts - If Then Else

ST → if C then ST else ST
ST → if C then ST

What if the input is

 if C1 then if C2 then ST1 else ST2

 1 2
Which bracketing (rule) should we choose?

yacc will choose to shift rather than reduce.

ST2 2
else
ST1 1
then
C2
if
then
C1
if

Lecture Notes 18 Bottom Up Parsing 13

Shift/Reduce Conflicts - Left Associativity

We know that we can force left associativity by writing it into our grammars.

Example:

E → E + T E
E → T
T → id E T

 E T

 T

 id + id + id

What does the shift rather than reduce heuristic if we instead write:

E → E + E id + id + id
E → id

Shift/Reduce Conflicts - Operator Precedence

Recall the problem: input: id + id * id

 T Should we reduce or shift on * ?
 +
 E

The "always shift" rule solves this problem.

But what about: id * id + id

 T Should we reduce or shift on + ?
 *
 E This time, if we shift, we'll fail.

One solution was the precedence table, derived from an unambiguous grammar, which can be encoded into the parsing table of an
LR parser, since it tells us what to do for each top-of-stack, input character combination.

Operator Precedence

We know that we can write an unambiguous grammar for arithmetic expressions that gets the precedence right. But it turns out
that we can build a faster parser if we instead write:

 E → E + E | E * E | (E) | id

And, in addition, we specify operator precedence. In yacc, we specify associativity (since we might not always want left) and
precedence using statements in the declaration section of our grammar:

 %left '+' '-'
 %left '*' '/'

Operators on the first line have lower precedence than operators on the second line, and so forth.

Lecture Notes 18 Bottom Up Parsing 14

Reduce/Reduce Conflicts
Recall:

2. In the case of a reduce/reduce conflict, reduce by the earlier grammar rule.

This can easily be used to simulate the longest prefix heuristic, "Choose the longest possible stack string to reduce."

[1] E → E + T
[2] E → T
[3] T → T * F
[4] T → F
[5] F → (E)
[6] F → id

Generating an Executable System

Step 1: Create the input to lex and the input to yacc.

Step 2:
 $ lex ourlex.l creates lex.yy.c
 $ yacc ouryacc.y creates y.tab.c
 $ cc -o ourprog y.tab.c -ly -ll actually compiles y.tab.c and lex.yy.c, which is included.
 -ly links the yacc library, which includes main and yyerror.
 -ll links the lex library
Step 3: Run the program
 $ ourprog

Runtime Communication Between lex and yacc-Generated Modules

 Parser read the value of the token

 ask return
 for a a yylval
 token token

 Lexical Analyer
 set the value of the token

Summary

Efficient parsers for languages with the complexity of a typical programming language or command line interface:

• Make use of special purpose constructs, like precedence, that are very important in the target languages.

• May need complex transition functions to capture all the relevant history in the stack.

• Use heuristic rules, like shift instead of reduce, that have been shown to work most of the time.

• Would be very difficult to construct by hand (as a result of all of the above).

• Can easily be built using a tool like yacc.

Lecture Notes 19 Languages That Are and Are Not Context Free 1

Languages That Are and Are Not Context-Free
Read K & S 3.5, 3.6, 3.7.
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free

Languages
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma.
Do Homework 16.

Deciding Whether a Language is Context-Free

Theorem: There exist languages that are not context-free.

Proof:
(1) There are a countably infinite number of context-free languages. This true because every description of a context-free
language is of finite length, so there are a countably infinite number of such descriptions.

(2) There are an uncountable number of languages.

Thus there are more languages than there are context-free languages.

So there must exist some languages that are not context-free.

Example: {anbncn}

Showing that a Language is Context-Free

Techniques for showing that a language L is context-free:

1. Exhibit a context-free grammar for L.
2. Exhibit a PDA for L.
3. Use the closure properties of context-free languages.

Unfortunately, these are weaker than they are for regular languages.

The Context-Free Languages are Closed Under Union

Let G1 = (V1, Σ1, R1, S1) and
 G2 = (V2, Σ2, R2, S2)

Assume that G1 and G2 have disjoint sets of nonterminals, not including S.

