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The Three Hour Tour Through Automata Theory  
 
Read Supplementary Materials: The Three Hour Tour Through Automata Theory 
Read Supplementary Materials: Review of Mathematical Concepts 
Read K & S Chapter 1 
Do Homework 1. 
 

Let's Look at Some Problems 
int alpha, beta; 
alpha = 3; 

  beta = (2 + 5) / 10; 
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc. 
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g., 

     / 
            
        +                10 
 
                   2         5 
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the 
arithmetic expression, since it contains only constants. 
(4) Termination: Decide whether the program is guaranteed to halt. 
(5) Interpretation: Figure out what (if anything) it does. 
 
 

A Framework for Analyzing Problems 
We need a single framework in which we can analyze a very diverse set of problems. 
The framework we will use is Language Recognition 
 
A language is a (possibly infinite) set of finite length strings over a finite alphabet. 

 
 

Languages 
(1) Σ = {0,1,2,3,4,5,6,7,8,9} 

L = {w ∈  Σ*: w represents an odd integer} 
 = {w ∈  Σ*: the last character of w is 1,3,5,7, or 9} 

= (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*  
   (1∪ 3∪ 5∪ 7∪ 9) 

(2) Σ = {(,)} 
L  = {w ∈  Σ*: w has matched parentheses} 
 = the set of strings accepted by the grammar: 
   S → ( S ) 
   S → SS 
   S → ε 

(3) L = {w: w is a sentence in English} 
 Examples: Mary hit the ball. 
   Colorless green ideas sleep furiously. 
   The window needs fixed. 
(4) L = {w: w is a C program that halts on all inputs} 
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Encoding Output in the Input String 
 

(5) Encoding multiplication as a single input string 
 L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is 

the product of the first two} 
 12x9=108  12=12  12x8=108 

(6) Encoding prime decomposition 
L = {w of the form: <integer1>/<integer2>,<integer3> …, where integers 2 - n represent the prime decomposition of 
integer 1. 

15/3,5   2/2 
More Languages 

 
(7) Sorting as a language recognition task: 

L = {w1 # w2: ∃ n ≥1, 
w1 is of the form int1, int2, … intn,  
w2 is of the form int1, int2, … intn, and 
w2 contains the same objects as w1 and w2 is sorted} 
 

Examples: 
 1,5,3,9,6#1,3,5,6,9 ∈  L 
 1,5,3,9,6#1,2,3,4,5,6,7 ∉  L 

 
(8) Database querying as a language recognition task: 

L = {d # q # a: 
 d is an encoding of a database, 
 q is a string representing a query, and 
 a is the correct result of applying q to d} 
Example: 
 (name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876 )# (select name age=23) # (John)  ∈  L 

 
The Traditional Problems and their Language Formulations are Equivalent 

 
By equivalent we mean: 
 
If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other 
functions that can be built using a machine of equal or lesser power. 
 
Consider the multiplication example: 
 L = {w of the form: 
            <integer>x<integer>=<integer>, where  

 <integer> is any well formed integer, and 
 the third integer is the product of the first two} 

 
Given a multiplication machine, we can build the language recognition machine: 
 
 
 
Given the language recognition machine, we can build a multiplication machine: 
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A Framework for Describing Languages 
 
Clearly, if we are going to work with languages, each one must have a finite description. 
 
Finite Languages:  Easy.  Just list the elements of the language. 
  L = {June, July, August} 
 
Infinite Languages:  Need a finite description. 
 
 Grammars let us use recursion to do this. 
 

Grammars 1 
 
(1) The Language of Matched Parentheses 
 

 S → ( S ) 
 S → SS 
 S → ε 
 

(2) The Language of Odd Integers 
  S → 1 
  S → 3 
  S → 5 
  S → 7 
  S → 9 
  S → 0 S 
  S → 1 S 
  S → 2 S 
  S → 3 S 
  S → 4 S 
  S → 5 S 
  S → 6 S 
  S → 7 S 
  S → 8 S 
  S → 9 S 

Grammars 2 
 
 
 
 
 
 
 
   S → O 
   S → A O 
   A →A D 
   A → D 
   D → O  
   D → E  
   O → 1 
   O → 3 
   O → 5 
   O → 7 
   O → 9 
   E→ 0 
   E→ 2 
   E→ 4 
   E→ 6 
   E→ 8 

 
Grammars 3 

(3) The Language of Simple Arithmetic Expressions 
  S → <exp> 

<exp> → <number> 
  <exp> → (<exp>) 
  <exp> → - <exp> 
  <exp> → <exp> <op> <exp> 
  <op> → + | - | * | / 
  <number> → <digit> 
  <number> → <digit> <number> 
  <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Grammars as Generators and Acceptors 
 
Top Down Parsing 
 
 
 
 
    4   +   3 
 
Bottom Up Parsing 
 
 
 
 
 
    4   +   3 

 
 

The Language Hierarchy 
 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular 
Languages 
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Regular Grammars 
 
In a regular grammar, all rules must be of the form: 
 
<one nonterminal> →   <one terminal>  or ε 
 
  or 
  
<one nonterminal> →    <one terminal><one nonterminal> 
 
So, the following rules are okay: 

 S → ε  
S → a 

  S → aS 
 
But these are not: 
  S → ab 
  S → SS 
  aS → b 

Regular Expressions and Languages 
 
Regular expressions are formed from ∅  and the characters in the target alphabet, plus the operations of: 
• Concatenation: αβ means α followed by β 
• Or (Set Union): α∪β  means α Or (Union) β 
• Kleene *: α* means 0 or more occurrences of α concatenated together. 
• At Least 1: α+ means 1 or more occurrences of α concatenated together. 
• (): used to group the other operators 
 
Examples: 
 
(1) Odd integers:  
     (0∪ 1∪ 2∪ 3∪ 4∪ 5∪ 6∪ 7∪ 8∪ 9)*(1∪ 3∪ 5∪ 7∪ 9) 
 
(2) Identifiers: 
     (A-Z)+((A-Z) ∪ (0-9))* 
 
(3) Matched Parentheses 

Context Free Grammars 
 
(1) The Language of Matched Parentheses 

 S → ( S ) 
 S → SS 
 S → ε 
 

(2) The Language of Simple Arithmetic Expressions 
  S → <exp> 

<exp> → <number> 
  <exp> → (<exp>) 
  <exp> → - <exp> 
  <exp> → <exp> <op> <exp> 
  <op> → + | - | * | / 
  <number> → <digit> 
  <number> → <digit> <number> 
  <digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Not All Languages are Context-Free  
English:  S  → NP  VP 
  NP  → the NP1 | NP1 
  NP1  → ADJ  NP1 | N 
  N → boy | boys 
  VP →V | V  NP 
  V → run | runs 
 What about “boys runs” 
 
A much simpler example: anbncn, n ≥ 1 

 
Unrestricted Grammars 

 
Example: A grammar to generate all strings of the form  anbncn, n ≥ 1 

S → aBSc 
S → aBc 
Ba → aB 
Bc → bc 
Bb → bb 

 
The Language Hierarchy 

 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 
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A Machine Hierarchy 
 

 
Finite State Machines 1 

 
An FSM to accept odd integers: 
 
 
 
 
 
        
 
 
 

 
 

 
Finite State Machines 2 

An FSM to accept identifiers: 
 
 
 
 
 
 

 
 

 
 

Pushdown Automata 
 
A PDA to accept strings with balanced parentheses: 

 
                                                               (//( 
                                            s 
                      )/(/ 

 
Example:  (())() 
 
Stack: 
 

Pushdown Automaton 2 
 
A PDA to accept strings of the form w#wR: 
 
                                      a//a                                       a/a/ 
                                                              #// 
                                                 s                                            f 
 
                                      b//b                                       b/b/ 
 
 

 

1,3,5,7,9 
1,3,5,7,9 

0,2,4,6,8 
0,2,4,6,8 

letter 

letter or digit 

delimiter or blank  blank, delimiter 
 or digit 

anything 
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A Nondeterministic PDA 
A PDA to accept strings of the form    wwR 
 
 
                                     a//a                                        a/a/ 
                                                              ε// 
                                                 s                                            f 
 
                                    b//b                                        b/b/ 
 

 
 

PDA 3 
A PDA to accept strings of the form anbncn 

 
 
 
 

Turing Machines 
 

A Turing Machine to accept strings of the form anbncn 
 
  S 
                                                         d//R 
   ❑//R                                                             
                                               a,e//R                  b,f//R 
               a,b,e,f//L 
a   a/d/R  b    b/e/R  c   c/f/L  ← 
 
                        b,c                           c,d,f,❑                   a,d,e,❑ 
 
   ❑,e,f//R  
 
 
   f    a,b,c,d  n 
       e,f//R 
           ❑ 
 
 
      y 
 
 
 
 
  � ❑ a a b b c c a ❑ 
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A Two Tape Turing Machine 
A Turing Machine to accept {w#wR} 
 
   �       ❑     a        b       a      a        #       a       a       b       a       ❑      ❑   
 
 
A Two Tape Turing Machine to do the same thing 
 
 
   �       ❑      a      b       a       a       #       a       a        b        a       ❑      ❑   
 
  
 
   �       ❑     a       b       a      a        #       a       a        b        a      ❑      ❑   
 
 
 

 
Simulating k Tapes with One 

A multitrack tape: 
 
   � ❑ a b a ❑ ❑  
  � 0 0 1 0 0 0  0     ❑     ❑ 
   � a b b a b a 
   0 1 0 0 0 0 0 
 
Can be encoded on a single tape with an alphabet consisting of symbols corresponding to : 
 
 {{�,a,b,#,❑} x {0,1}  x  

  {�,a,b,#,❑} x {0,1}} 
 
Example:                          2nd square: (❑,0,a,1)) 

 
 

Simulating a Turing Machine with a PDA with Two Stacks 
 

  �    a     b    a    a    #    a    a    b    a 

                         ���� 
 
                           a                         # 
                           a                         a 
                           b                         a 
                           a                         b 
                           �                         a 
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The Universal Turing Machine 
Encoding States, Symbols, and Transitions 

 
Suppose the input machine M has 5 states, 4 tape symbols, and a transition of the form: 
 

(s,a,q,b), which can be read as: 
 
in state s, reading an a, go to state q, and write b. 
 
We encode this transition as: 
 
 q000,a00,q010,a01 
 
A series of transitions that describe an entire machine will look like 
 
 q000,a00,q010,a01#q010,a00,q000,a00 

 
The Universal Turing Machine 

        a    a    b 
 
      a00a00a01 
 
                 #              #              # 
 
      q000 
 

Church's Thesis 
(Church-Turing Thesis) 

 
An algorithm is a formal procedure that halts. 
 
The Thesis:  Anything that can be computed by any algorithm can be computed by a Turing machine. 
 
Another way to state it:  All "reasonable" formal models of computation are equivalent to the Turing machine.  This isn't a formal 
statement, so we can't prove it.  But many different computational models have been proposed and they all turn out to be 
equivalent. 
 Example: unrestricted grammars 

A Machine Hierarchy 
 
 
 
 
 
 
 
 

FSMs 
 
 

PDAs 
 
 

Turing Machines 
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Languages and Machines 
 

 
Recursively Enumerable  

Languages 
 

Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 

 
FSMs 

 
 

PDAs 
 
 
 
 

Turing Machines 
 
 

Where Does a Particular Problem Go? 
 
