Context-Free Grammars

ReadK & S3.1

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Context-Free Grammars

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars.
Do Homework 11.

Context-Free Grammar s, Languages, and Pushdown Automata

Context-Free
Language

Context-Free
Grammar

Accepts

Pushdown
Automaton

Grammar s Define L anguages
Think of grammars as either generators or acceptors.

Example: L ={w O{a b}* : |w|iseven}

Regular Expression Regular Grammar
S-¢
(aal &b O ba O bb)* S ar
T- a
T nd b
T - as
T - bS
Derivation choose aa S
(Generate) choose ab a '(
yields £
4T
b
aaahb a aab
Parse (Accept) use corresponding FSM

Lecture Notes 12 Context-Free Grammars

Derivation is Not Necessarily Unique

Example: L ={w O{a, b}* : thereisat least one a}

Regular Expression Regular Grammar
(ad by*a(al b)* S-a
S - bS
choose afrom (a O b) S- aS
choose afrom (a O b) S ar
choose a T-a
T — b
choose a T ar
choose afrom (a O b) T - bT
choose afrom (a O b)
S S
is a1
s AT
a a

M or e Powerful Grammars
Regular grammars must always produce strings one character at atime, moving left to right.
But sometimes it's more natural to describe generation more flexibly.

Example 1: L = ab*a

S .. aBa S_.aB
B¢ VS. B - a

Example2: L =ab*d"

S-B

S - aSa

B¢

B - bB
Key distinction: Example 1 has no recursion on the nonregular rule.

Context-Free Grammars
Remove all restrictions on the form of the right hand sides.
S - abDeFGab

Keep requirement for single non-terminal on left hand side.

S-

butnot ASB -~ or aSbh - or ab -

Examples: balanced parentheses an"
S-¢ S - aSh
S SS So ¢
S-(9

Lecture Notes 12 Context-Free Grammars

Context-Free Grammars

A context-free grammar G isaquadruple (V, Z, R, S), where:

eV istherule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in stringsin
the language) and terminals,

e 2 (theset of terminals) isasubset of V,
e R (theset of rules) isafinite subset of (V - Z) x V*,
e S(thestart symbol) isan element of V - X.

X =g Y isabinary relation where x, y 0 V* such that x = aAB and y = ax3 for somerule A X inR.
Any sequence of the form
Wop =g W1 =>cWo =g ... =Wy

eg., (9= (S9=((99
iscalled aderivation in G. Eachw; iscalled asentingl form.

Thelanguage generated by Gis {w O Z* : S=g* w}
A language L iscontext freeif L = L(G) for some context-free grammar G.

Example Derivations

G=(W, 2, R,S), where

W={S 05,
={a b},
R= {S-a
S . aS,
S . ash}
S S
a_ _S a S b
&S b &5 b
a a s
/Sib s
a a

Another Example - Unequal a'sand b's

L={a™: n#m} S- A [* more asthan b's
S-B /* more b'sthan a's
G=(W, Z,R,S), where A-a
W={ab,S A, B}, A - aA
z={a b}, A - aAb
R= B-b
B - Bb
B - aBb

Lecture Notes 12 Context-Free Grammars 3

English

S - NP VP the boys run

NP - the NP1 |NP1 big boys run

NP1 - ADJ NP1|N the youngest boy runs

ADJ - big | youngest | oldest

N - boy | boys the youngest oldest boy runs
VP -V |V NP the boy run

V - run|runs i : .
Who did you say Bill saw coming out of the hotel?

Arithmetic Expressions
The Language of Simple Arithmetic Expressions

G=(V,Z, R, E), where
V={+%*IidT,F E},

> ={+*,id},
R={ E-id
E-E+E
E-E*E}
E E
E + E /E|\ * E
||d E/’I‘\E E + E ||d
| | | |
id id id id
id + (id * id) (id + id) * id

Arithmetic Expressions -- A Better Way

The Language of Simple Arithmetic Expressions

G=(V, Z, R, E), where Examples:
V={+%*¢),id T, FE},
={+"*()id}, id+id*id
R={ E-E+T
E-T
T-T*F
T.F id*id*id
F- (B
F - id }

Lecture Notes 12 Context-Free Grammars

BNF
Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars.
Main idea: give descriptive names to nonterminals and put them in angle brackets.

Example: arithmetic expressions:
(expression)y — {expression) + (term)
(expressiony - (term)
(term)y — (term) * (factor)
(term) - (factor)
(factor) — ({expression))
(factor) - (id)

The Language of Boolean L ogic

{ E-E=EL
E_ElL
El - E1OE2
El - E2
E2 - E2JE3
E2 - E3
E3 - - E4
E3 - E4
E4 - (E)
E4 - id }

Boolean Logicisn't Regular

Suppose it were regular. Then thereisan N as specified in the pumping theorem.
Let w be astring of length 2N + 1 + 2|id| of the form:

w= (_(_(_(’\](_(id)))))):id

Xy
y = (“for somek > 0 because [xy| < N.

Then the string that isidentical to w except that it has k additional ('s at the beginning would also be in the language. But it can't
be because the parentheses would be mismatched. So the language is not regular.

Lecture Notes 12 Context-Free Grammars 5

All Regular Languages Are Context Free

(1) Every regular language can be described by aregular grammar. We know this because we can derive aregular grammar from
any FSM (aswell asvice versa). Regular grammars are special cases of context-free grammars.

ab

ab
(2) The context-free languages are precisely the languages accepted by NDPDAs. But every FSM isa PDA that doesn't bother
with the stack. So every regular language can be accepted by a NDPDA and is thus context-free.

(3) Context-free languages are closed under union, concatenation, and Kleene *, and € and each single character in X are clearly
context free.

Lecture Notes 12 Context-Free Grammars 6

Read K & S3.2

Parse Trees

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Derivations and Parse Trees.

Do Homework 12.

Regular languages:

Parse Trees

We care about recognizing patterns and taking appropriate actions.

Example: A parity checker

Context free languages:

We care about structure.

E - id
E-E+E
E-E*E

Structure

— T,

id E * E
id id
id + (id * id)

Par se Trees Capture Essential Structure

E + E /I\ * E
id E * E E + E id
id id id id
id + (id * id) (id + id) * id

Lecture Notes 13 Parse Trees

Parse Treesare Just Trees
/o «
\ height
nodes —p K /C\
)) i / e
| |

yield

r oot

Leaves are all labeled with terminals or €.

Other nodes are labeled with nonterminals.

A path is asequence of nodes, starting at the root, ending at a leaf, and following branches in the tree.
The length of the yield of any tree T with height H and branching factor (fanout) B is<

Derivations
To capture structure, we must capture the path we took through the grammar. Derivations do that.
So ¢
S SS
S-(9
1 2 3 4 5 6
S=S85=(95=((9)S= (0)S= (NS = (0)0
S=S85= (5= ((9)S= ((9)(9 = (NS = ()0
1 2 3 5 4 6
S
/\
S S
— [T — T
(S) (S)
/I\ |
(?) £
€
Alternative Derivations
So ¢
S- SS
S- (9

S=S5=(9S=((9)S= (0)S= (0)S = (D))
S=S5=S55= S(9S= ((9))S= S(()S= S(O)S) = HA0)0= (10

S S
(S) (S) S S (S)
T | | I\ |
(|S) 3 e (|S) €
€ (S)
's

Lecture Notes 13 Parse Trees

Ordering Derivations
Consider two derivations:

1 2 3 4 5 6 7
S=S5=(9S=((9)S= (0)s= (XS = (D)0

S=S5=(95=((9)S= (NS = (XS = (N0

1 2 3 4 5 6 7

We can write these, or any, derivation as We say that D, precedes D,, written D;1< Dy, if:
Di=Xi 2> X =2>X3=> ... = Xy e D;and D, arethe samelength > 1, and
D=Xi = X' =X = ... =X, e Thereissomeinteger k, 1 <k <n, such that:

o forali#k, x=x
* Xg1=Xk1=UAVBwW:u,v,wdV*,
andA,BOV-Z
* Xc=uyvBw,whereA - yOR
e X =UAvzw whereB - zOR
* X1 = X1 = UyVZW
Comparing Several Derivations
Consider three derivations:
1 2 3 4 5 6 7
(D) S=S5=(9S=((9)S= S =S =(0)0

(2)S=S5=(9S=((ONS=((NO) = ((zs) =(0)0
(3)S=S5=(9S=((9)S=((NO) = (N0 =(0)0

D1<D2
D2<D3
But D1 does not precede D3.
All three seem similar though. We can define similarity:
D, issimilar to D, iff the pair (D1, D,) isin the reflexive, symmetric, transitive closure of <.
Note: similar is an equivalence class.
In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule
applications.
Par se Trees Capture Similarity
1 2 3 4 5 6 7
(1) S=55=(9s=(9)s= ([0S =S =(D0

(2) S=S5=(9S=((9)S= (OO 3((23) =00
(3) S=S5=(9S= ((9)S= (NS =((5N0 =(0)0

D1<D2
D2< D3

All three derivations are similar to each other. This parse tree describes this equivalence class of the similarity relation:

S
/\
S S
_— [_— [
(S) ()
/I\ |
(?) €

Lecture Notes 13 Parse Trees 3

The Maximal Element of <

e S —

There's one derivation in this equivalence class that precedes all othersin the class.
We call thisthe leftmost derivation. Thereis a corresponding rightmost derivation.

