The Three Hour Tour Through Automata Theory

Read Supplementary Materials. The Three Hour Tour Through Automata Theory
Read Supplementary Materials. Review of Mathematical Concepts

Read K & S Chapter 1

Do Homework 1.

Let'sLook at Some Problems
int alpha, beta;
alpha=3;
beta= (2 +5)/ 10;
(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

ya +/\o
£\
(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) it does.

A Framework for Analyzing Problems
We need a single framework in which we can analyze a very diverse set of problems.
The framework we will use is L anguage Recognition

A language is a (possibly infinite) set of finite length strings over afinite al phabet.

L anguages
(1) 2={0,1,2,3,4,5,6,7,8,9}
L ={w O Z*: w represents an odd integer}
={w O z*: thelast character of wis1,3,5,7, or 9}
= (0010203040506070809)*
(103050709)
2 z={()}
L ={w O Z*: w has matched parentheses}
= the set of strings accepted by the grammar:
S~ (S)
S- SS
S-¢
(3) L ={w: wisasentence in English}
Examples: Mary hit the ball.
Colorless green ideas sleep furioudly.
The window needs fixed.
(4) L ={w: wisaC program that halts on all inputs}
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Encoding Output in the Input String

(5) Encoding multiplication as asingle input string
L = {w of the form: <integer>x<integer>=<integer>, where <integer> is any well formed integer, and the third integer is
the product of the first two}
12x9=108 12=12 12x8=108
(6) Encoding prime decomposition
L ={w of the form: <integer1>/<integer2>,<integer3> ..., where integers 2 - n represent the prime decomposition of
integer 1.
15/3,5 2/2
M ore Languages

(7) Sorting as a language recognition task:
L ={w;#w,: [h=>1,
w, isof theforminty, int,, ... int,,
w, isof theformint,, int,, ... int,, and
W, contains the same objects as w; and w; is sorted}

Examples:
1,5,3,9,6#1,3,56,9 0 L
1,53,9,6#1,2,3,4,5,6,7 0L

(8) Database querying as a language recognition task:
L={d#q#a
d isan encoding of a database,
g isastring representing a query, and
aisthe correct result of applying qto d}
Example:
(name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876 )# (select name age=23) # (John) O L

The Traditional Problemsand their Language For mulations are Equivalent

By equivalent we mean:

If we have a machine to solve one, we can use it to build a machine to do the other using just the starting machine and other
functions that can be built using a machine of equal or lesser power.

Consider the multiplication example:
L ={w of the form:
<integer>x<integer>=<integer>, where
<integer> is any well formed integer, and
the third integer is the product of the first two}

Given amultiplication machine, we can build the language recognition machine;

Given the language recognition machine, we can build a multiplication machine;
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A Framework for Describing Languages

Clearly, if we are going to work with languages, each one must have a finite description.

Finite Languages. Easy. Just list the elements of the language.
L ={June, July, August}

Infinite Languages. Need afinite description.
Grammars let us use recursion to do this.
Grammars1

(1) The Language of Matched Parentheses

(2) The Language of Odd Integers
S-1
S-3
S-5
S—>7
S-9
S-0S
S- 1S
S-2S
S-3S
S-4S
S-5S
S-6S
S-7S
S-8S
S-9S

Grammars3

(3) The Language of Simple Arithmetic Expressions

S - <exp>

<exp> - <number>

<exp> - (<exp>)

<exp> - - <exp>

<exp> — <exp> <op> <exp>

<op> - +|-[* |/

<number> - <digit>

<number> - <digit> <number>

<digit>-0|1]2|3]4]|5|6|7|8]9
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Grammars?2