Let L = L(G1) ∪ L(G2)

We can show that L is context-free by exhibiting a CFG for it:

The Context-Free Languages are Closed Under Concatenation

Let G1 = (V1, Σ1, R1, S1) and
 G2 = (V2, Σ2, R2, S2)

Assume that G1 and G2 have disjoint sets of nonterminals, not including S.

Let L = L(G1) L(G2)

We can show that L is context-free by exhibiting a CFG for it:

Lecture Notes 19 Languages That Are and Are Not Context Free 2

The Context-Free Languages are Closed Under Kleene Star

Let G1 = (V1, Σ1, R1, S1)

Assume that G1 does not have the nonterminal S.

Let L = L(G1)*

We can show that L is context-free by exhibiting a CFG for it:

What About Intersection and Complement?

We know that they share a fate, since

L1 ∩ L2 = L1 ∪ L2

But what fate?

We proved closure for regular languages two different ways. Can we use either of them here:
1. Given a deterministic automaton for L, construct an automaton for its complement. Argue that, if closed under complement

and union, must be closed under intersection.
2. Given automata for L1 and L2, construct a new automaton for L1 ∩ L2 by simulating the parallel operation of the two original

machines, using states that are the Cartesian product of the sets of states of the two original machines.

More on this later.

 The Intersection of a Context-Free Language and a Regular Language is Context-Free

L = L(M1), a PDA = (K1, Σ, Γ1, ∆1, s1, F1)
R = L(M2), a deterministic FSA = (K2, Σ, δ, s2, F2)

We construct a new PDA, M3, that accepts L ∩ R by simulating the parallel execution of M1 and M2.

M = (K1 × K2, Σ, Γ1, ∆, (s1, s2), F1 × F2)

Insert into ∆:

For each rule ((q1, a, β), (p1, γ)) in ∆1,
and each rule (q2, a, p2) in δ,
 (((q1, q2), a, β), ((p1, p2), γ))

For each rule ((q1, ε, β), (p1, γ) in ∆1,
and each state q2 in K2,
 (((q1, q2), ε, β), ((p1, q2), γ))

This works because: we can get away with only one stack.

Lecture Notes 19 Languages That Are and Are Not Context Free 3

Example

L = anbn ∩ (aa)*(bb)*

 b/a/ a
 A B 1 2
 a//a b/a/ a
 b
 b
 3 4
 b
((A, a, ε), (A, a)) (1, a, 2)
((A, b, a), (B, ε)) (1, b, 3)
((B, b, a), (B, ε)) (2, a, 1)
 (3, b, 4)
 (4, b, 3)
A PDA for L:

Don’t Try to Use Closure Backwards

One Closure Theorem:
 If L1 and L2 are context free, then so is

 L3 = L1 ∪ L2.

But what if L3 and L1 are context free? What can we say about L2?

 L3 = L1 ∪ L2.

Example:

 anbnc* = anbnc* ∪ anbncn

The Context-Free Pumping Lemma

This time we use parse trees, not automata as the basis for our argument.

 S

 A

 A

 u v x y z

If L is a context-free language, and if w is a string in L where |w| > K, for some value of K, then w can be rewritten as uvxyz,
where |vy| > 0 and |vxy| ≤ M, for some value of M.

uxz, uvxyz, uvvxyyz, uvvvxyyyz, etc. (i.e., uvnxynz, for n ≥ 0) are all in L.

Lecture Notes 19 Languages That Are and Are Not Context Free 4

Some Tree Basics

 root

 height
nodes

 leaves

 yield

Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is ≤ BH.

Proof: By induction on H. If H is 1, then just a single rule applies. By definition of fanout, the longest yield is B.
Assume true for H = n.
Consider a tree with H = n + 1. It consists of a root, and some number of subtrees, each of which is of height ≤ n (so induction
hypothesis holds) and yield ≤ Bn. The number of subtrees ≤ B. So the yield must be ≤ B(Bn) or Bn+1.