The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost
(rightmost) derivation.

Another Example
E-id
E-E+E
E-E*E

(1) E= E+E = E+E*E = E+E*id = E+id*id = id+id*id
(2 E= E*E = E*id = E+E*id = E+id*id = id+id*id

E E

/l\ /I\
E + E E * E
| PN SN |
id E * E E + E id

| | | |

id id id id
id + [id * id] [id + id] * id

Ambiguity

A grammar G for alanguage L isambiguousif there exist stringsin L for which G can generate more than one parse tree (note
that we don't care about the number of derivations).

The following grammar for arithmetic expressions is ambiguous:
E-id
E-E+E
E-E*E

Often, when this happens, we can find a different, unambiguous grammar to describe L.

Lecture Notes 13 Parse Trees 4

Resolving Ambiguity in the Grammar

G=(V, Z, R, E), where Parse : id+id*id
V={+%*¢(),id T, F E},
z={+x () id},
R={ E-E+T
E-T
TT*F
T-F
F- (B
F-id }

Another Example
The following grammar for the language of matched parentheses is ambiguous:

S-¢
S - SS
S~ (9
S
(/,S\) (/'S\) S/\
N |
(S) €

Resolving the Ambiguity with a Different Grammar

One problem is the € production.

A different grammar for the language of balanced parentheses:

S-¢

S

S. S é

$5-5S% 1

SHE)SO Sl/\81
S -

()

Lecture Notes 13 Parse Trees

A General Techniquefor Eliminating &

If Gisany context-free grammar for alanguage L and € [0 L then we can construct an alternative grammar G' for L by:

1.

Find the set N of nullable variables:
A variable V isnullableif either:
thereisarule
@V ¢
or thereisarule
(2)V - PQR...suchthat P, Q, R, ... are all nullable
So begin with N containing all the variables that satisfy (1). Evaluate al other variables with respect to (2). Continue until
no new variables can be added to N.
For every rule of the form
P - aQp for someQinN, add arule

P-aB
Delete dl rules of the form
V - ¢
Sometimes Eliminating Ambiguity Isn't Possible
S - NP VP The boys hit the ball with the bat.

NP - the NP1|NP1|NP2
NP1 - ADJ NP1|N
NP2 - NP1 PP
ADJ - big|youngest | oldest .)
N - boy | boys|ball | bat | autograph The boys hit the ball with the autograph.
VP -V |V NP
VP - VPPP
V - hit| hits
PP — with NP
Why It's Not Possible
We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want. Any grammar that is
capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in
the context-free framework.
Example: Our simple English grammar
[[The boys] [hit [the ball] [with [the bat]]]]
[[The boyg] [hit [the ball] [with [the autograph]]]]
There is no grammar that describes L that is not ambiguous.
Example: L ={a'b"c™ O {db"c™}

S~ SIS

S, - Sic|A Now consider the strings a'b"c"

A - aAb|e

S, - aS)B They have two distinct derivations
B - bBc|e

Inherent Ambiguity of CFLs

A context free language with the property that all grammars that generate it are ambiguous is inher ently ambiguous.

L ={a'"c"} O {ah™c™} isinherently ambiguous.

Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an
unambiguous grammar.

Examples: Arithmetic Expressions
Balanced Parentheses

Whenever we design practical languages, it isimportant that they not be inherently ambiguous.

Lecture Notes 13 Parse Trees 6

Pushdown Automata

Read K & S3.3.

Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Designing Pushdown Automata.
Do Homework 13.

Recognizing Context-Free L anguages

Two notions of recognition:
(1) Say yesor no, just like with FSMs
(2) Say yesor no, AND
if yes, describe the structure

Just Recognizing
We need adevice similar to an FSM except that it needs more power.

Theinsight: Precisely what it needsis a stack, which givesit an unlimited amount of memory with arestricted structure.
[T qqODDD [T OD

t

(' Finite
(| State
(Controller
T (
(

Definition of a Pushdown Automaton

M=(K,Z,T,A,s F),where
K isafinite set of states
> istheinput aphabet
I" isthe stack alphabet
sOK istheinitial state
F O K isthe set of final states, and
Aisthetransition relation. It isafinite subset of

(K x (Z0O{g}) x r*) X (K x T)
state inputor € string of symbolsto pop State string of symbolsto
I from top of stack I I push on top of stack I

M accepts astring w iff
(s W, €) [v* (p,g,g) forsomestatep OF

Lecture Notes 14 Pushdown Automata

A PDA for Balanced Brackets

b i) U
e ‘@

M=(K,Z T, A, s F), where:
K={s} the states
Z={[.1} the input al phabet
r={[} the stack alphabet
F={s}

A contains:

(s[.8).(s[))
(s1.0). (s¢)

I mportant:
This does not mean that the stack is empty.

An Example of Accepting
. v

A contains:
(1] (s [.€). (s)
[2] ((s1.1) (s 8)
input="[[[1[11]
trans dtate unread input stack
s [CLI01]] €
1 S [[1011] [
1 s [1011] ([
1 S 11111 [[[
2 s [11] [[
1 s 111 ([
2 s 11 [l
2 s] [
2 S € €
An Example of Rejecting
W [
W ‘@
A contains:
(1] (s [.€). (s)
(2] (s 1.1) (s ¢)
input="[[]1]]
trans state unread input stack
s [[11] €
1 s [111] [
1 s 111 ([
2 s 1] [
2 S] €
none! S] €

Werein s, afina state, but we cannot accept because the input string is not empty. So we reject.

Lecture Notes 14 Pushdown Automata

A PDA for a™b"

First we notice:

« Well usethe stack to count the as.

e Thistime, al stringsin L have two regions. So we need two states so that a's can't follow b's. Note the similarity to the
regular language a*b*.

A PDA for wewR

A PDA to accept strings of the form wew"™:

alla alal .
c//
N >

bi/lb b/b/ .

M=(K,Z,T,A,s F),where

K={sf} the states
>={ab,c} the input al phabet
r={a b} the stack alphabet
F={f} the final states

A contains:

((sa¢)(sa)
((s,b,€), (s b))
((s,ce), (f, €)
((f, a a), (f, €)
((f, b, b), (f,)
An Example of Accepting

§a alal .
b//b b/b/ '
A contains:

[1] (s ac¢),(sa)
[2] ((s b, €), (s b))
3] (s c.e), (f, €)
[4] ((f, a a), (f,)
(9] ((f, b, b), (f, &)

input= bacab

trans state unread input stack
S bacab €
2 S acab b

1 S cab ab

3 f ab ab
5 f b b
6 f € €

Lecture Notes 14 Pushdown Automata

L =ww

A Nondeter ministic PDA

S-¢
S . aSa
S - bSb

A PDA to accept strings of the form ww":

alla

bi/b

M=(K,ZTI,A, s F), where:

(1]
(2]
(3]

trans

none

trans

A DDOOTWNPREBE

K={sf}

Z={abc}

r={ab}

F={f}

A contains:
(s aeg),(sa)
((s, b, €), (s b))
((s & ¢), (f, €)
((f, & a), (f, &)
((f, b, b), (f,)

alla

bi/lb

(s a¢),(sa)
((s b, €), (s b))
(s &9, (f,€)

w

ell }

b/b/ .

the states

the input al phabet
the stack alphabet
thefinal states

An Example of Accepting

e

ell }

b/b/ '

[4]
(5]

input: aabbaa

State
S

s
f
f

State

—~ = = =) N N

Lecture Notes 14

unread input stack
aabbaa €
abbaa a
abbaa a
bbaa €
unread input stack
aabbaa €
abbaa a
bbaa aa
baa baa
baa baa
aa aa
a a
3 €
Pushdown Automata

((f. a a), (f, &)
((f, b, b), (f, €))

L={a"™": m<n}
A context-free grammar for L:
So ¢
S- Sb /* more b's
S nd a&)
A PDA to accept L:

o
f b/a/ b/s/
@ b/e/

y Q

—1
N

Accepting Mismatches

L ={ad""m# n; m, n>0}

o
f b/al A
1 '

e |f stack and input are empty, halt and reject.

e If input isempty but stack is not (m > n) (accept):

elal
elal
U

e |f stack isempty but input is not (m < n) (accept):

blal \ elal
" 2

g
)

b/al

v

Lecture Notes 14 Pushdown Automata

Eliminating Nondeter minism

A PDA isdeterminigtic if, for each input and state, there is at most one possible transition. Determinism implies uniquely
defined machine behavior.

b/a/Q elal
blal \ glal
" 2

bl/
b/l
e Jumping to the input clearing state 4:

Need to detect bottom of stack, so push Z onto the stack before we start.

alla s/a/
ellz
elzl
b/z/

b/l

e Jumping to the stack clearing state 3:
Need to detect end of input. To do that, we actually need to modify the definition of L to add a termination character

(e.g. 9
L ={a""c’: nm,p=0and (n# mor m# p)}

S - NC /* n# m, then arbitrary c's C-¢g|cC /* add any number of c's
S- QP /* arbitrary as, thenp# m P- B /* moreb'sthan c's
N - A /* more asthan b's P-C [* more c'sthan b's
N - B /* more b'sthan a's B'-b
Ao a B' - bB'
A - aA B' - bB'c
A - aAb C - c|Cc
B-b C - Cc
B - Bb C' - bCc
B - aBb Q- ¢elaQ /* prefix with any number of a's

L ={a"h"c’: nm,p=0and (n#mor m#p)}

b,c
clear and accept

Lecture Notes 14 Pushdown Automata

Another Deterministic CFL
L={a'""} O{b"a}

A CFG for L: A NDPDA for L:

A DPDA for L:

Moreon PDAs
What about a PDA to accept strings of the form ww?
Every FSM is(Trivially) a PDA

GivenanFSM M = (K, Z, A, s, F)
and elements of A of the form

(P, i q)
old state, input, new state

We construct aPDA M'= (K, Z, T, A, s, F)
wherel =0 /* stack alphabet
and
each transition (p,i,q) becomes

(C P i €) (a €))
old state, input, don't look at stack new state don't push on stack

In other words, we just don't use the stack.