S-0
S-AO
A-AD
A-D
D—>O
D-E
O—>1
0-3
O—>5
0-7
0-9
E- O
E- 2
E- 4
E- 6
E- 8



Top Down Parsing

Bottom Up Parsing

Lecture Notes 1

Grammars as Generators and Acceptors

The Language Hierarchy

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages
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Regular Grammars
Inaregular grammar, al rules must be of the form:
<one nonterminal> - <oneterminal> or ¢
or
<one nonterminal> - <one terminal><one nonterminal>

So, the following rules are okay:
So ¢
S-a
S- aS

But these are not:
S nd ab
S- SS
as s b
Regular Expressionsand L anguages

Regular expressions are formed from O and the charactersin the target alphabet, plus the operations of:
»  Concatenation: a3 means a followed by 3

e Or (SetUnion): al meansa Or (Union) 3

» Kleene*: a* means 0 or more occurrences of a concatenated together.

+ AtLeast 1: a" means 1 or more occurrences of o concatenated together.

e (): used to group the other operators

Examples:

(1) Odd integers:
(0010203040506070809)*(103050709)

(2) Iderntifiers:
(A-Z)"((A-2) O(0-9))*

(3) Matched Parentheses
Context Free Grammars

(1) The Language of Matched Parentheses
S-(9S)
S SS
So ¢

(2) The Language of Simple Arithmetic Expressions
S - <exp>
<exp> - <number>
<exp> - (<exp>)
<exp> - - <exp>
<exp> — <exp> <Op> <exp>
<op> - +|-|*|/
<number> - <digit>
<number> - <digit> <number>
<digit> - 0]1]2|3]|4|5|6]7|8]9
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Not All Languages are Context-Free

English: S - NP VP
NP - the NP1 |NP1
NP1 - ADJ NP1|N
N - boy | boys
VP -V |V NP
V - run|runs
What about “boys runs’

A much simpler example:

ab'c" n=1

Unrestricted Grammars

Example: A grammar to generate all strings of the form a'b’c", n>1

S - aBSc

S - aBc
Ba - aB
Bc - bc
Bb - bb
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A Machine Hierarchy

Finite State M achines 1

An FSM to accept odd integers:

1,3,5,7,9

1,3,5,7,9

0,2,4,6,8
0,2,4,6,8

Finite State M achines 2
An FSM to accept identifiers:

|etter

Q /—m letter or digit

blank, delirmiter () delimiter or blank
anything

or digit
Pushdown Automata

A PDA to accept strings with balanced parentheses:

¢ I
i ‘@

Example: (())()
Stack:

Pushdown Automaton 2

A PDA to accept strings of the form w#w*®:

alla alal .

#ll
q

b/l b/b/ .
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A Nondeter ministic PDA

A PDA to accept strings of the form  ww?

alla alal .
ell
N )

bl/b b/b/ '

PDA 3

A PDA to accept strings of the form a'b"c"

Turing Machines

A Turing Machine to accept strings of the form a’b"c"

di/R

b,f//IR \
a,b,ef//L
c/flL

ad,eQ

Q,ef//IR

ef/IR
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A Two Tape Turing Machine
A Turing Machine to accept { w#w"}

|<>|EI alb alal# alalb aIEIlEIl

A Two Tape Turing Machine to do the same thing

Simulating k Tapeswith One
A multitrack tape:

Rl |olo

o|<c|ofe
ol|o|r|w
ol|o|o|o
o|v|o|w
olo|o|
e (=]
(N

Can be encoded on a single tape with an alphabet consisting of symbols corresponding to :

{{0,ab#,0} x{0,1} x
{0,ab#0} x{0,1}}

Example: 2nd square: (4,0,a,1))

Simulating a Turing M achine with a PDA with Two Stacks

olafblafa#lafaofa] | | [ | | |

]

a #
a a
b a
a b
0 a

Lecture Notes 1 The Three Hour Tour



The Universal Turing Machine
Encoding States, Symbols, and Transitions

Suppose the input machine M has 5 states, 4 tape symbols, and atransition of the form:
(s,a,9,b), which can be read as:

in state s, reading an a, go to state g, and write b.