What Is K?

 S

 A

 A

 u v x y z

Let T be the number of nonterminals in G.
If there is a tree of height > T, then some nonterminal occurs more than once on some path. If it does, we can pump its yield.
Since a tree of height = T can produce only strings of length ≤ BT, any string of length > BT must have a repeated nonterminal and
thus be pumpable.

So K = BT, where T is the number of nonterminals in G and B is the branching factor (fanout).

What is M?

 S

 A

 A

 u v x y z

Assume that we are considering the bottom most two occurrences of some nonterminal. Then the yield of the upper one is at
most BT+1 (since only one nonterminal repeats).

So M = BT+1.

Lecture Notes 19 Languages That Are and Are Not Context Free 5

The Context-Free Pumping Lemma

Theorem: Let G = (V, Σ, R, S) be a context-free grammar with T nonterminal symbols and fanout B. Then any string w ∈ L(G)
where |w| > K (BT) can be rewritten as w = uvxyz in such a way that:
• |vy| > 0,
• |vxy| ≤ M (BT+1), (making this the "strong" form),
• for every n ≥ 0, uvnxynz is in L(G).

Proof:
Let w be such a string and let T be the parse tree with root labeled S and with yield w that has the smallest number of leaves
among all parse trees with the same root and yield. T has a path of length at least T+1, with a bottommost repeated nonterminal,
which we'll call A. Clearly v and y can be repeated any number of times (including 0). If |vy| = 0, then there would be a tree with
root S and yield w with fewer leaves than T. Finally, |vxy| ≤ BT+1.

An Example of Pumping

L = {anbncn : n≥ 0}

Choose w = aibici where i > �K/3� (making |w| > K)

 S

 A

 A

 u v x y z

Unfortunately, we don't know where v and y fall. But there are two possibilities:
1. If vy contains all three symbols, then at least one of v or y must contain two of them. But then uvvxyyz contains at least one

out of order symbol.
2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols.

Using the Strong Pumping Lemma for Context Free Languages
If L is context free, then
 There exist K and M (with M ≥ K) such that
 For all strings w, where |w| > K,
 (Since true for all such w, it must be true for any paricular one, so you pick w)
 (Hint: describe w in terms of K or M)

 there exist u, v, x, y, z such that w = uvxyz and |vy| > 0, and
 |vxy| ≤ M, and
 for all n ≥ 0, uvnxynz is in L.

We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria. To do that, we just need to
focus on possible values for v and y, the pumpable parts. So we show that all possible picks for v and y violate at least one of
the criteria.

Write out a single string, w (in terms of K or M) Divide w into regions.

For each possibility for v and y (described in terms of the regions defined above), find some value n such that uvnxynz is not in L.
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in). Your value for n may differ for different cases.

Lecture Notes 19 Languages That Are and Are Not Context Free 6

 v y n why the resulting string is not in L

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

Convince the reader that there are no other cases.

Q. E. D.

A Pumping Lemma Proof in Full Detail

Proof that L = {anbncn : n≥ 0} is not context free.

Suppose L is context free. The context free pumping lemma applies to L. Let M be the number from the pumping lemma.
Choose w = aMbMcM. Now w ∈ L and |w| > M ≥ K. From the pumping lemma, for all strings w, where |w| > K, there exist u, v, x,
y, z such that w = uvxyz and |vy| > 0, and |vxy| ≤ M, and for all n ≥ 0, uvnxynz is in L. There are two main cases:

1. Either v or y contains two or more different types of symbols (“a”, “b” or “c”). In this case, uv2xy2z is not of the form
a*b*c* and hence uv2xy2z ∉ L.

2. Neither v nor y contains two or more different types of symbols. In this case, vy may contain at most two types of
symbols. The string uv0xy0z will decrease the count of one or two types of symbols, but not the third, so uv0xy0z ∉ L

Cases 1 and 2 cover all the possibilities. Therefore, regardless of how w is partitioned, there is some uvnxynz that is not in L.
Contradiction. Therefore L is not context free.