Alternative (but Equivalent) Definitions of a NDPDA
Example: Accept by final state at end of string (i.e., we don't care about the stack being empty)
We can easily convert from one of our machines to one of these:
1. Addanew state at the beginning that pushes # onto the stack.

2. Addanew fina state and atransition to it that can be taken if the input string is empty and the top of the stack is #.
Converting the balanced parentheses machine:

" ((\@
e ©:

The new machine is nondeterministic:

() ()
0

The stack will be: #

&

Lecture Notes 14 Pushdown Automata

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

What About PDA'sfor Interesting L anguages?

Arithmetic Expressions

“ elelE @

S

—
1) (2&E), (2 E+T)
(2 (2.¢E),@2T)
(B) (2&T), (2T
4 (2&T),(2F)
®) (2&F). (2 (F)
(6) (2.&F) (2id)
(7) (2.id,id), (2,€)
® (2(()(2e
©) (2).)). 29
(10) (2, +, +), (2.)
(11 (2% 7). (28

Example:
atb*c

But what we really want to do with languages like thisisto extract structure.

Regular Languages

e regular expressions
- Or -

e regular grammars

* recognize

+ =DFSAs

Lecture Notes 14

Comparing Regular and Context-Free L anguages

Context-Free Languages

» context-free grammars

e pase
« =NDPDAs
Pushdown Automata

Pushdown Automata and Context-Free Grammars

gg guf;‘plsai:ﬁtary Materials. Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAS.
Do Homework 14.
PDAs and Context-Free Grammars
Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.
Recall: context-free languages are languages that can be defined with context-free grammars.
Restate theorem: Can describe with context-free grammar = Can accept by PDA

Going One Way

L emma: Each context-free language is accepted by some PDA.
Proof (by construction by “top-down parse” conversion agorithm):

Theidea: Let the stack do the work.

Example: Arithmetic expressions

E-E+T
E-T
T-T*F & elelE
O ©
F- (B)
F-id -/
Q) (2,‘8,E),75+T) (7) (2,id,id), (2,¢€)
(@ (2¢E),(2T) ® 2(()(29
) (2, T), (2, T*F) © (2)))29
4 (2,¢,T),2F (10) (2, +, 4), (2, ¢)
) (2.¢F),(2 () (11) (2,*,%), (2,¢)

6) (2,¢ F), (2,id)
The Top-down Parse Conversion Algorithm

GivenG=(V,Z,R,9)
Construct M such that L(M) = L(G)

M=({p, g}, %V, A p, {q}), where A contains:

(D) ((p. & €), (0, 9)
push the start symbol on the stack

(2 (9, &, A), (g, x)) for each rule A — xinR
replace left hand side with right hand side

(3) ((9, & a), (g, €)) foreacha O >
read an input character and pop it from the stack

The resulting machine can execute a leftmost derivation of an input string in a top-down fashion.

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Example of the Algorithm

L ={adb*ad}

L
(2
3
(4)
©)

WImnLwOnm
Ll
2"

oM wWNPERO

!

o ™M

- bB
input =aabbaa 7
trans state unread input
aabbaa
aabbaa
aabbaa
abbaa
abbaa
bbaa
bbaa
bbaa
baa
baa
aa
aa
a
€

OO0OOPRNOINOINOOWO WO
D 00000000000 00T

Another Example
L={adb"c’d": m+n=p+q}

0
(@D} S - axd 1
(2 S-T 2
©)] S- U 3
(4) T - alc 4
(5) TV 5
(6) U - bud 6
@) Uu-V 7
(8) V - bVe 8
9 V o€ 9
10
11
input=aabcdd 12
13

(P& €), (a5

(0, & 9),(a, €

(0, & S), (a, B)

(0, & S), (g, aS9)

(0, & B), (a, €

(a, € B), (g, bB)

(9,2 a),(q,€)

(0, b, b), (a, €)

stack

€
S
aSa
Sa
aSaa
Saa
Baa
bBaa
Baa
bBaa
Baa
aa
a
€

(P, & €), (@S

(0, & S), (g, asd)

(0, & 9), (a,T)

(0, & S), (qU)

(0, & T), (g, arc)

(A& T),(q,V)

(a, & V), (g, bud)

(a,& V), (q,V)

(a,&, V), (q,bVe

(0, & V), (g, €)

(9, & a), (g, €)

(q, b, b), (a, &)

(0, ¢,0),(a ¢

(g, d, d), (a, €

The Other Way—Build a PDA Directly

L={db"c’d": m+n=p+q}

1) S - axd (6)
2 S-T (7
©) S-u 8
(4) T - alc (9
(5) TV

bila

C/B/‘ dial
al dial

input=aabcdd

Lecture Notes 15

U - bud
Uu-V
V - bVc
V - ¢

b//a c/
elel elel ': : elel '

Pushdown Automata and Context-Free Languages

Notice Nondeter minism

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial
languages.
Example: L =ab"

A grammar for L is: A machine M for L is:
0) ((p.&). (a,)

[1]S - aSb (1) ((9,¢,S), (g, aSh))

[21S - ¢ 2 (a,¢,9),(q,8)

() ((a,a a), (q, €))
4) ((9, b, b), (g, €))
But transitions 1 and 2 make M nondeterministic.

A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same
configuration. A PDA isnondeter ministicif it has any nondeterministic transition groups.

A directly constructed machine for L:

Going The Other Way
Lemma: If alanguage is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar).
Proof (by construction)

Example: L = {wew®:w O {a, b}*}

A contains:
/ alal . (s a¢),(sa)
cll) @ (s b, ¢), (s b))
s ((s ¢ 9, (f,¢€)
((f, a a), (f, €))
bi/b bib/ ((f, b, b), (f, €))

M=({s f},{a b c},{a b}, A s{f}) where:

First Step: MakeM Simple
A PDA M issimpleiff:
1. thereare no transitions into the start state, and

2. whenever ((g, X, B), (p, y) isatransition of M and g is not the start state, then3 O T, and |y| < 2.

Step 1. Add s and f":

alela alal
@s/s/; ol £1Z/
ble/b bib/

Step 2:
Q) Assurethat |B| < 1.

2 Assurethat |y| < 2.
(©)] Assurethat |B| = 1.

Lecture Notes 15 Pushdown Automata and Context-Free Languages 3

Making M Simple

alela alal
@8/8/; ol 0
ble/ bib/

M=({sf,s,f}, {ab,c} {ab Z}, A ss{f}), A=
(s, & €), (s 2)
(s a¢),(sa) (s & 2), (s a2)
((s & a), (s, a)
((s & b), (s an))
((s b, €), (s b)) (s b, 2), (s, bZ))
((s b, a), (s, ba))
((s, b, b), (s, bb))
(s c 9, (f,¢) ((sc 2),(f,2)
((sca),(f,a)
((s,c,b), (f, b))
((f, & a), (f, €) ((f,a a), (f, €)
((f, b, b), (f, €)) ((f, b, b), (f, €))
((f,&,2), (', &)

Second Step - Creating the Productions

The basic idea -- simulate a leftmost derivation of M on any input string.

Example: abcba
S[1]
I
<s, Z,>][2]
a <s, g f>[4] <f, Z,1>[g]
/
b <s b, f>[5] <f, a, > [6] 5 \<f‘,s,f‘> [10]
/\ [
c <f, b, f>[7] a <f g >[9] €
I
b <f, g >[9] €

€

If the nonterminal <s;, X, s,> =* w, then the PDA startsin state s, with (at least) X on the stack and after consuming w and
popping the X off the stack, it ends up in state s,.

Start with the rule:
S - <s, Z, "> where sisthe start state, f’ isthe (introduced) final state and Z is the stack bottom symbol.