Showing what it is  -- generally by construction of: 
• A grammar, or a machine 
Showing what it isn't -- generally by contradiction, using: 
• Counting 
 Example: anbn 
• Closure properties 
• Diagonalization 
• Reduction 

 
 

Closure Properties 
 

Regular Lanugages are Closed Under: 
�� Union 
�� Concatenation 
�� Kleene closure 
�� Complementation 
�� Reversal 
�� Intersection 

 
Context Free Languages are Closed Under: 

�� Union 
�� Concatenation 
�� Kleene Closure 
�� Reversal 
�� Intersection with regular languages 

Etc. 
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Using Closure Properties 
 
Example: 
L = {anbmcp: n≠m  or m ≠ p} is not deterministic context-free.  
 
Two theorems we'll prove later: 
 
Theorem 3.7.1: The class of deterministic context-free languages is closed under complement. 
 
Theorem 3.5.2: The intersection  of a context-free language with a regular language is a context-free language. 
 
If L were a deterministic CFL, then the complement of L (L') would be a deterministic CFL.  
 
But L' ∩ a*b*c* =  {anbncn}, which we know is not context-free, much less deterministic context-free.  Thus a contradiction. 

 
Diagonalization  

 
The power set of the integers is not countable. 
Imagine that there were some enumeration: 
 

 1 2 3 4 5 
Set 1 1     
Set 2  1  1  
Set 3 1  1   
Set 4  1    
Set 5 1 1 1 1 1 

 
But then we could create a new set 
 

New Set    1  
 
But this new set must necessarily be different from all the other sets in the supposedly complete enumeration.  Yet it should be 
included.  Thus a contradiction. 

 
More on Cantor 

 
Of course, if we're going to enumerate, we probably want to do it very systematically, e.g., 
 

 1 2 3 4 5 6 7 
Set 1 1       
Set 2  1      
Set 3 1 1      
Set 4   1     
Set 5 1  1     
Set 6  1 1     
Set 7 1 1 1     

 
 
Read the rows as bit vectors, but read them backwards.  So Set 4 is 100.  Notice that this is the binary encoding of 4. 
This enumeration will generate all finite sets of integers, and in fact the set of all finite sets of integers is countable.  
But when will it generate the set that contains all the integers except 1? 



Lecture Notes 1                          The Three Hour Tour  13

The Unsolvability of the Halting Problem 
 
Suppose we could implement 

HALTS(M,x) 
M: string representing a Turing Machine 
x: string representing the input for M 
If M(x) halts then True 
          else False 

Then we could define 
 TROUBLE(x) 
  x: string 
  If HALTS(x,x) then loop forever 
                                                     else halt 
 

So now what happens if we invoke TROUBLE(TROUBLE), which invokes 
HALTS(TROUBLE,TROUBLE) 

 
If HALTS says that TROUBLE halts on itself then TROUBLE loops.  IF HALTS says that TROUBLE loops, then TROUBLE 
halts. 

Viewing the Halting Problem as Diagonalization 
 
First we need an enumeration of the set of all Turing Machines.  We'll just use lexicographic order of the encodings we used as 
inputs to the Universal Turing Machine.  So now, what we claim is that HALTS can compute the following table, where 1 means 
the machine halts on the input: 
 

 I1 I2 I3 TROUBLE I5 
Machine 1 1     
Machine 2  1  1  
Machine 3      
TROUBLE   1  1 
Machine 5 1 1 1 1  

 
But we've defined TROUBLE so that it will actually behave as: 
 
TROUBLE   1 1 1 
 
Or maybe HALT said that TROUBLE(TROUBLE) would halt.  But then TROUBLE would loop. 



Lecture Notes 1                          The Three Hour Tour  14

Decidability 
 

 
Recursively Enumerable  

Languages 
 

Recursive  
Languages 

 
Context-Free 
Languages 

 
 

Regular  
Languages 

 
 
 
 
 
 

Can always say yes or no 
 

Can enumerate from the grammar. 
Can say yes by enumerating and checking 

 
 
 
 

Let's Revisit Some Problems 
int alpha, beta; 
alpha = 3; 

  beta = (2 + 5) / 10; 
 
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc. 
(2) Parsing: Create a tree that corresponds to the sequence of operations that should be executed, e.g., 

 
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the 
arithmetic expression, since it contains only constants. 
(4) Termination: Decide whether the program is guaranteed to halt. 
(5) Interpretation: Figure out what (if anything) useful it does. 

/ 
         
                              +                    10 
 
                        2         5 
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So What's Left? 
 
• Formalize and Prove Things 
 
• Regular Languages and Finite State Machines 

• FSMs 
• Nondeterminism 
• State minimization 
• Implementation 

• Equivalence of regular expressions and FSMs 
• Properties of Regular Languages 

• Context-Free Languages and PDAs 
• Equivalence of CFGs and nondeterministic PDAs 
• Properties of context-free languages 
• Parsing and determinism 

• Turing Machines and Computability 
• Recursive and recursively enumerable languages 
• Extensions of Turing Machines 
• Undecidable problems for Turing Machines and unrestricted grammars 
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What Is a Language? 
Do Homework 2. 
 

Grammars, Languages, and Machines 
 
 
 
                                             Language 
                                 L  
 
 
     Grammar 
 
                                           Accepts 
 
 
                                              Machine 
 
 

 
Strings: the Building Blocks of Languages 

 
An alphabet is a finite set of symbols:    English alphabet:  {A, B, C,  …, Z} 

Binary alphabet: {0, 1} 
 
A string over an alphabet is a finite sequence of symbols drawn from the alphabet. 
 
  English string: happynewyear 
  binary string: 1001101 
 
We will generally omit “ ” from strings unless doing so would lead to confusion. 
 
The set of all possible strings over an alphabet Σ is written Σ*. 
  binary string: 1001101 ∈  {0,1}* 
 
The shortest string contains no characters.  It is called the empty string and is written “ ” or ε (epsilon). 
 
The set of all possible strings over an alphabet Σ is written Σ*. 
 

More on Strings 
 
The length of a string is the number of symbols in it. 

|ε| = 0 
|1001101| = 7 

 
A string a is a substring of a string b if a occurs contiguously as part of b. 
  aaa        is a substring of          aaabbbaaa 
  aaaaaa   is not a substring of  aaabbbaaa 
 
Every string is a substring (although not a proper substring) of itself. 
 
ε is a substring of every string.  Alternatively,  we can match ε anywhere. 
 
Notice the analogy with sets here. 
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Operations on Strings 
 
Concatenation: The concatenation of two strings x and y is written x || y, x⋅y, or xy and is the string formed by appending the 
string y to the string x.  

|xy| = |x| + |y| 
 
 If x = ε and y = “food”, then xy =  

If x = “good” and y = “bye”, then |xy| = 
 
Note:  x⋅ε = ε⋅x = x  for all strings x. 
 
Replication: For each string w and each natural number i, the string wi is defined recursively as  
 w0 = ε 

wi = wi-1 w  for each i ≥ 1 
 
Like exponentiation, the replication operator has a high precedence. 

Examples: 
  a3 =  
  (bye)2 =  
  a0b3 = 

 
String Reversal 

 
An inductive definition: 
 
 (1) If |w| = 0 then wR = w = ε 
 (2) If |w| ≥ 1 then ∃  a ∈  Σ: w = u⋅a 
    (a is the last character of w) 
    and 
   wR = a⋅uR 

 Example: 
  (abc)R =  

More on String Reversal 
 
Theorem: If w, x are strings, then (w⋅x)R =  xR⋅wR 
 
    Example: (dogcat)R  = (cat)R⋅(dog)R = tacgod 
 
Proof (by induction on |x|): 
 
 Basis: |x| = 0.  Then x = ε, and (w⋅x)R = (w⋅ε)R = (w)R = ε⋅wR = εR⋅wR = xR⋅wR  
 
Induction Hypothesis: If |x| ≤ n, then (w⋅x)R = xR⋅wR 

 
Induction Step: Let |x| = n + 1. Then x = u a for some character a and |u| = n 
 
  (w⋅x)R = (w⋅ (u⋅a))R 
  = ((w⋅u)⋅a)R   associativity 
  = a⋅(w⋅u)R   definition of reversal 
  = a⋅uR⋅wR   induction hypothesis 
  = (u⋅a)R⋅wR   definition of reversal 
  = xR⋅wR 

d o g c a t 
                                                                          w      x 
                                                                                  u  a 
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Defining a Language  
 
A language is a (finite or infinite) set of finite length strings over a finite alphabet Σ. 
 
Example: Let Σ = {a, b} 
 
    Some languages over Σ: ∅ , {ε}, {a, b}, {ε, a, aa, aaa, aaaa, aaaaa} 
 
    The language Σ* contains an infinite number of strings, including: ε, a, b, ab, ababaaa 
 

Example Language Definitions 
L = {x ∈  {a, b}* : all a's precede all b's} 
 
L = {x : ∃ y ∈  {a, b}* : x = ya} 
 
L = {an, n ≥ 0 } 
 
L = an  (If we say nothing about the range of n, we will assume that it is drawn from N, i.e., n ≥ 0.) 
 
L = {x#y: x,y ∈  {0-9}* and square(x) = y} 
 
L = {} = ∅   (the empty language—not to be confused with {ε}, the language of the empty string) 
 

Techniques for Defining Languages 
 
Languages are sets.  Recall that, for sets, it makes sense to talk about enumerations and decision procedures.  So, if we want 
to provide a computationally effective definition of a language we could specify either a 
 
• Language generator, which enumerates (lists) the elements of the language, or a 
• Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and 

False if it isn't. 
 
Example:  The logical definition: L = {x : ∃ y ∈  {a, b}* : x = ya} can be turned into either a language generator or a 
language recognizer. 
 

How Large are Languages? 
 

• The smallest language over any alphabet is ∅ .    |∅ | = 0 
• The largest language over any alphabet is Σ*.     |Σ*| = ? 

- If Σ = ∅  then Σ* = {ε} and |Σ*| = 1 
       - If Σ ≠ ∅  then |Σ*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the 

integers as follows: 
1. Enumerate all strings of length 0, then length 1, then length 2, and so forth. 
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb 

 
• So all languages are either finite or countably infinite.  Alternatively, all languages are countable. 