We encode this transition as:
g000,a00,q010,a01

A series of transitions that describe an entire machine will look like
g000,200,q010,a01#g010,a00,q000,a00

The Universal Turing Machine
a awb

| a00a00a01 |

| # # # |

| qo00 |

Church's Thesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.

The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.

Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine. Thisisn't aformal
statement, so we can't proveit. But many different computational models have been proposed and they all turn out to be
equivalent.

Example: unrestricted grammars
A Machine Hierarchy

PDAs

Turing Machines
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Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Turing Machines

Where Does a Particular Problem Go?

Showing what it is -- generally by construction of:

e A grammar, or amachine

Showing what it isn't -- generally by contradiction, using:

e Counting
Example: a'b"

»  Closure properties

e Diagonalization

e Reduction

Regular Lanugages are Closed Under:
= Union

Concatenation

Kleene closure

Complementation

Reversa

Intersection

Context Free Languages are Closed Under:

=  Union

= Concatenation

= Kleene Closure

» Reversal

* Intersection with regular languages
Etc.
Lecture Notes 1

Closure Properties

The Three Hour Tour

11



Using Closure Properties

Example:
L ={a'™c" nzm or m# p} is not deterministic context-free.

Two theorems welll prove later:

Theorem 3.7.1: The class of deterministic context-free languagesis closed under complement.

Theorem 3.5.2: Theintersection of acontext-free language with aregular language is a context-free language.

If L were adeterministic CFL, then the complement of L (L") would be a deterministic CFL.

ButL' n a*b*c* = {a"c"}, which we know is not context-free, much less deterministic context-free. Thus a contradiction.
Diagonalization

The power set of the integersis not countable.
Imagine that there were some enumeration:

1 2 3 4 5
Set 1 1
Set 2 1 1
Set 3 1 1
Set 4 1
Set 5 1 1 1 1 1
But then we could create a new set
[ New Set | | | [1 | |

But this new set must necessarily be different from all the other setsin the supposedly complete enumeration. Yet it should be
included. Thus a contradiction.

More on Cantor

Of coursg, if were going to enumerate, we probably want to do it very systematically, e.g.,

1 2 3 4 5 6 7

Setl 1

Set2 1

Set 3 1 1

Set4 1

Set5 1 1

Set 6 1 1

Set7 1 1 1

Read the rows as bit vectors, but read them backwards. So Set 4is 100. Notice that thisisthe binary encoding of 4.
This enumeration will generate al finite sets of integers, and in fact the set of all finite sets of integersis countable.
But when will it generate the set that contains all the integers except 1?
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The Unsolvability of the Halting Problem

Suppose we could implement
HALTS(M ,x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x,x) then loop forever
else halt

So now what happens if we invoke TROUBLE(TROUBLE), which invokes
HALTS(TROUBLE, TROUBLE)

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |FHALTS saysthat TROUBLE loops, then TROUBLE
halts.

Viewing the Halting Problem as Diagonalization

First we need an enumeration of the set of all Turing Machines. We'l just use lexicographic order of the encodings we used as
inputs to the Universal Turing Machine. So now, what we claimisthat HALTS can compute the following table, where 1 means
the machine halts on the input:

11 12 13 TROUBLE 15
Machine 1 1
Machine 2 1 1
Machine 3
TROUBLE 1 1
Machine 5 1 1 1 1

But we've defined TROUBLE so that it will actually behave as:

| TROUBLE | | I 1 | 1 |

Or maybe HALT said that TROUBLE(TROUBLE) would halt. But then TROUBLE would loop.
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Decidability

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Regular
Languages

Can always say yes or no

Can enumerale e grammar.
say yes by enumerating and checki

Let's Revisit Some Problems

int alpha, beta;
alpha=3;
beta= (2 + 5) / 10;

(1) Lexical analysis: Scan the program and break it up into variable names, numbers, etc.
(2) Parsing: Create atree that corresponds to the sequence of operations that should be executed, e.g.,
/

N

T 10

N

2 5

(3) Optimization: Realize that we can skip the first assignment since the value is never used and that we can precompute the
arithmetic expression, since it contains only constants.