Transitions ((sy, & X), (S, Y X)) become a set of rules:
<s, X, 0> - a<s, Y, r><r, X,g> foradX O {e},OqrdK

Transitions ((sy, & X), (S, Y)) becomes a set of rules:
<s, X, > > a<s, Y,q> foraOzO{e},0gOK

Transitions ((s1, & X), (S, €)) become arule:
<s, X,s> - a foraldZO{e}

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Creating Productions from Transitions

S <sZf> (1]
((s.&). (s 2)
((s, & 2), (s, a2)) <s Z,f> 5 a<s, g f><f, Z, > [2]
<s, Z,s> > a<s a f><f, Z, s> [x]
<s Z,f> 5 a<s,a, s<s,Z, > [x]
<§,Z,8> > a<s, a,$<s,Z,f> [x]
<s, Z,8> - a<s,a f><f, Z, s> [x]

((s & a), (s ad) <s g f> - a<s g f><f, af> (3]
((s & b), (s ab))

((s, b, 2), (s, b2))

((s, b, a), (s, ba)) <s a f> - b<s b, f><f, a > [4]
((s, b, b), (s, bb))

((s.c 2. (f, 2)

((Sr Cv a)! (f, a)) <S, a, f> - C <f, a‘l f>

((s, c, b), (f, b)) <s b, f> - c<f, b, f> [5]

((f, a, a), (f, €)) <f,a f> - a<f, ¢ > [6]

((f, b, b), (f, €)) <f, b, f> - b<f, ¢ > [7]

((f, &, 2), (f', &) <f,Z,f> 5 e<f' g "> [8]
<f, g, f> - ¢ [9]
<f'g, > ¢ [10]

Comparing Regular and Context-Free L anguages

Regular Languages Context-Free Languages

e regular exprs. » context-free grammars
e or

e regular grammars

e recognize s pase

e« =DFSAs e =NDPDAs

Lecture Notes 15 Pushdown Automata and Context-Free Languages

Grammars and Normal Forms

Read K & S3.7.
Recognizing Context-Free L anguages

Two notions of recognition:

(1) Say yesor no, just like with FSMs

(2) Say yesor no, AND

if yes, describe the structure

a + b * c
Now it's time to worry about extracting structure (and doing so efficiently).
Optimizing Context-Free Languages

For regular languages:
Computation = operation of FSMs. So,
Optimization = Operations on FSMs:
Conversion to deterministic FSM s
Minimization of FSMs
For context-free languages:
Computation = operation of parsers. So,
Optimization = Operationson languages
Operations on grammars
Parser design

Before We Start: Operationson Grammars

There are lots of ways to transform grammars so that they are more useful for a particular purpose.

the basic idea:

1. Apply transformation 1 to G to get of undesirable property 1. Show that the language generated by G is unchanged.
2. Apply transformation 2 to G to get rid of undesirable property 2. Show that the language generated by G is unchanged AND

that undesirable property 1 has not been reintroduced.
3. Continue until the grammar isin the desired form.

Examples:

e Getting rid of € rules (nullable rules)

e Getting rid of sets of rules with acommon initial terminal, e.g.,
° A—>aB,A—>aCbeC0meA—>aD,D—>B|C

» Conversion to normal forms

Lecture Notes 16 Grammars and Normal Forms

Normal Forms

If you want to design algorithms, it is often useful to have alimited number of input forms that you have to deal with.
Normal forms are designed to do just that. Various ones have been developed for various purposes.
Examples:
» Clauseform for logical expressions to be used in resolution theorem proving
« Disunctive normal form for database queries so that they can be entered in a query by example grid.
* Various normal formsfor grammars to support specific parsing techniques.

Clause Form for Logical Expressions
[x : [Roman(x) Oknow(x, Marcus)] — [hate(x, Caesar) O (Oy : [: hate(y, z) - thinkcrazy(x, y))]

becomes

= Roman(x) 00 -know(x, Marcus) [1 hate(x, Caesar) (1 - hate(y, z) Othinkcrazy(x, z)

Digunctive Normal Form for Queries

(category = fruit or category = vegetable)
and
(supplier = A or supplier = B)

becomes
(category = fruit and supplier = A) or
(category = fruit and supplier = B) or
(category = vegetable and supplier = A) or

(category = vegetable and supplier = B)

Category Supplier Price
fruit A
fruit B
vegetable A
vegetable B

Normal Formsfor Grammars

Two of the most common are:

e Chomsky Normal Form, in which all rules are of one of the following two forms:
e X - awherealdZ, or
e X - BC,whereB and C are nonterminasin G

* Greibach Normal Form, in which all rules are of the following form:
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals

If L isacontext-free language that does not contain €, then if G isagrammar for L, G can be rewritten into both of these normal
forms.

Lecture Notes 16 Grammars and Normal Forms

What Are Normal Forms Good For?
Examples:
e Chomsky Normal Form:
X - awherealZ, or
e X - BC,whereB and C are nonterminalsin G
¢ The branching factor is precisely 2. Tree building algorithms can take advantage of that.

* Greibach Normal Form
e X - af,whereal Z and 3 isa(possibly empty) string of nonterminals
¢ Precisely one nonterminal is generated for each rule application. This means that we can put a bound on the number of rule
applications in any successful derivation.
Conversion to Chomsky Normal Form

Let G be agrammar for the context-free language L wheree O L.
We construct G', an equivalent grammar in Chomsky Normal Form by:

0. Initialy, let G' = G.
1 Remove from G' all € productions:
1.1 If thereisarule A — aBp and B isnullable, add therule A - aff and deletetheruleB - e.
Example:
S nd aA
A - B|CD
B¢
B - a
C - BD
D b b
D-c¢
Conversion to Chomsky Normal Form
2. Remove from G' al unit productions (rules of the form A — B, where B is a nonterminal):
2.1. Remove from G' all unit productions of theform A - A.

2.2 For al nonterminals A, find all nonterminals B such that A =* B, A # B.
2.3. Create G" and add to it all rulesin G' that are not unit productions.
24. For all A and B satisfying 3.2, add to G"
A - yl|y2]|...whereB - yl]|y2]isinG".
25. Set G'to G".
Example: Ao a
A-B
A - EF
B-A
B - CD
B-C
C nd ab
At this point, al rules whose right hand sides have length 1 are in Chomsky Normal Form.

Lecture Notes 16 Grammars and Normal Forms

Conversion to Chomsky Normal Form

3. Remove from G' al productions P whose right hand sides have length greater than 1 and include aterminal (e.g., A -
aB or A - BaC):
3.1 Create a new nonterminal T, for each terminal ain .
3.2. Modify each production P by substituting T, for each terminal a.
3.3. Addto G, for each T, therule T, - a

Example:
A - aB
A - BaC
A - BbC

Ta- a
Tp- b
Conversion to Chomsky Normal Form

4. Remove from G' al productions P whose right hand sides have length greater than 2 (e.g., A - BCDE)
4.1. For each P of theform A — N;N5N3N4...N,,, n > 2, create new nonterminals M,, M3, ... M1
4.2, Replace Pwith therule A - N;M,.
4.3. Add therules Ms > NoMs, M3 — N3My, ... M1 —» NN,

Example:
A - BCDE (n=4)

A - BM,

M, — C M,
M — DE

Lecture Notes 16 Grammars and Normal Forms

Top Down Parsing

Read K & S3.8.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2.
Do Homework 15.

Parsing
Two basic approaches:
Top Down
E = E = E
E/I+\T I/!u\ T

|

id
Bottom Up

E

/\

E

|

T T

| |

F F F
o | | |
id+id = id + id = id + id
A Simple Parsing Example

A simple top-down parser for arithmetic expressions, given the grammar
[1] E-E+T
[2] E-T
[3] T-T*F
[4] T-F
(5] F- (B
[6] F-id
[7] F - id(E)
A PDA that does a top down parse;
0) (1, &¢), (26 (7) (2,¢F), (2,id(E)
(1) (2,&E), (2 E+T) (8) (2,id,id), (2, &)
(2 (2&E),(2T) 9 @G(()2e
Q) (2¢&T1),(2TF (10)(2,).)). (2 ¢)
4 (2,¢,T),2F (11) (2, +,4), (2,¢)
(5) (2’ g, F)! (21 (E)) (12) (2, *, *), (2, S)

(6) (2. F), (2id)

Lecture Notes 17 Top Down Parsing

Example: id+id* id(id)

Stack:

The leftmost derivation of the string. Why?

EDE+T=>T+ToF+T=2id+T>

How Does It Work?

What Does It Produce?

id+T*F=id+F*F=id+id*F=

id+id* id(E) = id +id * id(T) =
id+id* id(F) = id +id * id(id)

T———m

o

0) (L&), (2E)
(1) (2,&E), (2, E+T)
(2 (2.&E),(@2T)
() (2,&,T),(2, T*F)
(4) (2,&T).(2F) —
) (2.&F), 2 (E)]
(6) (2.¢F), (2id)
(7) (2, F), (2,id(E)
(8) (2.id,id), (2,¢)
9 @G()(@e
(10) (2,),)). (2. ¢)
(11) (2, +,4), (2,¢)
(12) 2,%,%). (2. ¢)

Lecture Notes 17

But the Process Isn't Deterministic

nondeterministic

nondeterministic

nondeterministic

Top Down Parsing

Is Nondeter minism A Problem?
Yes.

In the case of regular languages, we could cope with nondeterminism in either of two ways:

e Create an equivaent deterministic recognizer (FSM)

e Simulate the nondeterministic FSM in a number of steps that was till linear in the length of the input string.

For context-free languages, however,

« Thebest straightforward general agorithm for recognizing a string is O(n®) and the best (very complicated) algorithm is
based on a reduction to matrix multiplication, which may get close to O(n?).