 
Operations on Languages 1 

Normal set operations: union, intersection, difference, complement… 
Examples:   Σ = {a, b}  L1 = strings with an even number of a's 

L2 = strings with no b's 
L1 ∪  L2 =  
L1 ∩ L2 =  
L2 - L1 = 
¬ ( L2 - L1) =  
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Operations on Languages 2 
 
Concatenation: (based on the definition of concatenation of strings) 
 
If L1 and L2 are languages over Σ, their concatenation L = L1 L2,  sometimes L1⋅L2, is 
 {w ∈  Σ*: w = x y for some x ∈  L1 and y ∈  L2} 
 
Examples: 
L1 = {cat, dog}           L2 = {apple, pear} L1 L2 = {catapple, catpear, dogapple, dogpear} 
L1 = {an: n ≥ 1}        L2 = {an: n ≤ 3} L1 L2 =  
 
Identities:  
L∅  = ∅ L = ∅    ∀ L   (analogous to multiplication by 0) 
L{ε}= {ε}L = L  ∀ L  (analogous to multiplication by 1) 
 
Replicated concatenation:  
Ln = L⋅L⋅L⋅  … ⋅L   (n times) 
L1 = L 
L0 = {ε} 
 
Example: 
    L = {dog, cat, fish} 
    L0 = {ε} 
    L1 = {dog, cat, fish} 
    L2 = {dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish} 
 

 
Concatenating Languages Defined Using Variables 

 
L1 = an  = {an : n ≥ 0}      L2 = bn = {bn : n ≥ 0}   
L1 L2 = {an : n ≥ 0}{bn : n ≥ 0} = { an bm : n,m ≥ 0}      (common mistake: ) ≠≠≠≠ anbn  = { an bn : n ≥ 0} 
 
Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression. 
 
L = 1n2m 
L = anbman 

 

 
Operations on Languages 3 

 
Kleene Star (or Kleene closure):   L* = {w ∈  Σ* : w = w1 w2 … wk for some k ≥ 0 and some w1, w2,  … wk ∈  L} 
 
Alternative definition:  L* = L0 ∪  L1 ∪  L2 ∪  L3 ∪  … 
  
Note: ∀ L, ε ∈  L* 
 
Example: 
    L = {dog, cat, fish} 
    L* = {ε, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, …} 
 
Another useful definition:  L+ = L L*  (L+ is the closure of L under concatenation) 
 
Alternatively, L+ = L1 ∪  L2 ∪  L3 ∪  … 
 
L+ = L*-{ε} if  ε ∉  L 
L+ = L*  if  ε ∈  L 
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Regular Languages 
Read Supplementary Materials: Regular Languages and Finite State Machines: Regular Languages 
Do Homework 3. 
 

Regular Grammars, Languages, and Machines 
 
 
                                           
                 L                                   Regular 
                                                      Language 
 
 
 
Regular Expression 
        or 
Regular Grammar             Accepts 
 
 
                                           Finite 
                                           State 
                                           Machine 

 
 

“Pure” Regular Expressions  
 
The regular expressions over an alphabet Σ are all strings over the alphabet Σ ∪  {“(“, “)”, ∅ , ∪ , *} that can be obtained as 
follows: 
 

1. ∅  and each member of Σ is a regular expression. 
2. If α , β are regular expressions, then so is αβ 
3. If α , β are regular expressions, then so is α∪β . 
4. If α is a regular expression, then so is α*. 
5. If α is a regular expression, then so is (α). 
6. Nothing else is a regular expression. 

 
If Σ = {a,b} then these are regular expressions:  ∅ , a, bab, a∪ b , (a∪ b)*a*b* 
 
So far, regular expressions are just (finite) strings over some alphabet, Σ ∪  {“(“, “)”, ∅ , ∪ , *}. 
 

Regular Expressions Define Languages 
 
Regular expressions define languages via a semantic interpretation function we'll call L: 
1. L(∅ ) = ∅  and L(a) = {a} for each a ∈  Σ 
2. If α , β are regular expressions, then  

L(αβ) = L(α)⋅L(β) 
           = all strings that can be formed by concatenating to some string from L(α) some string from L(β). 
Note that if either α or β is ∅ , then its language is ∅ , so there is nothing to concatenate and the result is ∅ . 

3. If α , β are regular expressions, then  L(α∪β ) = L(α) ∪  L(β) 
4. If α is a regular expression, then  L(α*) = L(α)* 
5. L( (α) ) = L(α) 
 
A language is regular if and only if it can be described by a regular expression. 
 
A regular expression is always finite, but it may describe a (countably) infinite language. 
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Regular Languages 
An equivalent definition of the class of regular languages over an alphabet Σ: 
The closure of the languages 
 {a} ∀ a ∈  Σ  and  ∅      [1] 
with respect to the functions: 
• concatenation,       [2] 
• union, and        [3] 
• Kleene star.       [4] 
 
In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2], 
[3], and [4]. 

 
“Closure” and “Closed” 

Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.  
The functions are applied to members of the set, and if anything new arises, it’s added to the set.    The resulting set is called 
the closure over the initial set and the functions.  Note that the functions(s) may only be applied a finite number of times. 
 
Examples: 

The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.  
Regular languages can be defined as the closure of  {a} ∀ a∈Σ  and ∅  and the functions of concatenation, union, and 
Kleene star. 

 
We say a set is closed over a function if applying the function to arbitrary elements in the set does not yield any new elements. 
 
Examples: 

The set of natural numbers N is closed under multiplication. 
Regular languages are closed under intersection. 

 
See Supplementary Materials—Review of Mathematical Concepts for more formal definitions of these terms. 
 

Examples of Regular Languages 
L(  a*b*  ) = 
L(  (a ∪  b)  ) =  
L(  (a ∪  b)*  ) = 
L(  (a∪ b)*a*b*) = 
L = {w ∈  {a,b}* : |w| is even} 
L = {w ∈  {a,b}* : w contains an odd number of a's} 
 

Augmenting Our Notation 
It would be really useful to be able to write ε in a regular expression.   
 Example: (a ∪  ε) b     (Optional a followed by b) 
 
But we'd also like a minimal definition of what constitutes a regular expression.  Why? 
 
Observe that 
 ∅ 0 = {ε} (since 0 occurrences of the elements of any set generates the empty string), so 
 ∅ * = {ε} 
 
So, without changing the set of languages that can be defined, we can add ε to our notation for regular expressions if we 
specify that  
 L(ε) = {ε} 
We're essentially treating ε the same way that we treat the characters in the alphabet. 
Having done this, you'll probably find that you rarely need  ∅  in any regular expression. 
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More Regular Expression Examples 
 
L(  (aa*) ∪  ε  ) = 
L(  (a ∪  ε)*  ) = 
L = { w ∈  {a,b}* : there is no more than one b} 
L = { w ∈  {a,b}* : no two consecutive letters are the same} 
 

Further Notational Extensions of Regular Expressions 
 

• A fixed number of concatenations:  αn means αααα …α (n times). 
• At Least 1: α+ means 1 or more occurrences of α concatenated together. 
• Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter) 

Example:    L = (A-Z)+((A-Z)∪ (0-9))* 
 
• A replicated regular expression αn, where n is a constant. 

Example: L = (0 ∪  1)20 

 
• Intersection:  α∩β   (we’ll prove later that regular languages are closed under intersection) 

Example: L = (a3)* ∩ (a5)* 
 

Operator Precedence in Regular Expressions 
 
Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to: 
1. Parse the string 
2. Assign a meaning to the parse tree 
Parsing regular expressions is a lot like parsing arithmetic expressions.  To do it, we must assign precedence to the operators: 
     Regular   Arithmetic 
     Expressions  Expressions 
 
  Highest   Kleene star  exponentiation 
 
     concatenation    

     intersection  multiplication  
 
  Lowest   union   addition 
 
 
 
     a b* ∪  c d*  x y2 + i j2 

 
Regular Expressions and Grammars 

 
Recall that grammars are language generators.  A grammar is a recipe for creating strings in a language. 
 
Regular expressions are analogous to grammars, but with two special properties: 
 
1. The have limited power.  They can be used to define only regular languages. 
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules. 
 
But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.  
Specifically, any such grammar must be composed of rules that: 
 
• have a left hand side that is a single nonterminal 
• have a right hand side that is ε, or a single terminal, or a single terminal followed by a single nonterminal. 
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Regular Grammar Example 
L={w ∈  {a, b}* : |w| is even} 
 
((aa) ∪  (ab) ∪  (ba) ∪  (bb))* 
 
  S → ε 
  S → aT 
  S → bT 
  T → a 
  T → b 
  T → aS 
  T → bS 

 
 
Notice how these rules correspond naturally to a FSM: 
 
                              a, b 
                
                 S                                  T 
 
                              a, b 
 
 

 
 

Generators and Recognizers 
 
                            Generator            Recognizer 
 
      Language 
 
 
                                      Regular Languages 
 
 
                  Regular Expressions 

    Regular Grammars           ? 



Lecture Notes 4                          Finite State Machines 1

Finite State Machines 
Read K & S 2.1 
Do Homeworks 4 & 5. 

Finite State Machines 1 
 

A DFSM to accept odd integers: 
 
 
 
 
 
 

 
Definition of a Deterministic Finite State Machine (DFSM) 

 
M = (K, Σ, δ, s, F), where  K is a finite set of states 

Σ  is an alphabet 
s ∈  K is the initial state 
F ⊆  K is the set of final states, and 
δ is the transition function.  It is function from (K × Σ) to K 

 i.e., each element of δ maps from: a state, input symbol pair to a new state. 
 

Informally, M accepts a string w if M winds up in some state that is an element of F when it has finished reading w (if not, it 
rejects w). 
 
The language accepted by M, denoted L(M), is the set of all strings accepted by M. 
 
Deterministic finite state machines (DFSMs) are also called deterministic finite state automata (DFSAs or DFAs). 

 
Computations Using FSMs 

 
A computation of A FSM is a sequence of configurations, where a configuration is any element of K ×Σ*. 
The yields relation |-M: 
     (q, w) |-M (q', w') iff 

• w = a w' for some symbol a ∈  Σ, and 
• δ (q, a) = q'  

(The yields relation effectively runs M one step.) 
 
|-M * is the reflexive, transitive closure of  |-M. 
(The |-M* relation runs M any number of steps.) 
 
Formally, a FSM M accepts a string w iff  

(s, w) |-M * (q, ε), for some q ∈  F. 
 

An Example Computation 
 
A DFSM to accept odd integers: 
On input 235, the configurations are: 
(q0, 235)  |-M (q0, 35) 
  |-M 
  |-M 
 
Thus (q0, 235) |-M* (q1, ε).  (What does this mean?) 
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Finite State Machines 2 
 
A DFSM to accept $.50 in change: 
 
 
 
 
 
 
 

More Examples 
 
((aa) ∪  (ab) ∪  (ba) ∪  (bb))* 
 
 
 
 
 
 
 
 
 
 
(b ∪  ε)(ab)*(a ∪  ε) 
 
 
 
 
 
 
 
 
 
 

More Examples 

L1 = {w ∈  {a, b}* : every a is immediately followed a b} 
 

A regular expression for L1: 
 
 

A DFSM for L1: 
 
 
 
 

L2 = {w ∈  {a, b}* : every a has a matching b somewhere before it} 
 

A regular expression for L2: 
 
 

A DFSM for L2: 
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Another Example: Socket-based Network Communication 
  
Client  Server   Σ = {Open, Req, Reply, Close} 
open socket     
send request  
  send reply  L = Open (Req Reply)* (Req ∪  ε) Close 
send request 
  send reply 
…     M =  
close socket 

 
 

Definition of a Deterministic Finite State Transducer (DFST) 
 
M = (K, Σ, O, δ, s, F), where 
 
K is a finite set of states 
Σ is an input alphabet 
O is an output alphabet 
s ∈  K is the initial state 
F ⊆  K is the set of final states, and 
δ is the transition function.  It is function from 
  (K × Σ) to (K × O*) 
 i.e., each element of δ maps from:  a state, input symbol pair  

   to : a new state and zero or more output symbols (an output string) 
 
M computes a function M(w) if, when it reads w, it outputs M(w). 
 