(4) Termination: Decide whether the program is guaranteed to halt.

(5) Interpretation: Figure out what (if anything) useful it does.

Lecture Notes 1 The Three Hour Tour
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So What's L eft?
Formalize and Prove Things

Regular Languages and Finite State Machines
« FSMs
*  Nondeterminism
e State minimization
e Implementation
» Equivalence of regular expressions and FSMs
*  Properties of Regular Languages
Context-Free Languages and PDAS
« Equivalence of CFGs and nondeterministic PDAs
»  Properties of context-free languages
e Parsing and determinism
Turing Machines and Computability
e Recursive and recursively enumerable languages
» Extensions of Turing Machines
e Undecidable problems for Turing Machines and unrestricted grammars

Lecture Notes 1 The Three Hour Tour
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What Is a Language?
Do Homework 2.

Grammars, Languages, and M achines

Language
L
Accepts
Machine
Strings: the Building Blocks of Languages
An alphabet isafinite set of symbols: English alphabet: {A,B,C, ...

Binary alphabet: {0, 1}
A string over an alphabet is afinite sequence of symbols drawn from the al phabet.

English string: happynewyear
binary string: 1001101

We will generally omit “ " from strings unless doing so would lead to confusion.

The set of all possible strings over an alphabet X iswritten Z*.
binary string: 1001101 0 {0,1} *

The shortest string contains no characters. It is called the empty string and is written
The set of all possible strings over an alphabet X iswritten >*.
Moreon Strings

The length of a string is the number of symbolsin it.

le|=0
[1001101| =7
A string aisasubstring of astring b if aoccurs contiguously as part of b.
aaa isasubstring of aaabbbaaa
aaaaaa isnot asubstring of aaabbbaaa

Every string is a substring (although not a proper substring) of itself.

€ isasubstring of every string. Alternatively, we can match € anywhere.

Notice the analogy with sets here.

Lecture Notes 2 What is a Language?
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Operationson Strings

Concatenation: The concatenation of two strings x and y iswritten x || y, X4/, or xy and is the string formed by appending the
string y to the string x.

Iyl = Ix| + Iyl

If x=¢andy="food”, then xy =
If x="good” andy = “bye", then |xy| =

Note: x[8=¢elX =x for al strings x.

Replication: For each string w and each natural number i, the string W is defined recursively as
0

W =¢

w=wtw foreachi > 1
Like exponentiation, the replication operator has a high precedence.

Examples:

a=

(bye)* =

a0b3 —

String Rever sal

An inductive definition:
(1) If w|=0thenw®=w=¢
(2) If w|=1then Dal>: w=ula
(aisthe last character of w)
and
wR = am®
Example:
(abe)"” =
Moreon String Rever sal
Theorem: If w, x are strings, then (WX)® = x?m”
Example: (dogcat)® = (cat)(dog)" = tacgod
Proof (by induction on [x]):
Basis: [x| = 0. Thenx = ¢, and (WX)® = (WE)R = (W)" = el = eFR = X
Induction Hypothesis: If [x| < n, then ()R = xRW®

Induction Step: Let [x] = n+ 1. Then x = u afor some character aand |u| = n

W) = (w(u@)"

= (wm)@*° associativity
= al(wm)® definition of reversal
= an"mR induction hypothesis
= (Lé@)zw2 definition of reversal
=X W
dogcat
-

X
u

Q1

Lecture Notes 2 What is a Language? 2



Defining a Language
A languageisa (finite or infinite) set of finite length strings over afinite alphabet >.
Example: Let 2 ={a, b}
Some languages over >: [1, {€}, {a b}, {&, a, aa, asa, asaa, asaaa}
The language Z* contains an infinite number of strings, including: €, a, b, ab, ababaaa

Example L anguage Definitions
L={x0O{a b}*:al asprecede all b's}

L={x:0yO{a b}*:x=ya}

L={d,n=0}

L =a" (If we say nothing about the range of n, we will assumethat it is drawn from N, i.e., n>0.)