Wed really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string.

Islt Possibleto Eliminate Nondeter minism?
Inthiscase: Yes
In genera: No

Some definitions:

« A PDA M isdeterministicif it has no two transitions such that for some (state, input, stack sequence) the two transitions
could both be taken.

* AlanguagelL isdeterministic context-freeif L$ = L(M) for some deterministic PDA M.
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.

Proof: Later.
Adding a Terminator to the Language

We define the class of deterministic context-free languages with respect to aterminator ($) because we want that class to be as
large as possible.

Theorem: Every deterministic CFL (asjust defined) is a context-free language.

Pr oof:

Without the terminator ($), many seemingly deterministic cflsaren't. Example:
a J{ab":n>0}

Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm
3) M odify the grammar

Lecture Notes 17 Top Down Parsing

M odifying the Parsing Algorithm
What if we add the ability to look one character ahead in the input string?
Example: id+id* id(id)
N

EDE+T=>T+ToF+T=2id+T>
id+T*F=id+F*F=id+id*F

Considering transitions:

) (2&F) (2 (F)
6) (2.¢&F), (2 id)

(7) (2,&,F), (2,id(E))

If we add to the state an indication of what character is next, we have:

®) (&R 2 ()
(6) (2.id,& P), (2 id)

(7) (2,id, &, F), (2,id(E))
M odifying the L anguage

So we've solved part of the problem. But what do we do when we come to the end of the input? What will be the state indicator
then?

The solution is to modify the language. Instead of building a machine to accept L, we will build a machine to accept L$.

Using L ookahead

(0) (1, &,¢), (2, E)) _
[1] E-E+T (1) (2, €, E), (2, E+T)
[2] E-T) (2,¢,E), (2, T)
[3] T.T*F () (2,&T),2,TFH ~ |
[4] T-F 4 (2,5, 71), (2P
(5] F - (E) G2 (&R, @E) —)
6] F-id (6) (2,id, ¢, F), (2, id)
[7] F — id(E) (7) (2,id, &, F),(2, id(E))

®) (2,id,id), 2,6)
@ E(()2¢
(10)(2,),)). (2 &)
(11) (2, +, 4), (2, €)
(12) (2,%,%),(2,¢)

For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol
on the stack isF.
Possible Solutions to the Nondeter minism Problem

1) M odify the language

. Add aterminator $
2) Change the parsing algorithm

. Add one character look ahead
3) M odify the grammar

Lecture Notes 17 Top Down Parsing

M odifying the Grammar

Getting rid of identical first symbols:

[6] F-id (6) (2,id, €, F),(2, id)
[7] F - id(E) (7) (2,id, €, F),(2, id(E))
Replace with:

[6] F-idA (6) (2,id, &, F), (2,id A)
[7] Ao e (™ 2,2 & A), (2¢)
(8] A - (B (8) (2 (& A) (2 (B)

The general rule for left factoring:

Whenever A - of;
A - GBZ
A - aBn
areruleswith a # € and n = 2, then replace them by the rules:
A > aA’
A" - By
A S B
A~ Bn

M odifying the Grammar

Getting rid of left recursion:

[1] E-E+T D) (2, E), (2, E+T)
[2] E-T (@ (2,¢E),2T)
The problem:

E

E + T
Replace with:
[1] E-TE 1) (2,¢,E),2TE)
[2] E-+TFE 2 (2, E),(2,+TE)
[3] E'-c¢ (3) (2,& E),(2¢)

Lecture Notes 17 Top Down Parsing

Getting Rid of Left Recursion

The general rule for eliminating left recursion:

If G contains the following rules: Replace them with:
A - Aoy A S oA
A - Aa, ... A S 0A L.
A - Aoz A' S A
A - Aq, A' S 0A
A - ¢
A - B1 (whereB'sdo not start with Aa) A S BA
A~ B A - BA
A - Bm A S BA'
and n> 0, then

Possible Solutions to the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion

LL (k) Languages
We have just offered heuristic rules for getting rid of some nondeterminism.
We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work.

We define agrammar to be LL (k) if it is possible to decide what production to apply by looking ahead at most k symbols in the
input string.

Specifically, agrammar GisLL (1) iff, whenever

A - a|pBaetworulesinG:

1. For noterminal ado a and 3 derive strings beginning with a.

2. Atmost oneof a | B can derivee.

3. If B =* &, then a does not derive any strings beginning with aterminal in FOLLOW(A), defined to be the set of terminals
that can immediately follow A in some sentential form.

We define alanguage to be L L (k) if there exists an LL (k) grammar for it.

Lecture Notes 17 Top Down Parsing

Implementing an LL (1) Parser

If alanguage L hasan LL (1) grammar, then we can build a deterministic LL (1) parser for it. Such a parser scansthe input L eft to
right and builds a L eftmost derivation.

The heart of an LL(1) parser isthe parsing table, which tellsit which production to apply at each step.
For example, here is the parsing table for our revised grammar of arithmetic expressions without function cals:

V\Z id + * () $
E E-TE E-TE
E' E-+TE' E-e¢ E'-¢
T T FT T FT'
T T ¢ T S *FT T € T €
F F-id F-(E)
Giveninput id +id * id, the first few moves of this parser will be:
E id+id* id$
E-TE TE' id+id*id$
T-FT FT'E id+id* id$
F-id idT'E' id+id*id$
TE +id* id$
T-¢ E +id* id$

But What If We Need a Language That Isn't LL(1)?
Example:

ST - if Cthen ST else ST
ST - if Cthen ST

We can apply left factoring to yield:
ST - ifCthenST S
S - else ST |¢

Now we've procrastinated the decision. But the language is still ambiguous. What if the input is

if C, thenif C,then ST, else ST,

Which bracketing (rule) should we choose?
A common practice is to choose S o elseST
We can force thisif we create the parsing table by hand.
Possible Solutionsto the Nondeter minism Problem

l. M odify the language

A. Add aterminator $
. Change the parsing algorithm

A. Add one character look ahead

B. Use a parsing table

C. Tailor parsing table entries by hand
[I. M odify the grammar

A. Left factor

B. Get rid of left recursion

Lecture Notes 17 Top Down Parsing 7

Old Grammar
[1] E_E+T

2 E-T

8] T-T*F
4 T-F

(5] F - (E)
6] F-id
[71 F-idE)

input =id+id+id

id A
|
€

Regular Languages

e regular exprs.
or
e regular grammars
« =DFSAs
e recognize
e minimize FSAs

Lecture Notes 17

The Price We Pay

New Grammar

E- TE
E - +TE
E - ¢
T FT'
T - *FT"
T > ¢
F- (B
F - idA
Ao e
A~ (B
E
e L
+ T E'
F T + T E'
id A € F T €
| PN |
€ id A 3

Comparing Regular and Context-Free L anguages
Context-Free Languages

e context-free grammars
« =NDPDAs
* pase

e find deterministic grammars
» find efficient parsers

Top Down Parsing

Bottom Up Parsing
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Parsing, Section 3.

Bottom Up Parsing

An Example:

[1] E-E+T

[2] E-T

[3] T-T*F

[4] T-F

(5] F- (B

[6] F-id

id + id * id $

Creating a Bottom Up PDA
There are two basic actions:
1. Shift an input symbol onto the stack
2. Reduce astring of stack symbolsto a nonterminal

; $/s/ }

So, to construct M from agrammar G, we need the following transitions:

M will be:

(1) The shift transitions:
((p, & €), (p, @), foreacha O =

(2) The reduce transitions:
((p, &, 0©), (p, A)), for eachrule A — ainG.

(3) The finish up transition (accept):
((r. $,9), (.)

(Thisisthe “bottom-up” CFG to PDA conversion agorithm.)

Lecture Notes 18 Bottom Up Parsing

M for Expressions

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (. & F), (p, T)

5 (&, “)"E"("). (P, F)

6 (p. & id), (p, F)

7 (. $.E), (0, 8)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €

TheParse Tree

| — | T
| |
¥ i‘d .

Producing the Rightmost Derivation

We can reconstruct the derivation that we found by reading the results of the parse bottom to top, producing:

E= E+ id* id>
E+ T> T+ id*id=>
E+ T* F= F+ id*id=
E+ T*ide id+ id*id
E+ Fid=>

Thisis exactly the rightmost derivation of the input string.

Lecture Notes 18 Bottom Up Parsing

Possible Solutions to the Nondeter minism Problem

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character ook ahead
. Use a parsing table
. Tailor parsing table entries by hand
. Switch to a bottom-up par ser
3) M odify the grammar
. Left factor
. Get rid of left recursion

Solving the Shift vs. Reduce Ambiguity With a Precedence Relation
Let's return to the problem of deciding when to shift and when to reduce (asin our example).
We chosg, correctly, to shift * onto the stack, instead of reducing T+E to E.
This corresponds to knowing that “+” has low precedence, so if there are any other operations, we need to do them first.
Solution:

1. Add aone character lookahead capability.
2. Define the precedence relation

PO (V x {0 %})
top next
stack input
symbol symbol

If (a,b) isin P, we reduce (without consuming the input) . Otherwise we shift (consuming the input).
How Does |t Work?