Theorem:  The output language of a deterministic finite state transducer (on final state) is regular. 
 

A Simple Finite State Transducer 
 
Convert 1's to 0's and 0's to 1's (this isn't just a finite state task -- it's a one state task) 
 
                          1/0 
 
 
                        q0 
 
 
                       0/1 

 
An Odd Parity Generator 

 
After every three bits, output a fourth bit such that each group of four bits has odd parity. 
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Nondeterministic Finite State Machines 
Read K & S 2.2, 2.3 
Read Supplementary Materials: Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic 

 and Deterministic FSAs. 
Do Homework 6. 
 

Definition of a Nondeterministic Finite State Machine (NDFSM/NFA) 
 
M = (K, Σ, ∆, s, F), where 
 
K is a finite set of states 
Σ  is an alphabet 
s ∈  K is the initial state 
F ⊆  K is the set of final states, and 
∆ is the transition relation.  It is a finite subset of  
  (K × (Σ ∪  {ε})) × K 
 i.e., each element of ∆ contains: 

a configuration (state, input symbol or ε),  and a new state. 
 

M accepts a string w if there exists some path along which w drives M to some element of F. 
 
The language accepted by M, denoted L(M), is the set of all strings accepted by M, where computation is defined analogously to  
DFSMs. 
 

A Nondeterministic FSA 
L= {w : there is a symbol ai∈Σ  not appearing in w} 
 
The idea is to guess (nondeterministically) which character will be the one that doesn't appear. 
 
 
 
 
 

 
Another Nondeterministic FSA 

 
L1= {w : aa occurs in w} 
L2= {x  : bb occurs in x} 
L3= {y  : ∈  L1 or L2 } 
 
M1 =                                      a                        a                       a, b 
                                                                                                   
                                    10                    11                   12                          
                                                      b 
                              b 
 
M2=                                            b                b                          a, b 
                                                                                         
                                   20                    21                    22                          
                                                    a 
                             a 
M3=  
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Analyzing Nondeterministic FSAs 
                   a 
                                                                     a 
                               b 
 
                                                         
                                                                 
              b               b         a 
 
                   b                             
                  
 
                                                           b 
 
                 a 

 
Does this FSA accept:        baaba 
Remember: we just have to find one accepting path.   
 

Nondeterministic and Deterministic FSAs 
 
Clearly, {Languages accepted by a DFSA} ⊆  {Languages accepted by a NDFSA} 
 (Just treat δ as ∆) 
More interestingly,  Theorem: For each NDFSA, there is an equivalent DFSA. 

Proof: By construction 
                                            
                                                                                        b,c 
                                           ε                   ¬a 
                                                                 q1 
 
 
                                                                                        a,c 
               q0               ε                            ¬b 
                                                                 q2 
 
 
                                                                                       a,b 
                               ε                               ¬c 
                                                                 q3 
 

 
Another Nondeterministic Example 

b* (b(a ∪  c)c ∪  b(a ∪  b) (c ∪  ε))* b  
 

 
                  c 
               ε                                 a, c 
    b                        3                          4   
        ε               b          c                   

          1                  2                                 
                         b                       a,b                           c, ε 
                                            5                          6                          7 
 
            c, ε                b 
 
                  8 
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A “Real” Example 
 
                        See enemy 
    Found by enemy 
 Hide       Run             See sword 
    Coast clear        
       See sword 
  Found by enemy            See laser 
     Brother 
       kills enemy   Reach for Sword   Pick up 
         Laser 
     Sword picked up 
 
 
     Swing Sword 
 
     Get stabbed           Kill enemy 
 
 
     Die 
          Kill enemy 
 
        Become King 
 

 
Dealing with εεεε Transitions 

 
E(q) = {p ∈  K : (q,w) |-*M (p, w}.  E(q) is the closure of {q} under the relation {(p,r) :  there is a transition (p, ε, r) ∈  ∆} 
An algorithm to compute E(q): 
 
 
 
 
 

Defining the Deterministic FSA 
 
Given a NDFSA   M = (K, Σ, ∆, s, F),  
    we construct     M' = (K', Σ, δ', s', F'), where 
  K' = 2K 

  s' = E(s) 
  F' = {Q ⊆  K : Q ∩ F ≠ ∅ } 
  δ' (Q, a) = ∪ {E(p) : p ∈  K and (q, a, p) ∈  ∆ 
   for some q ∈  Q} 
Example: computing δ' for the missing letter machine 
s' =      {q0, q1, q2, q3} 
δ' =     { ({q0, q1, q2, q3}, a, {q2, q3}), 
   ({q0, q1, q2, q3}, b, {q1, q3}), 
   ({q0, q1, q2, q3}, c, {q1, q2}), 
   ({q1, q2}, a, {q2}), ({q1, q2}, b, {q1}), ({q1, q2}, c, {q1, q2}) 
   ({q1, q3}, a, {q3}), ({q1, q3}, b, {q1, q3}), ({q1, q3}, c, {q1}) 
   ({q2, q3}, a, {q2, q3}), ({q2, q3}, b, {q3}), ({q2, q3}, c, {q2}) 
   ({q1}, b, {q1}), ({q1}, c, {q1}) 
   ({q2}, a, {q2}), ({q2}, c, {q2}) 
   ({q3}, a, {q3}), ({q3}, b, {q3})     } 

 

                                            
                                                                                       b,c 
                                             ε                ¬a 
                                                                q1 
 
 
                                                                                      a,c 
                q0               ε                          ¬b 
                                                                q2 
 
 
                                                                                      a,b 
                               ε                              ¬c 
                                                                q3 
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An Algorithm for Constructing the Deterministic FSA 
1. Compute the E(q)s: 
2. Compute s' = E(s)  
3. Compute δ': 

δ' (Q, a) = ∪ {E(p) : p ∈  K and (q, a, p) ∈  ∆ for some q ∈  Q} 
4. Compute K' = a subset of 2K 
5. Compute F' = {Q ∈  K' : Q ∩ F ≠ ∅  } 
 

An Example - The Or Machine 
L1= {w : aa occurs in w} 
L2= {x  : bb occurs in x} 
L3= {y  : ∈  L1 or L2 } 
 
                                        a                            a                       a, b 
                       b              
                              10                      11                      12 
 
               ε                           b 
 
               00 
 
            ε 
                                       b                             b                       a, b 
                       a              
                              20                      21                      22 
 
                                             a 

Another Example  
b* (b(a ∪  c)c ∪  b(a ∪  b) (c ∪  ε))* b  
 
 
                  c 
                              ε                                 a, c 
              b                       3                          4   
                   ε               b          c                   
         1                  2                                 
                                    b                       a, b                          c, ε 
                                                    5                          6                          7 
 
                 c, ε                b 
 
                      8 
E(q) =  
 
δ' =  
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Sometimes the Number of States Grows Exponentially 
 

 
 
Example:      The missing letter machine, with |Σ| = n          
No. of states after 0 chars: 1 

No. of new states after 1 char: 
n

n −
�

�
�

�

�
�1

 = n 

No. of new states after 2 chars: 
n

n −
�

�
�

�

�
�2

= n(n-1)/2 

No. of new states after 3 chars: 
n

n −
�

�
�

�

�
�3

= n(n-1)(n-2)/6 

Total number of states after n chars: 2n 
 
 

 
What If The Original FSA is Deterministic? 

M=  
 

 
 
               q0                               q1 
 

 
 

 
 

 
1. Compute the E(q)s: 
2. s' = E(q0) =  
3. Compute δ' 

({q0}, odd, {q1})   
({q0}, even, {q0}) 

              ({q1}, odd, {q1})  
        ({q1}, even, {q0}) 
4. K' = {{q0}, {q1}} 
5. F' = {{q1}} 

M' = M 
 
 

The real meaning of “determinism” 
 
A FSA is deterministic if, for each input and state, there is at most one possible transition. 
 

DFSAs are always deterministic.  Why?
 
 NFSAs can be deterministic (even with ε-transitions and implicit dead states), but the formalism allows nondeterminism, 

in general. 
 

Determinism implies uniquely defined machine behavior. 

                                            
                                                                                         b,c 
                                            ε                   ¬a 
                                                                  q1 
 
 
                                                                                        a,c 
                q0               ε                           ¬b 
                                                                 q2 
 
 
                                                                                        a,b 
                                   ε                            ¬c 
                                                                  q3 
 

1,3,5,7,9 
1,3,5,7,9 

0,2,4,6,8 
0,2,4,6,8 
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Interpreters for Finite State Machines 
 
 

Deterministic FSAs as Algorithms 
 
Example:  No more than one b 
 
 
          a                                   a           a,b 
                                 b   b 
               S                                  T      U 
 
 
Length of Program:  |K| × (|Σ| + 2) 
Time required to analyze string w:  O(|w| × |Σ|) 
 
We have to write new code for every new FSM. 
 
Until accept or reject do: 

S: s := get-next-symbol; 
 if s = end-of-file then accept; 
 else if s = a then go to S; 
 else if s = b then go to T; 
T:  s:= get-next-symbol; 
 if s = end-of-file then accept; 
 else if s = a then go to T; 
 else if s = b then go to U; 
etc. 
 
 

 
 

A Deterministic FSA Interpreter 
 
To simulate M = (K, Σ, δ, s, F): 
 

ST := s; 
Repeat 

  i := get-next-symbol; 
  if i ≠ end-of-string then 
   ST := δ(ST, i) 

Until i = end-of-string; 
If ST ∈  F then accept else reject 

 

Simulate the no more than one b machine on input: aabaa 
 
 
 
 
 
 
 
 
 

Nondeterministic FSAs as Algorithms 
 
Real computers are deterministic, so we have three choices if we want to execute a nondeterministic FSA: 
 
1. Convert the NDFSA to a deterministic one: 

• Conversion can take time and space 2K. 
• Time to analyze string w:  O(|w|) 
 

2. Simulate the behavior of the nondeterministic one by constructing sets of states "on the fly" during execution 
• No conversion cost 
• Time to analyze string w: O(|w| × K2) 

 
3. Do a depth-first search of all paths through the nondeterministic machine. 
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A Nondeterministic FSA Interpreter 
 
To simulate M = (K, Σ, ∆, s, F): 
 
SET ST; 
ST := E(s); 
Repeat 
 i := get-next-symbol; 
 if  i ≠ end-of-string then 
  ST1 := ∅  

For all q ∈  ST do 
For all r ∈  ∆(q, i) do 

    ST1 := ST1 ∪  E(r); 
  ST := ST1; 
 
Until i = end-of-string; 
If  ST ∩  F ≠ ∅  then accept else reject 
 
 

A Deterministic Finite State Transducer Interpreter 
 
To simulate M = (K, Σ, O, δ, s, F), given that: 

 δ1(state, symbol)  returns a single new state  
(i.e., M is deterministic), and 

δ2(state, symbol) returns an element of O*, the  
string to be output. 