L ={x#y: x,y 0 {0-9}* and square(x) =y}

L={} =0 (the empty language—not to be confused with { €}, the language of the empty string)
Techniquesfor Defining L anguages

Languages are sets. Recall that, for sets, it makes sense to talk about enumerations and decision procedures. So, if we want
to provide a computationally effective definition of alanguage we could specify either a

» Language generator, which enumerates (lists) the elements of the language, or a
»  Language recognizer, which decides whether or not a candidate string is in the language and returns True if it is and
Falseif it isn't.

Example: Thelogical definition: L ={x: 0Oy O{a, b}* : x =ya} can beturned into either alanguage generator or a
language recognizer.

How Large are Languages?

e Thesmalest language over any alphabet is . [d]=0
» Thelargest language over any alphabet is >*. [Z*|="7
-IfZ=0thenx* ={¢} and [2*|=1
- If Z # 0 then |2*| is countably infinite because its elements can be enumerated in 1 to 1 correspondence with the
integers as follows:
1. Enumerate all strings of length O, then length 1, then length 2, and so forth.
2. Within the strings of a given length, enumerate them lexicographically. E.g., aa, ab, ba, bb

»  Soall languages are either finite or countably infinite. Alternatively, all languages are countable.

Operationson Languages 1

Normal set operations: union, inter section, difference, complement...
Examples: 2 ={a, b} L, = strings with an even number of as

L, = stringswith no b's
Ll O L2:
Ll al L2 =
|_2 - Ll =
(Lz-Ly=
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Operations on Languages 2
Concatenation: (based on the definition of concatenation of strings)

If L, and L, are languages over Z, their concatenation L =L L,, sometimesL,(,, is
{wOX*:w=xyforsomexOL;andy 0Ly}

Examples:

L, = {cat, dog} L, ={apple, pear} L, L, ={catapple, catpear, dogapple, dogpear}
L1={an:n21} L2={a”:ns3} LiL,=

I dentities:

LO=0L=0 0L (anaogousto multiplication by 0)
L{e}={e}L =L 0OL (analogousto multiplication by 1)

Replicated concatenation:
L"=LOMO... M (ntimes)
L'=L
L°={¢g}
Example:
L ={dog, cat, fish}
LO={g}
L' ={dog, cat, fish}
L? = { dogdog, dogcat, dogfish, catdog, catcat, catfish, fishdog, fishcat, fishfish}
Concatenating L anguages Defined Using Variables

L,=a" ={d":n=0} L,=b"={b":n>0}
Lil,={a":n=0}{b":n=20} ={ a"b™:nm=0} (commonmistake: ) Zab" ={ a'b":n=0}

Note: The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.
L=1"2"
L =ah"d"
Operationson Languages 3
Kleene Star (or Kleeneclosure): L* ={w O X* : w=w; W, ... wy for some k = 0 and some wy, Wy, ... w, 0L}
Alternative definition: L* =L°O L' OL*0 L3O ...
Note: 0L, e O L*
Example:
L ={dog, cat, fish}
* ={¢, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...}
Another useful definition: L*=L L* (L" isthe closure of L under concatenation)
Alternatively, L*= L' 0 L20 L3O ...
L"=L*-{g} if e0L

L"=L* if e0OL
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Regular Languages

Read Supplementary Materials. Regular Languages and Finite State Machines: Regular Languages
Do Homework 3.