We're reconstructing rightmost derivations backwards. So suppose arightmost derivation contains
Byabx
I 4—— correspondingtoarule A — yaand not somerule X — ab
BAbx
ﬂ*
S

We want to undo rule A. Soif the top of the stack is
a
Y and the next input character is b, we reduce

now, before we put the b on the stack.

To make this happen, we put (a, b) in P. That meanswe'll try to reduce if ais on top of the stack and b is the next character. We
will actually succeed if the next part of the stack isy.

Lecture Notes 18 Bottom Up Parsing 3

Example

TﬂF 4— correspondingtoarule T - T*F
-TI{* Input: id*id* id
E
We want to undo rule T. So if the top of the stack is
’[‘: and the next input character is anything legal, we reduce.
T

The precedence relation for expressions:

V\> () id + *
(
) L] L] L]
|d ° . .
+
E
T . .
F ° . °

A Different Example
E+T
f* 4—— correspondingto arule E - E+T
E

We want to undo rule E if the input is E+T$
or E+T+id
but not E+T*id
Thetop of the stack is
T
+
E
The precedence relation for expressions:
V\Z () id + *
(
) L] L] L]
|d . ° .
+
*
E
T . .
F ° ° °

Lecture Notes 18 Bottom Up Parsing

What About If Then Else?

ST - if Cthen ST else ST
ST - if Cthen ST

What if theinput is

Which bracketing (rule) should we choose?

We don't put (ST, else) in the precedence relation, so we will not reduce at 1. At 2, we reduce:

ST2 2
ese
STl 1
then
Cc2
if
then
(o4}
if

Resolving Reduce vs. Reduce Ambiguities

0 (p, & €), (p,a foreachalx

1 (p, &, T+E), (p, E)

2 (p. & T), (p. E)

3 (P&, F*T), (p,T)

4 (P& F), (p, T)

5 (P& ") E (") (0, F)

6 (p. & id), (p, F)

7 (P, $,E), (g, ¢)

trans (action) state unread input stack

p id+id* id$ €

0 (shift) p +id* id$ id
6 (reduce F - id) p +id* id$ F
4 (reduceT - F) p +id* id$ T
2 (reduceE - T) p +id* id$ E
0 (shift) p id* id$ +E
0 (shift) p *id$ id+E
6 (reduce F - id) p * id$ F+E
4 (reduceT - F) p * id$ T+E (could also reduce)
0 (shift) p id$ *T+E
0 (shift) p $ id*T+E
6 (reduce F - id) p $ F*T+E (could also reduce T - F)
3(reduceT - T*F) p $ T+E
1(reduceE - E+T) p $ E
7 (accept) q $ €

Lecture Notes 18 Bottom Up Parsing

TheLongest Prefix Heuristic
A simple to implement heuristic rule, when faced with competing reductions, is:

Choose the longest possible stack string to reduce.
Example:

*|= -

Supposethestackhas F* T + E
U
T

We call grammars that become unambiguous with the addition of a precedence relation and the longest string reduction heuristic
weak precedence grammars.

Possible Solutionsto the Nondeter minism Problem in a Bottom Up Par ser

1) M odify the language
. Add aterminator $

2) Change the parsing algorithm

. Add one character lookahead
. Use a precedence table
. Add the longest first heuristic for reduction
. Usean LR parser
3) M odify the grammar

LR Parsers

LR parsers scan each input L eft to right and build a Rightmost derivation. They operate bottom up and deterministically using a
parsing table derived from a grammar for the language to be recognized.

A grammar that can be parsed by an LR parser examining up to k input symbols on each move isan L R(k) grammar. Practical
LR parsersset k to 1.

AnLALR (or Look Ahead LR) parser is a specific kind of LR parser that has two desirable properties:
e Theparsing tableis not huge.
* Most useful languages can be parsed.

Another big reason to use an LALR parser:
There are automatic tools that will construct the required parsing table from a grammar and some optional additional
information.

Wewill beusing such atool: yacc

Lecture Notes 18 Bottom Up Parsing 6

How an LR Parser Works

Input String
state
state
state
Output Token
Stack

Parsing Table

In simple cases, think of the "states' on the stack as corresponding to either terminal or nonterminal characters.

In more complicated cases, the states contain more information: they encode both the top stack symbol and some facts about
lower objectsin the stack. Thisinformation is used to determine which action to take in situations that would otherwise be
ambiguous.

The Actionsthe Parser Can Take

At each step of its operation, an LR parser does the following two things:

1) Based on its current state, it decides whether it needs alookahead token. If it does, it gets one.
2) Based on its current state and the lookahead token if there is one, it chooses one of four possible actions:
. Shift the lookahead token onto the stack and clear the lookahead token.
. Reduce the top elements of the stack according to some rule of the grammar.
. Detect the end of the input and accept the input string.
. Detect an error in the input.

Lecture Notes 18 Bottom Up Parsing

0: S - rhyme $end ;

1: rhyme - sound place ;
2:sound — DING DONG ;
3: place - DELL

state 0 (empty)

A Simple Example

O therule this came from

error ettt .

State 3

push state 2

state 2 (sound)
rhyme : sound_place
DELL shifth
. error
place goto 4
state 3 (DING)

sound : DING_DONG

DONG shift6
. error ’
state 4 (place)

rhyme : sound place (1)

[1] <stmt> - procname (<paramlist>)

[2] <stmt> - <exp> = <exp>

.. . byrU|el

state 5 (DELL)

current position of input
if none of the others match

if we see EOF, accept

place: DELL_ (3)

. reduce 3
state 6 (DONG)

sound : DING DONG_ (2)

. reduce 2

[3] <paramlist> - <paramlist>, <param> | <param>

[4] <param> - id

[5] <exp> — arrayname (<subscriptlist>)

[6] <subscriptlist> - <subscriptlist>, <sub> | <sub>

[7] <sub> - id
Example:

procname (id)

Should we reduce id by rule 4 or rule 7?

The parsing table can get complicated as we incorporate more stack history into the states.

Lecture Notes 18

Bottom Up Parsing

When the States Are Morethan Just Stack Symbols

id

procname

The Language I nter pretation Problem:
Input: -(17 * 83.56) + 72/ 12
Output: -1414.52
The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

Compute the answer

-

Output: -1414.52

The Language I nter pretation Problem:

Input: -(17 * 83.56) + 72/ 12

-

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52

Lecture Notes 18 Bottom Up Parsing

The Language I nter pretation Problem:

Input: (17 * 83.56) + 72/ 12

Lexical analysis of the input *1

A string of input tokens, corresponding to the primitive objects of which the input is composed:
-(id* id) + id / id

+

Parse the input *2

A tree of actions, whose structure corresponds to the structure of the input.

Compute the answer

Output: -1414.52

yacc and lex

Lexical analysis of the input *1

Parse the input *2

Where do the procedures to do these things come from?

regular expressions that describe patterns

v

lex

lexical analyzer *1

grammar rules and other facts about the language

-

yacc

-

parser *2

Lecture Notes 18 Bottom Up Parsing

Theinput to lex: definitions
%%
rules
%%
user routines

All strings that are not matched by any rule are ssmply copied to the output.

Rules:

[\M]+; get rid of blanks and tabs
[A-Za-Z][A-Za-z0-9]* return(1D); find identifiers

[0-9]+ { sscanf(yytext, "%d", &yylva);

return (INTEGER); } return INTEGER and put the value in yylval
How Does lex Deal with Ambiguity in Rules?
lex invokes two disambiguating rules:

1. Thelongest match is prefered.
2. Among rules that matched the same number of characters, therule given first is preferred.

Example:
integer action 1
[az]+ action2
input: integers take action 2
integer take action 1
yacc

(Yet Another Compiler Compiler)
The input to yacc:

declarations

%%

rules

%%

#include "lex.yy.c"
any other programs

This structure means that lex.yy.c will be compiled as part of y.tab.c, so it will have access to the same token names.
Declarations:

%token namel name2 ...

Rules:
Vv rabc
V abc {action}
\% abc {$$=92} returns the value of b

Lecture Notes 18 Bottom Up Parsing

Example
Input to yacc:
%token DING DONG DELL
%%

rhyme : sound place ;
sound : DING DONG ;
place : DELL

%%
#include "lex.yy.c"

state 0 (empty) state 3 (DING)
$accept : _rhyme $end sound : DING_DONG
DING shift 3 DONG shift 6
. error . error
rhyme goto 1 state 4 (place)
sound goto 2 rhyme : sound place (1)
state 1 (rhyme) . reduce 1
$accept : rhyme $end state 5 (DELL)
$end accept place: DELL_ (3)
. error . reduce 3
state 2 (sound) state 6 (DONG)
rhyme : sound_place sound : DING DONG_ (2)
DELL shifts . reduce 2
. error
place goto 4

How Does yacc Deal with Ambiguity in Grammars?

The parser table that yacc creates represents some decision about what to do if there is ambiguity in the input grammar rules.

How does yacc make those decisions? By default, yacc invokes two disambiguating rules:
1. Inthe case of ashift/reduce conflict, shift.

2. Inthe case of areduce/reduce conflict, reduce by the earlier grammar rule.

yacc tells you when it has had to invoke these rules.