 
ST := s; 
Repeat: 
 i := get-next-symbol; 
 if  i ≠ end-of-string then 
    write(δ2(ST, i)); 
    ST := δ1(ST, i)  
Until i = end-of-string; 
If  ST ∈  F then accept else reject 
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Equivalence of Regular Languages and FSMs 
 
Read K & S 2.4 
Read Supplementary Materials: Regular Languages and Finite State Machines: Generating Regular Expressions from Finite  

State Machines. 
Do Homework 8. 
 

Equivalence of Regular Languages and FSMs 
 
Theorem: The set of languages expressible using regular expressions (the regular languages) equals the class of languages 
recognizable by finite state machines.  Alternatively, a language is regular if and only if it is accepted by a finite state machine. 
 

Proof Strategies 
 
Possible Proof Strategies for showing that two sets, a and b are equal (also for iff): 
 
1. Start with a and apply valid transformation operators until b is produced.  
 
Example:  
    Prove:  
A ∩ (B ∪  C) = (A ∩ B) ∪  (A ∩ C) 
A ∩ (B ∪  C)  = (B ∪  C) ∩ A  commutativity 

= (B ∩ A) ∪  (C ∩ A) distributivity 
= (A ∩ B) ∪  (A ∩ C) commutativity 

 
2. Do two separate proofs: (1) a � b, and (2) b �a, possibly using totally different techniques.  In this case, we show first (by 

construction) that for every regular expression there is a corresponding FSM.  Then we show, by induction on the number of 
states, that for every FSM, there is a corresponding regular expression. 

 
For Every Regular Expression There is a Corresponding FSM 

 
We'll show this by construction. 
 
Example: 
 

a*(b ∪  ε)a* 
 
 

Review - Regular Expressions  
 
The regular expressions over an alphabet Σ* are all strings over the alphabet Σ ∪  {(, ), ∅ , ∪ , *} that can be obtained as follows: 

1. ∅  and each member of Σ is a regular expression. 
2. If α , β are regular expressions, then so is αβ. 
3. If α , β are regular expressions, then so is α∪β . 
4. If α is a regular expression, then so is α*. 
5. If α is a regular expression, then so is (α). 
6. Nothing else is a regular expression. 
 

We also allow ε and α+, etc. but these are just shorthands for ∅ * and αα*, etc. so they do not need to be considered for 
completeness. 
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For Every Regular Expression There is a Corresponding FSM 
 
Formalizing the Construction:  The class of regular languages is the smallest class of languages that contains ∅  and each of the 
singleton strings drawn from Σ, and that is closed under  
• Union 
• Concatenation, and 
• Kleene star 
Clearly we can construct an FSM for any finite language, and thus for ∅  and all the singleton strings.  If we could show that the 
class of languages accepted by FSMs is also closed under the operations of union, concatenation, and Kleene star, then we could 
recursively construct, for any regular expression, the corresponding FSM, starting with the singleton strings and building up the 
machine as required by the operations used to express the regular expression. 
 

FSMs for Primitive Regular Expressions 
 
An FSM for ∅ :       An FSM for ε (∅ *): 
 
 
 
An FSM for a single element of Σ: 
 
 
 
 
 
 

 
Closure of FSMs Under Union 

 
To create a FSM that accepts the union of the languages accepted by machines M1 and M2: 
1. Create a new start state, and, from it, add ε-transitions to the start states of M1 and M2. 
 
 
 
 
 
 
 

Closure of FSMs Under Concatenation 
 
To create a FSM that accepts the concatenation of the languages accepted by machines M1 and M2: 
1. Start with M1.  
2. From every final state of M1, create an ε-transition to the start state of M2. 
3. The final states are the final states of M2. 
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Closure of FSMs Under Kleene Star 
 
To create an FSM that accepts the Kleene star of the language accepted by machine M1: 
1. Start with M1. 
2. Create a new start state S0 and make it a final state (so that we can accept ε). 
3. Create an ε-transition from S0 to the start state of M1. 
4. Create ε-transitions from all of M1's final states back to its start state. 
5. Make all of M1's final states final. 
 
Note: we need a new start state, S0, because the start state of the new machine must be a final state, and this may not be true of 
M1's start state. 

 
 
 
 

Closure of FSMs Under Complementation 
 
To create an FSM that accepts the complement of the language accepted by machine M1: 
1. Make M1 deterministic. 
2. Reverse final and nonfinal states. 
 
 
 
 
 

A Complementation Example 
                     a 
                                             b 
                         q1                                     q2 
 

 
 
 
 
 

Closure of FSMs Under Intersection 
 
 
L1 ∩ L2 =                              
                    L1             L2 
 
Write this in terms of operations we have already proved closure for: 
 
• Union 
• Concatenation 
• Kleene star 
• Complementation 

An Example 
 
(b ∪  ab*a)*ab* 
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For Every FSM There is a Corresponding Regular Expression 
 
Proof: 
(1) There is a trivial regular expression that describes the strings that can be recognized in going from one state to itself ({ε} plus 
any other single characters for which there are loops) or from one state to another directly (i.e., without passing through any other 
states), namely all the single characters for which there are transitions. 
 
(2) Using (1) as the base case, we can build up a regular expression for an entire FSM by induction on the number assigned to 
possible intermediate states we can pass through.  By adding them in only one at a time, we always get simple regular 
expressions, which can then be combined using union, concatenation, and Kleene star. 

 
Key Ideas in the Proof 

 
Idea 1: Number the states and, at each induction step, increase by one the states that can serve as intermediate states. 
 
                                                                             b 
                                                                   a                              a 
                        1   2    3 
                 
                  I                           K                           J 
 
Idea 2: To get from state I to state J without passing through any intermediate state numbered greater than K, a machine may 
either: 
1. Go from I to J without passing through any state numbered greater than K-1 (which we'll take as the induction hypothesis), or 
2. Go from I to K, then from K to K any number of times, then from K to J, in each case without passing through any 

intermediate states numbered greater than K-1 (the induction hypothesis, again). 
So we'll start with no intermediate states allowed, then add them in one at a time, each time building up the regular expression 
with operations under which regular languages are closed. 
 

The Formula 
 
Adding in state k as an intermediate state we can use to go from i to j, described using paths that don't use k: 
                                               
                       i                        k                        j 
 
R(i, j, k) = R(i, j, k - 1)   /* what you could do without k 
    ∪  
R(i, k, k-1)    /* go from i to the new intermediate state without using k or higher 
    ° 
R(k, k, k-1)*    /* then go from the new intermediate state back to itself as many times as you want 
    ° 
R(k, j, k-1)    /* then go from the new intermediate state to j without using k or higher 
 

Solution:  ∪  R(s, q, N)  ∀ q ∈  F 
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An Example of the Induction 
 
                                                                             b 
                                     a                             a                              a 
                     1   2   3    4 
                 
 
Going through no intermediate states: 
    (1,1,0) = ε  (1,2,0) = a   (1, 3, 0) = ∅  (2,3,0) = a   (3,3,0) = ε ∪  b  (3,4,0) = a   
Allow 1 as an intermediate state: 
 
Allow 2 as an intermediate state: 
    (1, 3, 2) = (1, 3, 1) ∪  (1, 2, 1)(2, 2, 1)*(2, 3, 1) 
                  =     ∅       ∪        a         ε*            a 
                  =    aa 
Allow 3 as an intermediate state: 
    (1, 3, 3) = (1, 3, 2) ∪  (1, 3, 2)(3, 3, 2)*(3, 3, 2) 
                  =     aa      ∪      aa     (ε ∪  b)*  (ε ∪  b)   
                  =     aab* 
    (1, 4, 3) = (1, 4, 2) ∪  (1, 3, 2)(3, 3, 2)*(3, 4, 2) 
                  =     ∅       ∪      aa     (ε ∪  b)*      a 
                  =     aab*a 

 
An Easier Way - See Packet 

 
                              a 
                  1                             2 
                                         b 
                        b                  a 
                    b         3 
  
                          a 
 
(1) Create a new initial state and a new, unique final state, neither of which is part of a loop. 
                                         
 
            ε                     a 
  4                     1                               2 

                                         b 
                             b                  a 
                          b         3 

  
                               a 

                                                 ε                              ε 
 
                                                                  5 
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(2) Remove states and arcs and replace with arcs labelled with larger and larger regular expressions.  States can be removed in 
any order, but don’t remove either the start or final state. 
 
            ε                     a 
  4                      1                              2 

                                               b  
                                ba*b                     
                                    aa*b  

  
                               

                                                 ε                             ε 
 
                                                                  5 
 
(Notice that the removal of state 3 resulted in two new paths because there were two incoming paths to 3 from another state and 1 
outgoing path to another state, so 2×1 = 2.)  The two paths from 2 to 1 should be coalesced by unioning their regular expressions 
(not shown). 
 
           ε                           ab ∪  aaa*b ∪  ba*b 
                                                       4                      1 
 
 
                                                                    ε           a 
 
                                                                              5 
 
 
 
 
           (ab ∪  aaa*b ∪  ba*b)*(a ∪  ε) 
                                            4                                                         5  
 

 
Thus, the equivalent regular expression is: 

(ab ∪  aaa*b ∪  ba*b)*(a ∪  ε) 
 
 

Using Regular Expressions in the Real World (PERL) 
 
Matching floating point numbers: 
 
-? ([0-9]+(\.[0-9]*)? | \.[0-9]+) 
 
 
Matching IP addresses: 
 
 ([0-9]+ (\ . [0-9]+) {3})  
   
 
Finding doubled words: 
 
\< ([A-Za-z]+) \s+ \1 \> 
 
 

From Friedl, J., Mastering Regular Expressions, O’Reilly,1997. 
 
Note that some of these constructs are more powerful than regular expressions.  
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Regular Grammars and Nondeterministic FSAs 
 
Any regular language can be defined by a regular grammar, in which all rules 
• have a left hand side that is a single nonterminal 
• have a right hand side that is ε, a single terminal, a single nonterminal, or a single terminal followed by a single nonterminal. 
 
Example:   L={w ∈  {a, b}* : |w| is even} 
 
                  ((aa) ∪  (ab) ∪  (ba) ∪  (bb))* 
 
  S → ε 
  S → aT 
  S → bT 
 
   

T → a 
  T → b 
  T → aS 
  T → bS 

                              a, b 
                
                S                                  T 
 
                              a, b 
 

An Algorithm to Generate the NDFSM from a Regular Grammar 
 
1. Create a nonterminal for each state in the NDFSM. 
2. s is the start state. 
3. If there are any rules of the form X → w, for some w∈Σ , then create an additional state labeled #. 
4. For each rule of the form X → w Y, add a transition from X to Y labeled w  (w ∈  Σ ∪  ε). 
5. For each rule of the form X → w, add a transition from X to # labeled w (w ∈  Σ). 
6. For each rule of the form X → ε, mark state X final. 
7. Mark state # final. 
 

Example 1 - Even Length Strings 
 
  S → ε 
  S → aT 
  S → bT 
 
   

T → a 
  T → b 
  T → aS 
  T → bS

 
 
 

Example 2 - One Character Missing 
 

S → ε     
S → aB 
S → aC 
S → bA 
S → bC 
S → cA 
S → cB 

A → bA 
A → cA 
A → ε 
B → aB 
B → cB 
B → ε 

C → aC 
C → bC 
C → ε 
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An Algorithm to Generate a Regular Grammar from an NDFSM 
 
1. Create a nonterminal for each state in the NDFSM. 
2. The start state becomes the starting nonterminal  
3. For each transition δ(T, a) = U, make a rule of the form T → aU. 
4. For each final state T, make a rule of the form T → ε. 
 