Note: the underlined parts of the above proof is “boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

Context-Free Languages Over a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.
Examples:

L = {anbn}
L′ = {anan}

= {a2n}
= {w ∈ {a}* : |w| is even}

L = {wwR : w ∈ {a, b}*}
L′ = {wwR : w ∈ {a}*}
 = {ww: w ∈ {a}*}
 = {w ∈ {a}* : |w| is even}

L = {anbm : n, m ≥ 0 and n ≠ m}
L′ = {anam : n, m ≥ 0 and n ≠ m}
 =

Proof: See Parikh's Theorem

Lecture Notes 19 Languages That Are and Are Not Context Free 7

 Another Language That Is Not Context Free
L = {an : n ≥ 1 is prime}

Two ways to prove that L is not context free:

1. Use the pumping lemma:
Choose a string w = an such that n is prime and n > K.

w = aaaaaaaaaaaaaaaaaaaaaaa
 u v x y z
Let vy = ap and uxz = ar. Then r + kp must be prime for all values of k. This can't be true, as we argued to show that L was not

regular.

2. |ΣL| = 1. So if L were context free, it would also be regular. But we know that it is not. So it is not context free either.

Using Pumping and Closure

L = {w ∈ {a, b, c}* : w has an equal number of a's, b's, and c's}

L is not context free.
Try pumping: Let w = aKbKcK

Now what?

Using Intersection with a Regular Language to Make Pumping Tractable

L = {tt : t ∈ {a, b}* }

Let's try pumping: |w| > K

 t t
 u v x y z

What if u is ε,
 v is w,
 x is ε,
 y is w, and
 z is ε

Then all pumping tells us is that tntn is in L.

Lecture Notes 19 Languages That Are and Are Not Context Free 8

L = {tt : t ∈∈∈∈ {a, b}* }

What if we let |w| > M, i.e. choose to pump the string aMbaMb:

Now v and y can't be t, since |vxy| ≤ M:

 t t
 u v x y z

Suppose |v| = |y|. Now we have to show that repeating them makes the two copies of t different. But we can’t.

L = {tt : t ∈∈∈∈ {a, b}* }

But let's consider L' = L ∩ a*b*a*b*

This time, we let |w| > 2M, and the number of both a's and b's in w >M:

 1 2 3 4
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb
 t t
 u v x y z

Now we use pumping to show that L' is not context free.

First, notice that if either v or y contains both a's and b's, then we immediately violate the rules for L' when we pump.

So now we know that v and y must each fall completely in one of the four marked regions.

L' = {tt : t ∈∈∈∈ {a, b}* } ∩∩∩∩ a*b*a*b*

|w| > 2M, and the number of both a's and b's in w >M:

 1 2 3 4
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb
 t t
 u v x y z

Consider the combinations of (v, y):

(1,1)

(2,2)

(3,3)

(4,4)

(1,2)

(2,3)

(3,4)

(1,3)

(2,4)

(1,4)

Lecture Notes 19 Languages That Are and Are Not Context Free 9

The Context-Free Languages Are Not Closed Under Intersection

Proof: (by counterexample)

Consider L = {anbncn: n ≥ 0}

L is not context-free.

Let L1 = {anbncm: n, m ≥ 0} /* equal a's and b's

L2 = {ambncn: n, m ≥ 0} /* equal b's and c's

Both L1 and L2 are context-free.

But L = L1 ∩ L2.

So, if the context-free languages were closed under intersection, L would have to be context-free. But it isn't.

The Context-Free Languages Are Not Closed Under Complementation

Proof: (by contradiction)

By definition:

L1 ∩ L2 = L1 ∪ L2

Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily
be closed under intersection. But we just showed that they are not. Thus they are not closed under complementation.