Shift/Reduce Conflicts - If Then Else

ST - if Cthen ST else ST
ST - if Cthen ST

What if the input is

if C, then if C, then ST; €dse ST,

! i

Which bracketing (rule) should we choose?

yacc will choose to shift rather than reduce.

ST2 2
else
ST1 1
then
c2
if
then
Cc1
if

Lecture Notes 18 Bottom Up Parsing

12

Shift/Reduce Conflicts - L eft Associativity

We know that we can force left associativity by writing it into our grammars.

Example:
E-E+T =
E_T T
T - id E\ T
E T
T
|Jd + id + id

What does the shift rather than reduce heuristic if we instead write:
E-E+E id + id + id
E-id
Shift/Reduce Conflicts - Operator Precedence
Recall the problem: input: id+id*id

T Should we reduce or shift on* ?

+

E

The "always shift" rule solves this problem.

But what about: id*id+id
T Should we reduce or shift on + ?
E Thistime, if we shift, we'll fail.

One solution was the precedence table, derived from an unambiguous grammar, which can be encoded into the parsing table of an
LR parser, since it tells us what to do for each top-of-stack, input character combination.

Operator Precedence

We know that we can write an unambiguous grammar for arithmetic expressions that gets the precedence right. But it turns out
that we can build afaster parser if we instead write:

E_ E+E|E*E|(E)|id

And, in addition, we specify operator precedence. In yacc, we specify associativity (since we might not always want left) and
precedence using statements in the declaration section of our grammar:

%left '+ -
Yoleft ** /'

Operators on the first line have lower precedence than operators on the second line, and so forth.

Lecture Notes 18 Bottom Up Parsing 13

Reduce/Reduce Conflicts

Recall:

2.

This can easily be used to simulate the longest prefix heuristic, " Choose the longest possible stack string to reduce.

(4]
(2]
(3]
[4]
(5]
(6]

In the case of areduce/reduce conflict, reduce by the earlier grammar rule.

E_E+T
E-T
ToT*F
T-F
F- (B
F - id

Generating an Executable System

Step 1: Create the input to lex and the input to yacc.

Step 2:

$ lex ourlex.| creates lex.yy.c
$ yacc ouryacc.y createsy.tab.c
$ cc-oourprogy.tab.c -ly -l actually compilesy.tab.c and lex.yy.c, which isincluded.

-ly links the yacc library, which includes main and yyerror.
-l links the lex library

Step 3: Run the program

$ ourprog
Runtime Communication Between lex and yacc-Generated M odules
Parser read the value of the token
ask return
for a a
token token
Lexica Analyer
set the value of the token
Summary

Efficient parsers for languages with the complexity of atypical programming language or command line interface:

Make use of special purpose constructs, like precedence, that are very important in the target languages.
May need complex transition functions to capture all the relevant history in the stack.

Use heuristic rules, like shift instead of reduce, that have been shown to work most of the time.

Would be very difficult to construct by hand (as aresult of all of the above).

Can easily be built using atool like yacc.

Lecture Notes 18 Bottom Up Parsing

14

Languages That Are and Are Not Context-Free
Read K & S3.5,3.6,3.7.
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free
Languages
Read Supplementary Materials. Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma.
Do Homework 16.
Deciding Whether a Language is Context-Free
Theorem: There exist languages that are not context-free.
Pr oof:
(1) There are a countably infinite number of context-free languages. This true because every description of a context-free
language is of finite length, so there are a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.
Thus there are more languages than there are context-free languages.

So there must exist some languages that are not context-free.

Example: {a'b"c"}
Showing that a Languageis Context-Free

Techniques for showing that alanguage L is context-free:

1. Exhibit a context-free grammar for L.

2. Exhibit aPDA for L.

3. Usethe closure properties of context-free languages.
Unfortunately, these are weaker than they are for regular languages.

The Context-Free Languages are Closed Under Union

Let Gl = (Vl! Zl! Rl1 Sl) and
G,=(V2 25, R, S))

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) O L(Gy)

We can show that L is context-free by exhibiting a CFG for it:

The Context-Free L anguages are Closed Under Concatenation

Let Gl = (Vll zlv R11 Sl) and
GZ = (V21 22! RZ! SZ)

Assume that G; and G, have digoint sets of nonterminals, not including S.
LetL =L(Gy) L(Gp)

We can show that L is context-free by exhibiting a CFG for it:

Lecture Notes 19 Languages That Are and Are Not Context Free

The Context-Free Languages are Closed Under Kleene Star
Let G1=(Vy, 23, Ry, S))
Assume that G, does not have the nonterminal S.
Let L = L(Gy)*

We can show that L is context-free by exhibiting a CFG for it:

What About I ntersection and Complement?

We know that they share afate, since

Linl, =L, 0L,

But what fate?

We proved closure for regular languages two different ways. Can we use either of them here:

1. Given adeterministic automaton for L, construct an automaton for its complement. Argue that, if closed under complement
and union, must be closed under intersection.

2. Givenautomatafor L; and L,, construct a new automaton for L; n L, by simulating the parallel operation of the two original
machines, using states that are the Cartesian product of the sets of states of the two original machines.

More on this later.

TheIntersection of a Context-Free Language and a Regular Languageis Context-Free

L =L(My),aPDA = (Ky, Z, Iy, Ay, 51, F1)
R=L(My), adeterministic FSA = (K3, Z, d, s, F»)

We construct a new PDA, M3, that acceptsL n R by simulating the parallel execution of M; and M.
M= (K XKy Z,T1, A (81, %), FL X F)

Insert into A:

For eachrule ((as, apB), (P Y)inAy

and each rule (0, a, p2) ind,

(1, 92, & B), (P2, P2, Y)

For eachrule ((q, & B), (P, y) inA,,
and each state q, inKy,

(1, A2, &, B), (P, G2). V)

Thisworks because: we can get away with only one stack.

Lecture Notes 19 Languages That Are and Are Not Context Free 2

Example

L= &b n (aa)* (bb)*

a//a b/al

(A, a8, (A &)
((A, b, a), (B, €)

((B,b,a), (B, €)) (2,a1)
(3, b, 4)
(4, b, 3)
A PDA for L:

Don’t Try to Use Closure Backwards

One Closure Theorem:
If L, and L, are context freg, then sois

|_3 = E O L2.
But what if L3 and L, are context free? What can we say about L,?

L3: L1D L2.

T A
Example:

a'b’c* = d'b"cr O d'p"c"

The Context-Free Pumping Lemma
This time we use parse trees, not automata as the basis for our argument.

S

r u T v T x 'y T z 1

If L isacontext-free language, and if wisastring in L where jw| > K, for some value of K, then w can be rewritten as uvxyz,
where jvy| > 0 and [vxy| < M, for some value of M.

UXZ, UVXYZ, UVVXYYZ, UVWVXYYYZ, etc. (i.e., uv"xy"z, for n > 0) areall in L.

Lecture Notes 19 Languages That Are and Are Not Context Free

Some Tree Basics

O < root
N
o O o/\oI . e
yield

Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is< B".

Proof: By inductiononH. If His 1, thenjust asinglerule applies. By definition of fanout, the longest yield is B.
Assumetruefor H = n.

Consider atreewithH =n+ 1. It consists of aroot, and some number of subtrees, each of which is of height < n (so induction
hypothesis holds) and yield < B". The number of subtrees< B. So the yield must be< B(B") or B™*.

What IsK?

—
-

u v ! x oy bz

Let T be the number of nonterminalsin G.

If thereisatree of height > T, then some nonterminal occurs more than once on some path. If it does, we can pump itsyield.
Since atree of height = T can produce only strings of length < BT, any string of length > BT must have a repeated nonterminal and
thus be pumpable.

So K =BT, where T isthe number of nonterminalsin G and B is the branching factor (fanout).

What isM?

—

u v X y Iz !

Assume that we are considering the bottom most two occurrences of some nonterminal. Then the yield of the upper oneis at
most B™** (since only one nonterminal repeats).

SoM =B™,

Lecture Notes 19 Languages That Are and Are Not Context Free 4

The Context-Free Pumping Lemma

Theorem: Let G=(V, Z, R, S) be a context-free grammar with T nonterminal symbols and fanout B. Then any stringw [L(G)
where jw| > K (BT) can be rewritten asw = uvxyz in such away that:

* |wl>0

o |vxy]< M (B™), (making this the "strong" form),

o foreveryn=0, u"xy"zisinL(G).

Proof:

Let w be such astring and let T be the parse tree with root labeled S and with yield w that has the smallest number of |eaves
among all parse trees with the sameroot and yield. T has a path of length at least T+1, with a bottommost repeated nonterminal,
which well call A. Clearly v and y can be repeated any number of times (including 0). If [vy| = 0, then there would be a tree with
root S and yield w with fewer leavesthan T. Finally, jvxy|< B™™.

An Example of Pumping
L ={a"c": n=0}
Choose w = db'c' wherei >[K/3] (making jw| > K)

S

A

N\

r u LY, I X I y 1 Z 1

Unfortunately, we don't know wherev and y fall. But there are two possibilities:

1. If vy contains al three symbols, then at least one of v or y must contain two of them. But then uvvxyyz contains at |east one
out of order symbol.

2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols.