 
 
Example: 
          a 
  b 
        X     Y 
     
           a 
    b 
 

 
Conversion Algorithms between Regular Language Formalisms 

 

Regular 
Grammar 

 
 
 
 

NFSM 
(NFA) 

Regular 
Expression 

 
 
 

DFSM 
(DFA) 
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Languages That Are and Are Not Regular 
 
Read L & S 2.5, 2.6 
Read Supplementary Materials: Regular Languages and Finite State Machines: The Pumping Lemma for Regular Languages. 
Do Homework 9. 

Deciding Whether a Language is Regular 
 
Theorem: There exist languages that are not regular. 
Lemma: There are an uncountable number of languages. 
Proof of Lemma:  
Let:  Σ be a finite, nonempty alphabet, e.g., {a, b, c}. 

 
Then Σ* contains all finite strings over Σ.   
 e.g., {ε, a, b, c, aa, ab, bc, abc, bba, bbaa, bbbaac} 
 
Σ* is countably infinite, because its elements can be enumerated one at a time, shortest first. 
 
Any language L over Σ is a subset of Σ*,       e.g.,  L1 = {a, aa, aaa, aaaa, aaaaa, …} 
       L2 = {ab, abb, abbb, abbbb, abbbbb, …} 
The set of all possible languages is thus the power set of Σ*. 
 
The power set of any countably infinite set is not countable.  So there are an uncountable number of languages over Σ*. 
 

Some Languages Are Not Regular 
Theorem: There exist languages that are not regular. 
Proof: 
(1) There are a countably infinite number of regular languages.  This true because every description of a regular language is of 
finite length, so there is a countably infinite number of such descriptions. 
(2) There are an uncountable number of languages. 
 
Thus there are more languages than there are regular languages.  So there must exist some language that is not regular. 
 

Showing That a Language is Regular 
 
Techniques for showing that a language L is regular: 
1. Show that L has a finite number of elements. 
2. Exhibit a regular expression for L. 
3. Exhibit a FSA for L. 
4. Exhibit a regular grammar for L. 
5. Describe L as a function of one or more other regular languages and the operators ⋅, ∪ , ∩, *, -, ¬ .  We use here the fact that 

the regular languages are closed under all these operations. 
6. Define additional operators and prove that the regular languages are closed under them.  Then use these operators as in 5. 

 
Example 

Let Σ = {0, 1, 2, … 9} 
Let L ⊆  Σ* be the set of decimal representations for nonnegative integers (with no leading 0's) divisible by 2 or 3. 
 
L1 = decimal representations of nonnegative integers without leading 0's. 
 L1 = 0 ∪  {1, 2, … 9}{0 - 9}* 
So L1 is regular. 
 
L2 = decimal representations of nonnegative integers without leading 0's divisible by 2 
 L2 = L1 ∩ Σ*{0, 2, 4, 6, 8} 
So L2 is regular. 
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Example, Continued 
L3 = L1 and divisible by 3 
 
Recall that a number is divisible by 3 if and only if the sum of its digits is divisible by 3.  We can build a FSM to determine that 
and accept the language L3a, which is composed of strings of digits that sum to a multiple of 3. 
 
 
 
 
 
 
 L3 = L1 ∩ L3a 
 
Finally, L = L2 ∪  L3 

Another Example 
 
Σ = {0 - 9} 
L = {w : w is the social security number of a living US resident} 
 
 

Finiteness - Theoretical vs. Practical 
 
Any finite language is regular.  The size of the language doesn't matter. 
 
Parity            Soc. Sec. # 
 
Checking           Checking 
 
But, from an implementation point of view, it very well may. 
 
When is an FSA a good way to encode the facts about a language? 
 
What are our alternatives? 
 
FSA's are good at looking for repeating patterns.  They don't bring much to the table when the language is just a set of unrelated 
strings. 
 

Showing that a Language is Not Regular 
 
The argument, “I can't find a regular expression or a FSM”, won't fly.  (But a proof that there cannot exist a FSM is ok.) 
 
Instead, we need to use two fundamental properties shared by regular languages: 
 
1. We can only use a finite amount of memory to record essential properties. 

Example: 
anbn is not regular 

 
2. The only way to generate/accept an infinite language with a finite description is to use Kleene star (in regular expressions) or 

cycles (in automata).  This forces some kind of simple repetitive cycle within the strings. 
 Example: 
  ab*a generates aba, abba, abbba, abbbba, etc. 
 Example: 
  {an : n ≥ 1 is a prime number} is not regular. 
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Exploiting the Repetitive Property 
 
                                                        b 
                     b                      a                        a                       b 
 
 
If a FSM of n states accepts any string of length ≥ n, how many strings does it accept? 
 
 
L = bab*ab 
  
 
 
 

            n 
_ _ _ _ _ _ _ _ 
b a b b b b a b 
 x   y       z 
 

xy*z must be in L. 
 
So L includes: baab, babab, babbab, babbbbbbbbbbab 
 

The Pumping Lemma for Regular Languages 
 
If L is regular, then 
        ∃  N ≥ 1, such that 
 ∀  strings w ∈  L, where |w| ≥ N, 
        ∃  x, y, z, such that  w = xyz 
   and  |xy| ≤ N,  
   and  y ≠ ε, 
   and  ∀  q ≥ 0, xyqz is in L. 

 
Example: L = anbn 
 

  a a a a a a a a a a b b b b b b b b b b 
                                  x         y                   z 
 

∃  N ≥ 1     Call it N 
     ∀  long strings w   We pick one 
 ∃  x, y, z    We show no x, y, z 

 
Example: anbn is not Regular 

N is the number from the pumping lemma (or one more, if N is odd). 
 
Choose w = aN/2bN/2. (Since this is what it takes to be “long enough”:  |w| ≥ N) 
                                        1                         2 
  a a a a a a a a a a  b b b b b b b b b b 

                                  x                 y                   z 
 
We show that there is no x, y, z with the required properties: 

|xy| ≤ N,  
 y ≠ ε, 
 ∀  q ≥ 0, xyqz is in L. 
 
Three cases to consider: 
• y falls in region 1: 
 
• y falls across regions 1 and 2: 
 
• y falls in region 3: 
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Example: anbn is not Regular 
Second try: 
 
Choose w to be be aNbN. (Since we get to choose any w in L.) 
                                        1                           2 
  a a a a a a a a a a  b b b b b b b b b b 

                              x            y                   z 
 
We show that there is no x, y, z with the required properties: 

|xy| ≤ N,  
 y ≠ ε, 
 ∀  q ≥ 0, xyqz is in L. 
 
Since |xy| ≤ N, y must be in region 1.  So y = ag for some g ≥ 1.  Pumping in or out (any q but 1) will violate the constraint that the 
number of a’s has to equal the number of b’s. 
 
 

A Complete Proof Using the Pumping Lemma 
 
Proof that L = {anbn} is not regular: 
 
Suppose L is regular.  Since L is regular, we can apply the pumping lemma to L.  Let N be the number from the pumping lemma 
for L.  Choose w = aNbN.  Note that w ∈  L and |w| ≥ N.  From the pumping lemma, there exists some x, y, z where xyz = w and 
|xy| ≤ N,  y ≠ ε, and ∀  q ≥ 0, xyqz ∈ L.  Because |xy| ≤ N, y = a|y| (y is all a’s).  We choose q = 2 and xyqz = aN+|y|bN.  Because |y| > 
0, then xy2z ∉  L (the string has more a’s than b’s).  Thus for all possible x, y, z: xyz = w, ∃ q, xyqz ∉  L.  Contradiction.  ∴  L is 
not regular. 
 
Note: the underlined parts of the above proof is “boilerplate” that can be reused.  A complete proof should have this text or 
something equivalent. 
 
You get to choose w.  Make it a single string that depends only on N.  Choose w so that it makes your proof easier. 
You may end up with various cases with different q values that reach a contradiction.  You have to show that all possible cases 
lead to a contradiction. 
 

Proof of the Pumping Lemma 
 
Since L is regular it is accepted by some DFSA, M.  Let N be the number of states in M.  Let w be a string in L of length N or 
more. 
 
                                                     N 
  a a a a a a a a a a b b b b b b b b b b 
                                    x             y     
                                    x        y 
 
Then, in the first N steps of the computation of M on w, M must visit N+1 states.  But there are only N different states, so it must 
have visited the same state more than once.  Thus it must have looped at least once.  We'll call the portion of w that corresponds 
to the loop y.  But if it can loop once, it can loop an infinite number of times.  Thus: 
• M can recognize xyqz for all values of q ≥ 0. 
• y  ≠ ε (since there was a loop of length at least one) 
• |xy| ≤ N (since we found y within the first N steps of the computation) 
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Another Pumping Example 
 
L = {w=aJbK : K > J} (more b's than a's) 
 
Choose w = aNbN+1 
 
                                       N 

a a a a a a a a a a b b b b b b b b b b b 
                         x          y                    z 
 
We are guaranteed to pump only a's, since |xy| ≤ N.  So there exists a number of copies of y that will cause there to be more a's 
than b's, thus violating the claim that the pumped string is in L. 
 
 

 
A Slightly Different Example of Pumping 

 
L = {w=aJbK : J > K} (more a's than b's) 
 
Choose w = aN+1bN 
                               N 

a a a a a a a a a a b b b b b b b b b b b 
                      x        y                 z 
 
We are guaranteed that y is a string of at least one a, since |xy| ≤ N.  But if we pump in a's we get even more a's than b's, resulting 
in strings that are in L. 
 
What can we do? 
 
 
 

 
Another Slightly Different Example of Pumping 

 
L = {w=aJbK : J ≥ K}  
 
Choose w = aN+1bN 
 
                               N 

a a a a a a a a a a b b b b b b b b b b b 
             x               y                     z 
 
We are guaranteed that y is a string of at least one a, since |xy| ≤ N.  But if we pump in a's we get even more a's than b's, resulting 
in strings that are in L. 
 
If we pump out, then if y is just a then we still have a string in L. 
 
What can we do? 
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Another Pumping Example 

L = abanbn 
 
Choose w = abaNbN 

             N 
a b a a a a a a a a a a b b b b b b b b b b b 

              x     y                            z 
 
What are the choices for (x, y): 
(ε, a) 
(ε, ab) 
(ε, aba+)  
(a, b) 
(a, ba+) 
(aba*, a+) 
 

What if L is Regular? 
 
Given a language L that is regular, pumping will work:  L = (ab)*    Choose w = (ab)N 
 
There must exist an x, y, and z where y is pumpable. 
 
 abababab ababab abababababab 
                      x             y                  z 
 
Suppose  y = ababab     Then,     for all q ≥ 0,      x yqz ∈  L 
 
 
Note that this does not prove that L is regular.  It just fails to prove that it is not. 
 

Using Closure Properties 
 

Once we have some languages that we can prove are not regular, such as anbn, we can use the closure properties of regular 
languages to show that other languages are also not regular. 
 