 The Deterministic Context-Free Languages Are Closed Under Complement
Proof:

Let L be a language such that L$ is accepted by the deterministic PDA M. We construct a deterministic PDA M' to accept (the
complement of L)$, just as we did for FSMs:

1. Initially, let M' = M.
2. M' is already deterministic.
3. Make M' simple. Why?
4. Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including:

• Transitions that are required to assure that for all input, stack combinations some transition can be followed.
• If some state q has a transition on (ε, ε) and if it does not later lead to a state that does consume something then

make a transiton on (ε, ε) to the dead state.
5. Swap final and nonfinal states.
6. Notice that M′ is still deterministic.

Lecture Notes 19 Languages That Are and Are Not Context Free 10

An Example of the Construction

L = anbn M accepts L$ (and is deterministic):

 a//a b/a/
 b/a/ $/ε/
 1 2 3

 $/ε/

Set M = M'. Make M simple.
 a/a/aa
 a/Z/aZ b/a/
 ε/ε/Z b/a/ $/Z/
 0 1 2 3

 $/Z/

The Construction, Continued

Add dead state(s) and swap final and nonfinal states:
 a/a/aa
 a/Z/aZ b/a/
 ε/ε/Z b/a/ $/Z/
 0 1 2 3

 $/Z/

 b/Z/, $/a/
 a//, $/a/, b/Z/
 4

 a//, b//, $//, ε/a/, ε/Z/

Issues: 1) Never having the machine die

2) ¬ (L$) ≠ (¬L)$
3) Keeping the machine deterministic

Deterministic vs. Nondeterministic Context-Free Languages

Theorem: The class of deterministic context-free languages is a proper subset of the class of context-free languages.

Proof: Consider L = {anbmcp : m ≠ n or m ≠ p} L is context free (we have shown a grammar for it).

But L is not deterministic. If it were, then its complement L1 would be deterministic context free, and thus certainly context free.
But then

L2 = L1 ∩ a*b*c* (a regular language)
would be context free. But
 L2 = {anbncn : n ≥ 0}, which we know is not context free.

Thus there exists at least one context-free language that is not deterministic context free.

Note that deterministic context-free languages are not closed under union, intersection, or difference.

Lecture Notes 19 Languages That Are and Are Not Context Free 11

Decision Procedures for CFLs & PDAs

Decision Procedures for CFLs

There are decision procedures for the following (G is a CFG):

• Deciding whether w ∈ L(G).
• Deciding whether L(G) = ∅ .
• Deciding whether L(G) is finite/infinite.

Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form. Why?

Theorem: For any context free grammar G, there exists a number n such that:

1. If L(G) ≠ ∅ , then there exists a w ∈ L(G) such that |w| < n.
2. If L(G) is infinite, then there exists w ∈ L(G) such that n ≤ |w| < 2n.

There are not decision procedures for the following:

• Deciding whether L(G) = Σ*.
• Deciding whether L(G1) = L(G2).

If we could decide these problems, we could decide the halting problem. (More later.)

Decision Procedures for PDA’s

There are decision procedures for the following (M is a PDA):

• Deciding whether w ∈ L(M).
• Deciding whether L(M) = ∅ .
• Deciding whether L(M) is finite/infinite.

Convert M to its equivalent PDA and use the corresponding CFG decision procedure. Why avoid using PDA’s directly?

There are not decision procedures for the following:

• Deciding whether L(M) = Σ*.
• Deciding whether L(M1) = L(M2).

If we could decide these problems, we could decide the halting problem. (More later.)

Lecture Notes 19 Languages That Are and Are Not Context Free 12

Comparing Regular and Context-Free Languages

Regular Languages

• regular exprs.

• or
• regular grammars
• recognize
• = DFSAs
• recognize
• minimize FSAs

• closed under:

∗ concatenation
∗ union
∗ Kleene star
∗ complement
∗ intersection

• pumping lemma
• deterministic = nondeterministic

Context-Free Languages

• context-free grammars

• parse
• = NDPDAs
• parse
• find deterministic grammars
• find efficient parsers
• closed under:

∗ concatenation
∗ union
∗ Kleene star

• intersection w/ reg. langs
• pumping lemma
• deterministic ≠ nondeterministic

Languages and Machines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular

Languages

FSMs
 D ND

PDAs