Using the Strong Pumping Lemma for Context Free Languages
If L is context free, then

Thereexist K and M (with M = K) such that
For all stringsw, where jw|> K,
(Sincetruefor all such w, it must be true for any paricular one, so you pick w)
(Hint: describe w in terms of K or M)

there exist u, v, X, y, z such that w = uvxyz and Ivy| >0, and
vxy|< M, and
forall n=0, uv"xy"zisinL.

We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria. To do that, we just need to

focus on possible values for v and y, the pumpable parts. So we show that all possible picksfor v and y violate at least one of
thecriteria.

Write out asingle string, w (interms of K or M) Dividew into regions.

For each possibility for v and y (described in terms of the regions defined above), find some value n such that uv"xy"zisnot in L.
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in). Your value for n may differ for different cases.

Lecture Notes 19 Languages That Are and Are Not Context Free 5

v y n why theresulting stringisnot in L

(4]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
[10]

Convincethereader that thereareno other cases.
Q.E.D.

A Pumping Lemma Proof in Full Detail
Proof that L = {a'b"c" : n> 0} isnot context free.

Suppose L is context free. The context free pumping lemma appliesto L. Let M be the number from the pumping lemma.
Choosew = a"b"c™. Noww O L and jw|>M = K. From the pumping lemma, for all strings w, where [w| > K, there exist u, v, x,
y, z such that w = uvxyz and [vy| > 0, and [vxy| < M, and for all n> 0, uv"xy"zisin L. There are two main cases:
1. Either v or y contains two or more different types of symbols (“a’, “b” or “c”). In this case, uv®xy?z is not of the form
a*b*c* and hence uvxy?z L.
2. Neither v nor y contains two or more different types of symbols. In this case, vy may contain at most two types of
symbols. The string uvxy°z will decrease the count of one or two types of symbols, but not the third, so uv®xy°z OL
Cases 1 and 2 cover all the possibilities. Therefore, regardless of how w is partitioned, there is some uv"xy"z that isnot in L.
Contradiction. ThereforeL is not context free.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

Context-Free Languages Over a Single-L etter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.

Examples:

L ={d'b"

L' ={d'd}
={a")
={wO{a* : w|iseven}

L ={ww®:wO{a b}*}

L’ ={ww?:w O {a*}
={ww: w O {a}*}
={wO{a* : w|iseven}

L ={db™:n,m=0and n# m}

L’ ={d'a":n,m=0andn#m}

Proof: See Parikh's Theorem

Lecture Notes 19 Languages That Are and Are Not Context Free 6

Another Language That IsNot Context Free
L={d":nx1lisprime}
Two waysto prove that L is not context free:
1. Usethe pumping lemma:
Choose astring w = &' such that nis prime and n > K.
W = a8388808080800000858588.
u v x y z
Let vy =& and uxz = d. Thenr + kp must be prime for all values of k. This can't be true, as we argued to show that L was not
regular.

2. |z |=1. Soif L were context free, it would also be regular. But we know that it isnot. So it isnot context free either.

Using Pumping and Closure
L={wO{a b, c}*: whasan equa number of as, b's, and c's}

L is not context free.
Try pumping: Letw = ab*c®

Now what?

Using Inter section with a Regular L anguage to M ake Pumping Tractable
L={tt:tO{a b}*}

Let'stry pumping: |w|>K

t | t
u Y, X y z
What if u is ¢,
v is w,
X is g,
y is w, and
zZ is ¢

Then all pumping tellsusisthat t"t" isinL.

Lecture Notes 19 Languages That Are and Are Not Context Free

L ={tt:tO{a b}*}
What if we let w| > M, i.e. choose to pump the string d"ba"b:
Now v and y can't bet, since jvxy|< M:

t | t
u v X y z

Suppose v| = ly]. Now we have to show that repeating them makes the two copies of t different. But we can't.
L={tt:t0{a b}*}
But let'sconsider L' =L n a*b*a*b*
Thistime, we let jw| > 2M, and the number of both a@sand b'sinw >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Now we use pumping to show that L' is not context free.
First, notice that if either v or y contains both as and b's, then we immediately violate the rules for L' when we pump.
So now we know that v and y must each fall completely in one of the four marked regions.
L'={tt:tO{a b}*} n a*b*a*b*
jw| > 2M, and the number of both asand b'sin w >M:
1 2 3 4
aaasasaaaabbbbbbbbbbasasasaaaabbbbbbbbbb

t | t
u vV XV Z

Consider the combinations of (v, y):

(L.1)
(22)
(33
(4.4)
(1.2)
(23
(34)
(1.3
(24)
(1.4)

Lecture Notes 19 Languages That Are and Are Not Context Free

The Context-Free Languages Are Not Closed Under I ntersection
Proof: (by counterexample)
Consider L ={a'b"c™ n= 0}
L isnot context-free.

Let L, ={adb"'¢™ n,m=0} /*equal dsandb's
L,={a""c": n,m=0} /*equal b'sandc's

Both L, and L, are context-free.

ButL =L;n Ly

So, if the context-free languages were closed under intersection, L would have to be context-free. But it isn't.
The Context-Free Languages Are Not Closed Under Complementation

Proof: (by contradiction)

By definition:

Llﬂ L2:L1DL2

Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily
be closed under intersection. But we just showed that they are not. Thus they are not closed under complementation.

The Deter ministic Context-Free Languages Are Closed Under Complement
Proof:

Let L be alanguage such that L$ is accepted by the deterministic PDA M. We construct a deterministic PDA M' to accept (the
complement of L)$, just aswe did for FSMs:

Initialy, let M' =M.
M' is aready deterministic.
Make M' simple. Why?
Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including:
e Transitionsthat are required to assure that for al input, stack combinations some transition can be followed.
» |f some state q has atransition on (g, €) and if it does not later lead to a state that does consume something then
make atransiton on (g, €) to the dead state.
Swap final and nonfinal states.
6. Noticethat M' isstill deterministic.

AWONPE

o

Lecture Notes 19 Languages That Are and Are Not Context Free 9

An Example of the Construction

L=ab" M acceptsL$ (and is deterministic):

a//a
9 b/al ‘

Set M =M'. Make M simple.
alalaa

alZlaz b/al .

s/s/Z b/al $/Z/
(IO O Om.©

A

$/z/
The Construction, Continued

Add dead state(s) and swap final and nonfinal states:

alalaa
alZlaz b/al
‘S/S/Z b/a/ @ $/z/ °

all, $lal, biz/

al,bll, $ll, elal, €2/
Issues: 1) Never having the machine die
2)-(L9) 2 (-L)$
3) Keeping the machine deterministic
Deter ministic vs. Nondeter ministic Context-Free Languages
Theorem: The class of deterministic context-free languagesis a proper subset of the class of context-free languages.
Proof: Consider L ={a'b™c®: mznorm#p} L iscontext free (we have shown a grammar for it).
But L isnot deterministic. If it were, then its complement L; would be deterministic context free, and thus certainly context free.
But then
L, =L, n ab*c* (aregular language)
would be context free. But
L, ={ab"c": n>0}, whichweknow is not context free.

Thus there exists at least one context-free language that is not deterministic context free.

Note that deterministic context-free languages are not closed under union, intersection, or difference.

Lecture Notes 19 Languages That Are and Are Not Context Free 10

Decision Procedures for CFLs & PDAs

Decision Proceduresfor CFLs

There are decision procedures for the following (G is a CFG):
» Deciding whether w O L(G).
e Deciding whether L(G) = 0.
» Deciding whether L(G) is finite/infinite.

Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form. Why?
Theorem: For any context free grammar G, there exists a number n such that:
1. If L(G) # O, then there existsaw O L(G) such that jw| < n.
2. If L(G)isinfinite, then there existsw O L(G) such that n< jw| < 2n.
There are not decision procedures for the following:
e Deciding whether L(G) = Z*.
» Deciding whether L(G;) = L(Gy).

If we could decide these problems, we could decide the halting problem. (More later.)

Decision Proceduresfor PDA’s

There are decision procedures for the following (M isa PDA):

» Deciding whether w O L(M).

» Deciding whether L(M) = .

e Deciding whether L(M) isfinite/infinite.
Convert M to its equivalent PDA and use the corresponding CFG decision procedure. Why avoid using PDA’s directly?
There are not decision procedures for the following:

» Deciding whether L(M) = Z*.

» Deciding whether L(M1) = L(M)).

If we could decide these problems, we could decide the halting problem. (More later.)

Lecture Notes 19 Languages That Are and Are Not Context Free

11

Regular Languages

e regular exprs.
e or
e regular grammars
* recognize
» =DFSAs
* recognize
* minimize FSAs

» closed under:
0 concatenation
00 union
O Kleene star
0 complement
O intersection
* pumping lemma
e deterministic = nondeterministic

Lecture Notes 19

Comparing Regular and Context-Free L anguages

Context-Free Languages

. context-free grammars

s pase
« =NDPDAs
e pase

e find deterministic grammars
» find efficient parsers
» closed under:

0 concatenation

0 union

0 Kleenestar

e intersection w/ reg. langs

* pumping lemma
e deterministic # nondeterministic

Languages and M achines

Recursively Enumerable
Languages
Recursive

Context-Fre€

Languages That Are and Are Not Context Free 12