Example: Σ = {a, b} 

L = {w : w contains an equal number of a's and b's } 
a*b* is regular.  So, if L is regular, then L1 = L ∩ a*b*  is regular. 
 
But L1 is precisely anbn.  So L is not regular. 
  

 
Don’t Try to Use Closure Backwards 

One Closure Theorem: 
If L1 and L2 are regular, then so is  L3 = L1 ∩ L2. 
   
 
But what if L3 and L1 are regular? What can we say about L2? 
 
    L3 = L1 ∩ L2. 
 
Example:   ab = ab ∩ anbn 
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A Harder Example of Pumping 
 
Σ = {a} 
L = {w = aK : K is a prime number} 
 
                                       N 

a a a a a a a a a a a a a 
                        x          y      z 
 
 
Distribution of primes:

 
 |x| + |z| is prime. 

|x| + |y| + |z| is prime.  
  |x| + 2|y| + |z| is prime. 
  |x| + 3|y| + |z| is prime, and so forth. 
 
 

||| | | | | | | | | | |
||| | | | | | | | | | |

Distribution of |x| + q|y| + |z|: 
| | | | | | | | | | |
| | | | | | | | | | |

 
But the Prime Number Theorem tells us that the primes "spread out", i.e., that the number of primes not exceeding x is 
asymptotic to x/ln x.   
 
Note that when q = |x| + |z|, |xyqz| = (|y| + 1)×(|x| + |z|), which is composite (non-prime) if both factors are > 1.  If you’re careful 
about how you choose N in a pumping lemma proof, you can make this true for both factors. 
 
 

Automata Theory is Just the Scaffolding 
 
Our results so far give us tools to: 
• Show a language is regular by: 

• Showing that it has a finite number of elements, 
• Providing a regular expression that defines it, 
• Constructing a FSA that accepts it, or 
• Exploiting closure properties 

• Show a language is not regular by: 
• Using the pumping lemma, or 
• Exploiting closure properties. 

 
But to use these tools effectively, we may also need domain knowledge (e.g., the Prime Number Theorem). 
 

More Examples 
Σ = {0, 1, 2, 3, 4, 5, 6, 7} 
L = {w = the octal representation of a number that is divisible by 7} 
 
Example elements of L: 
7, 16 (14), 43 (35), 61 (49), 223 (147) 
 
 
 
 

More Examples 
Σ = {W, H, Q, E, S, T, B (measure bar)} 
L = {w = w represents a song written in 4/4 time} 
 
Example element of L: 
WBWBHHBHQQBHHBQEEQEEB 
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More Examples 

Σ = {0 - 9} 
L = {w = is a prime Fermat number} 
 
The Fermat numbers are defined by 

Fn = 22n

+ 1, n = 1, 2, 3, … 
 
Example elements of L: 
  F1 = 5, F2 = 17, F3 = 257, F4 = 65,537 
 
 
 

Another Example 
 
Σ = {0 - 9, *, =} 
L = {w = a*b=c:  a, b, c ∈  {0-9}+ and  int(a) * int(b) = int(c)} 
 
 

The Bottom Line 
A language is regular if: 
 
 
                                 OR 
 
 
 
 

The Bottom Line (Examples) 
 
• The set of decimal representations for nonnegative 

integers divisible by 2 or 3 
• The social security numbers of living US residents. 
• Parity checking 
• anbn 
• ajbk where k>j 
• ak where k is prime 

• The set of strings over {a, b} that contain an equal 
number of a's and b's. 

• The octal representations of numbers that are divisible 
by 7 

• The songs in 4/4 time 
• The set of prime Fermat numbers 

 

Decision Procedures 

A decision procedure is an algorithm that answers a question (usually “yes” or “no”) and terminates.  The whole idea of a 
decision procedure itself raises a new class of questions.  In particular, we can now ask, 

1. Is there a decision procedure for question X? 
2. What is that procedure? 
3. How efficient is the best such procedure? 
 

Clearly, if we jump immediately to an answer to question 2, we have our answer to question 1.  But sometimes it makes sense to 
answer question 1 first.  For one thing, it tells us whether to bother looking for answers to questions 2 and 3. 

Examples of Question 1: 

Is there a decision procedure, given a regular expression E and a string S, for determining whether S is in L(E)? 

Is there a decision procedure, given a Turing machine T and an input string S, for determining whether T halts on S? 
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Decision Procedures for Regular Languages 

Let M be a deterministic FSA.  There is a decision procedure to determine whether: 

• w ∈  L(M) for some fixed w 
• L(M) is empty 
• L(M) is finite 
• L(M) is infinite 
 

Let M1 and M2 be two deterministic FSAs.  There is a decision procedure to determine whether M1 and M2 are equivalent.  Let L1 
and L2 be the languages accepted by M1 and M2.  Then the language 

L  = (L1 ∩ ¬L2) ∪  (¬L1 ∩ L2) 

    =  (L1 - L2) ∪  (L2 - L1) 

must be regular.  L is empty iff L1 = L2.  There is a decision procedure to determine whether L is empty and thus whether L1 = L2 
and thus whether M1 and M2 are equivalent. 

 

 

              L1                     L2                                               L1         L2                                                             L1,2 
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A Review of Equivalence Relations 
 
Do Homework 7. 
 

A Review of Equivalence Relations 
 
A relation R is an equivalence relation if it is: reflexive, symmetric, and transitive. 
 
Example: R = the reflexive, symmetric, transitive closure of: 
  (Bob, Bill), (Bob, Butch), (Butch, Bud), 
  (Jim, Joe), (Joe, John), (Joe, Jared), 
  (Tim, Tom), (Tom, Tad) 
 
 
 
 
 
 
 
 
 
 
An equivalence relation on a nonempty set A creates a partition of A.  We write the elements of the partition as [a1], [a2], … 
 Example:  
 
 
 
 

Another Equivalence Relation 
 
Example: R = the reflexive, symmetric, transitive closure of: 
 (apple, pear), (pear, banana), (pear, peach), 
 (peas, mushrooms), (peas, onions), (peas, zucchini) 
 (bread, rice), (rice, potatoes), (rice, pasta) 
 
 
 
 
 
 
 
 
 
 
 
 
Partition: 
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State Minimization for DFAs 
 
Read K & S 2.7 
Do Homework 10. 

State Minimization 
Consider: 
                          a 
                                                 a                                               b    b 
   1       2       3    4 
        a           a 
          b                       b 
    
          
        b  5 
 
                  a 
        b                     a         
            6       
Is this a minimal machine? 

State Minimization 
Step (1): Get rid of unreachable states. 
 
                        a 
                 1                              2 
                                 b 
                                                    a, b 
 
                                                 3 
 
 State 3 is unreachable. 
 
Step (2): Get rid of redundant states. 
 
                    b                a 
               1                                           2 
 
            a                   b                    b 
              
                              3 
 
        a 
 
 States 2 and 3 are redundant. 

Getting Rid of Unreachable States 
 
We can't easily find the unreachable states directly.  But we can find the reachable ones and determine the unreachable ones from 
there.  An algorithm for finding the reachable states: 
 
                        a 
                 1                                   2 
                                 b 
                                                         a, b 
 
 
                                                      3 
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Getting Rid of Redundant States 
 
Intuitively, two states are equivalent to each other (and thus one is redundant) if all strings in Σ* have the same fate, regardless of 
which of the two states the machine is in.  But how can we tell this?  
 
The simple case: 
 
                                    a, b 
                   1                                2 
       b                a 
    
                
 
         3       a, b 
 
 Two states have identical sets of transitions out. 
 

Getting Rid of Redundant States 
The harder case: 
 
                    b                a 
               1                                           2 
 
            a                   b                    b 
              
                              3 
 
        a 
 
The outcomes are the same, even though the states aren't. 
 

Finding an Algorithm for Minimization 
 
Capture the notion of equivalence classes of strings with respect to a language. 
 
Capture the (weaker) notion of equivalence classes of strings with respect to a language and a particular FSA. 
 
Prove that we can always find a deterministic FSA with a number of states equal to the number of equivalence classes of strings. 
 
Describe an algorithm for finding that deterministic FSA. 
 

Defining Equivalence for Strings 
 
We want to capture the notion that two strings are equivalent with respect to a language L if, no matter what is tacked on to them 
on the right, either they will both be in L or neither will.  Why is this the right notion?  Because it corresponds naturally to what 
the states of a recognizing FSM have to remember.  
 
Example: 
 

(1)  a b b a b 
 

 (2)  b a b a b 
 
Suppose L = {w ∈  {a,b}* : |w| is even}.  Are (1) and (2) equivalent? 
 
Suppose L = {w ∈  {a,b}* : every a is immediately followed by b}.  Are (1) and (2) equivalent? 
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Defining Equivalence for Strings 
 
If two strings are equivalent with respect to L, we write x ≈L y.  Formally, x ≈L y if, ∀ z ∈  Σ*, 
 xz ∈  L iff yz ∈  L. 
Notice that ≈L is an equivalence relation. 
Example: 
  Σ = {a, b} 
  L = {w ∈  Σ* : every a is immediately followed by b } 
 
ε 
a 
b 

aa 
bb 
aba 
aab 

bbb 
baa 

The equivalence classes of ≈L: 
 
 
 
|≈L | is the number of equivalence classes of ≈L. 
 

Another Example of ≈≈≈≈L 
Σ = {a, b} 
L = {w ∈  Σ* : |w| is even} 
 
 ε 
 a 
 b 
 aa 

bb 
aba 
aab 
bbb 
baa 

aabb 
bbaa 
aabaa 

The equivalence classes of ≈L: 
 
 
 

Yet Another Example of ≈≈≈≈L 
Σ = {a, b} 
L = aab*a 
 
 ε 
 a 
 b 
 aa 

ab 

ba 
bb 
aaa 
aba 
aab 
bab 

aabb 
aabaa 
aabbba 
aabbaa 

The equivalence classes of ≈L: 
 
 
 

An Example of ≈≈≈≈L Where All Elements of L Are Not in the Same Equivalence Class 
 
Σ = {a, b} 
L = {w ∈  {a, b}* : no two adjacent characters are the same} 
 ε 
 a 
 b 
 aa 

bb 
aba 
aab 
baa 
aabb 

aabaa 
aabbba 
aabbaa 

The equivalence classes of ≈L: 
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Is |≈≈≈≈L| Always Finite? 
Σ = {a, b} 
L = anbn 
 ε 
 a 
 b 

aa 
aba 
aaa 

aaaa 
aaaaa 

The equivalence classes of ≈L: 
 
 

Bringing FSMs into the Picture 
≈L is an ideal relation. 
 
What if we now consider what happens to strings when they are being processed by a real FSM? 
 
Σ = {a, b}    L = {w ∈  Σ* : |w| is even} 
 
                                                                 a 
         1    2 
                                                                                                  a, b 
                               b  
        a, b   
      
     3 
 
Define ~M to relate pairs of strings that drive M from s to the same state. 
 
Formally, if M is a deterministic FSM, then x ~M y if there is some state q in M such that  (s, x) |-*

M (q, ε) and (s, y) |-*
M (q, ε). 

 
Notice that M is an equivalence relation. 
 

An Example of ~M 
 
Σ = {a, b}    L = {w ∈  Σ* : |w| is even} 
 
                                                                 a 
         1    2 
                                                                                                  a, b 
                               b  
        a, b   
      
     3 
 
 
ε 
a 
b 
aa 

bb 
aba 
aab 
bbb 
baa 

aabb 
bbaa 
aabaa 

 
The equivalence classes of ~M:   |~M| = 
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Another Example of ~M 
 
Σ = {a, b}    L = {w ∈  Σ* : |w| is even} 
 
 
                                                                 a,b 
         1    2 
                                                                                                       a, b 
 
ε 
a 
b 
aa 

bb 
aba 
aab 
bbb 
baa 

aabb 
bbaa 
aabaa 

The equivalence classes of ~M:   |~M| = 
 
 
 

The Relationship Between ≈≈≈≈L and ~M 
 
≈L: [ε, aa, bb, aabb, bbaa]                |w| is even 
 [a, b, aba, aab, bbb, baa, aabaa] |w| is odd 
 
~M, 3 state machine: 
 q1: [ε, aa, bb, aabb, bbaa]        |w| is even  
 q2: [a, aba, baa, aabaa]   (ab ∪  ba ∪  aa ∪  bb)*a 
 q3: [b, aab, bbb]                (ab ∪  ba ∪  aa ∪  bb)*b 
 
~M, 2 state machine: 
 q1: [ε, aa, bb, aabb, bbaa]        |w| is even  
 q2: [a, b, aba, aab, bbb, baa, aabaa] |w| is odd 
 

~M is a refinement of ≈L. 
 

The Refinement 
 
≈≈≈≈L     [even length]        [odd length]      (S) 
 
 
 
~M     [even length]        odd ending      odd ending   (R) 
(3 state)          in a             in b 
 
An equivalence relation R is a refinement of another one S iff  
  xRy → xSy 
In other words, R makes all the same distinctions S does, plus possibly more. 
 
|R| ≥ |S| 
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~M is a Refinement of ≈≈≈≈L. 
 

Theorem: For any deterministic finite automaton M and any strings x, y ∈  Σ*, if x ~M y, then x ≈L y. 
 
Proof: If x ~M y, then x and y drive m to the same state q.  From q, any continuation string w will drive M to some state r.  Thus 
xw and yw both drive M to r.  Either r is a final state, in which case they both accept, or it is not, in which case they both reject.  
But this is exactly the definition of ≈≈≈≈L. 
 
Corollary: |~M | ≥ |≈≈≈≈L |. 
 

Going the Other Way 
When is this true? 
  
 If x ≈≈≈≈L(M) y then x ~M y. 
 

Finding the Minimal FSM for L 
 
What's the smallest number of states we can get away with in a machine to accept L? 
 
Example:  L = {w ∈  Σ* : |w| is even} 
 
The equivalence classes of ≈L: 
 
 
 
 
Minimal number of states for M(L) = 
 
This follows directly from the theorem that says that, for any machine M that accepts L, |~M| must be at least as large as |≈L |. 
 
Can we always find a machine with this minimal number of states? 

 
The Myhill-Nerode Theorem 

 
Theorem: Let L be a regular language.  Then there is a deterministic FSA that accepts L and that has precisely |≈L | states. 
Proof:  (by construction) 
M =  K states, corresponding to the equivalence classes of ≈L. 

s = [ε], the equivalence class of ε under ≈L. 
F = {[x] : x ∈  L} 
δ([x], a) = [xa] 

For this construction to prove the theorem, we must show: 
1. K is finite. 
2.  δ is well defined, i.e., δ([x], a) = [xa] is independent of x. 
3.  L = L(M) 
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The Proof 
(1) K is finite. 
Since L is regular, there must exist a machine M, with |~M| finite.  We know that 

|~M| ≥ |≈L|   
Thus |≈L| is finite. 
(2) δ is well defined. 
This is assured by the definition of ≈L, which groups together precisely those strings that have the same fate with respect to L. 
 

The Proof, Continued 
(3) L = L(M) 
Suppose we knew that ([x], y) |-M* ([xy], ε). 
Now let [x] be [ε] and let s be a string in Σ*. 
Then   

([ε], s) |-M* ([s], ε) 
M will accept s if [s] ∈  F.  
By the definition of F, [s] ∈  F iff all strings in [s] are in L. 
So M accepts precisely the strings in L. 

The Proof, Continued 
 
Lemma: ([x], y) |-M* ([xy], ε) 
By induction on |y|: 
Trivial if |y| = 0. 
Suppose true for |y| = n. 
Show true for |y| = n+1 

Let y = y'a, for some character a.  Then, 
|y'| = n 

([x], y'a) |-M* ([xy'], a)  (induction hypothesis) 
([xy',] a) |-M* ([xy'a], ε)  (definition of δ) 
([x], y'a) |-M* ([xy'a], ε)  (trans. of |-M*) 
([x], y)   |-M* ([xy], ε)    (definition of y) 

 
Another Version of the Myhill-Nerode Theorem 

 
Theorem: A language is regular iff |≈L| is finite. 
Example:    

Consider:  L = anbn 
   a, aa, aaa, aaaa, aaaaa … 
  Equivalence classes: 
Proof:  
Regular → |≈L| is finite:  If L is regular, then there exists an accepting machine M with a finite number of states N.  We know that 
N ≥ |≈L|.  Thus |≈L| is finite. 
 
|≈L| is finite  → regular: If |≈L| is finite, then the standard DFSA ML accepts L.  Since L is accepted by a FSA, it is regular. 
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Constructing the Minimal DFA from ≈≈≈≈L 
 

Σ = {a, b} 
L = {w ∈  {a, b}* : no two adjacent characters are the same} 
 
The equivalence classes of ≈L: 
1: [ε]       ε 
2: [a, ba, aba, baba, ababa, ...]      (b∪ε )(ab)*a 
3: [b, ab, bab, abab, ...]      (a∪ε )(ba)*b 
4: [bb, aa, bba, bbb, ...]     the rest 
 

• Equivalence classes become states 
• Start state is [ε] 
• Final states are all equivalence classes in L 
• δ([x], a) = [xa] 
 

1

2

3

4

a

b

ba

a

b

                a, b

 
 

Using Myhill-Nerode to Prove that L is not Regular 
L = {an : n is prime} 
 
Consider:  ε 
  a  
  aa 
  aaa 
  aaaa 
 
Equivalence classes: 
 

So Where Do We Stand? 
1. We know that for any regular language L there exists a minimal accepting machine ML. 
2. We know that |K| of ML equals |≈L|. 
3. We know how to construct ML from ≈L. 
But is this good enough? 
 
Consider: 
                          a 
                                                 a                                               b    b 
   1       2       3    4 
        a           a 
          b                       b 
    
          
        b  5 
 
                  a 
        b                     a         
            6       
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Constructing a Minimal FSA Without Knowing ≈≈≈≈L 
 
We want to take as input any DFSA M' that accepts L, and output a minimal, equivalent DFSA M. 
 
What we need is a definition for "equivalent", i.e., mergeable states. 
 
Define q ≡ p iff for all strings w ∈  Σ*, either w drives M to an accepting state from both q and p or it drives M to a rejecting state 
from both q and p. 
 
Example: 
Σ = {a, b}    L = {w ∈  Σ* : |w| is even} 
 
 
                                                                 a 
         1    2 
                                                                                                  a, b 
                               b  
        a, b   
      
     3 
 
 

Constructing ≡≡≡≡ as the Limit of a Sequence of Approximating Equivalence Relations ≡≡≡≡n 
 
(Where n is the length of the input strings that have been considered so far) 
 
We'll consider input strings, starting with ε, and increasing in length by 1 at each iteration.  We'll start by way overgrouping 
states.  Then we'll split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical. 
 
Initially, ≡0 has only two equivalence classes: [F] and [K - F], since on input ε, there are only two possible outcomes, accept or 
reject. 
 
Next consider strings of length 1, i.e., each element of Σ.  Split any equivalence classes of ≡0 that don't behave identically on all 
inputs.  Note that in all cases, ≡n  is a refinement of  ≡n-1. 
 
Continue, until no splitting occurs, computing ≡n  from ≡n-1.   
 

Constructing ≡≡≡≡, Continued 
 

More precisely, for any two states p and q ∈  K and any n ≥ 1, q ≡n p iff: 
1. q ≡n-1 p, AND 
2. for all a ∈  Σ, δ(p, a) ≡n-1 δ(q, a) 
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The Construction Algorithm 
The equivalence classes of ≡0 are F and K-F. 
Repeat for n = 1, 2, 3 … 
 For each equivalence class C of ≡n-1 do 
  For each pair of elements p and q in C do 
   For each a in Σ do 
    See if δ(p, a) ≡n-1 δ(q, a) 

If there are any differences in the behavior of p and q, then split them and create a new equivalence 
class. 

Until ≡n = ≡n-1.  ≡ is this answer.  Then use these equivalence classes to coalesce states. 
 

An Example 
Σ = {a, b} 
                           b 
   1  a  2    3 
                                 b                                                                                                           a 
                  a                                                 b           
                                                    a                               a 
                          
   4  b  5  b  6 
 
           a,b 
≡0 =  
 
 
≡1 = 
 
 
 
 
 
≡2 = 
 
 
 
 
 

Another Example 
 (a*b*)* 
                                                                 a                                                                    b 
                                                                                 b 
    1     2 
                                                                                       a 
≡0 =  
 
≡1 =  
 
 
 
Minimal machine:     
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Another Example 
Example:   L={w ∈  {a, b}* : |w| is even} 
 
                  ((aa) ∪  (ab) ∪  (ba) ∪  (bb))* 
 
  S → ε 
  S → aT 
  S → bT 

  T → a 
  T → b 
  T → aS 
  T → bS 

                              a, b                                           a 
                
                S                                          T                                      # 
                                       a, b                              b 
 
Convert to deterministic: 
S = {s} 
δ =  
 

Another Example, Continued 
Minimize: 
 
    a,b 
   S(1)     T(2) 
 
                                                                    a,b               a,b 
 
                                        #S(3) 
   
≡0 =  
 
≡1 =  
 
 
Minimal machine:     
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Summary of Regular Languages and Finite State Machines 
 

Grammars, Languages, and Machines 
 
 
                                             Language 
                                 L  
 
 
     Grammar 
 
                                      Accepts 
 
 
                                              Machine 
 
 

Regular Grammars, Languages, and Machines 
 
Most interesting languages are infinite.  So we can't write them down.  But we can write down finite grammars and finite 
machine specifications, and we can define algorithms for mapping between and among them. 
 

Grammars              Machines 
 
   Regular         Nondeterministic 
   Expressions            FSAs 
 
 
         

Deterministic 
             FSAs 
 
   Regular 
   Grammars 

         Minimal 
          DFSAs 

 
What Does “Finite State” Really Mean? 

There are two kinds of finite state problems: 
• Those in which: 

• Some history matters. 
• Only a finite amount of history matters.  In particular, it's often the case that we don't care what order things 

occurred in. 
Examples: 

• Parity 
• Money in a vending machine 
• Seat belt buzzer 

• Those that are characterized by patterns. 
Examples: 

• Switching circuits: 
• Telephone 
• Railroad 

• Traffic lights 
• Lexical analysis 
• grep 