Regular Grammars, L anguages, and M achines

Regular
Language

Regular Expression
or
Regular Grammar

Finite
State
M achine

“Pure” Regular Expressions

Theregular expressions over an aphabet Z are all strings over the alphabet ~ 00 {“(*, )", O, O, *} that can be obtained as
follows:

1. 0 and each member of X isaregular expression.
2. 1f a, B areregular expressions, then so is aff
3.1f a, B areregular expressions, then soisal .
4. If a isaregular expression, then soisa*.

5. If a isaregular expression, then so is (a).

6. Nothing else isaregular expression.

If ~ ={ab} thenthese are regular expressions: O, a, bab, allb, (aldb)*a*b*
So far, regular expressions are just (finite) strings over some alphabet, > 00 {“(*, )", O, O, *}.
Regular Expressions Define Languages

Regular expressions define languages via a semantic inter pretation function we'll call L:
1.L(O)=0andL(a)={a} foreachal >
2.1f a, B areregular expressions, then

L(ap) = L(o)@(B)

= al strings that can be formed by concatenating to some string from L (o) some string from L([3).

Note that if either a or B is 0, then itslanguage is [1, so there is nothing to concatenate and the result is (1.
3.1f a, B areregular expressions, then L(al ) =L(a) O L(B)
4. If a isaregular expression, then L(a*) = L(a)*
5.L((0)) =L(a)

A languageisregular if and only if it can be described by aregular expression.

A regular expression is always finite, but it may describe a (countably) infinite language.
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Regular Languages
An equivalent definition of the class of regular languages over an alphabet 3
The closure of the languages

{a} Dalx and O [1]
with respect to the functions:
e concatenation, 2]
e union, and [3]
e Kleene star. [4]

In other words, the class of regular languages is the smallest set that includes all elements of [1] and that is closed under [2],
[3], and [4].

“Closure” and “ Closed”
Informally, a set can be defined in terms of a (usually small) starting set and a group of functions over elements from the set.
The functions are applied to members of the set, and if anything new arises, it’'s added to the set. The resulting set is called
the closure over the initial set and the functions. Note that the functions(s) may only be applied afinite number of times.

Examples:
The set of natural numbers N can be defined as the closure over {0} and the successor (succ(n) = n+1) function.
Regular languages can be defined asthe closure of {a} DalX and [0 and the functions of concatenation, union, and
Kleene star.

We say aset isclosed over afunction if applying the function to arbitrary elementsin the set does not yield any new elements.

Examples:
The set of natural numbers N is closed under multiplication.
Regular languages are closed under intersection.

See Supplementary Material s—Review of Mathematical Concepts for more formal definitions of these terms.

Examples of Regular Languages
L( a*b* )=
L( (a0b) )=
L( (a0b)* )=
L( (aOb)*a*b*) =
L ={wO{ab}* : w|iseven}
L ={w O {ab}* : w contains an odd number of a's}

Augmenting Our Notation
It would be really useful to be able to write € in aregular expression.
Example: (a0 €) b (Optiona afollowed by b)

But we'd also like aminimal definition of what constitutes aregular expression. Why?

Observe that
0°={¢€} (since 0 occurrences of the elements of any set generates the empty string), so
O ={¢}

So, without changing the set of languages that can be defined, we can add € to our notation for regular expressions if we
specify that
L(e) ={&}
We're essentially treating € the same way that we treat the charactersin the alphabet.
Having done this, you'll probably find that you rarely need [0 in any regular expression.
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More Regular Expression Examples

L( (aa)O¢e )=

L( @O¢g* )=

L ={ wO{ab}* : thereisno more than one b}

L ={ wO{ab}* : notwo consecutive letters are the same}

Further Notational Extensions of Regular Expressions

« A fixed number of concatenations: a" means aoaa ...a (n times).

+ AtlLeast 1: a" means 1 or more occurrences of a concatenated together.

»  Shorthands for denoting sets, such as ranges, e.g., (A-Z) or (letter-letter)
Example: L = (A-Z2)"((A-Z2)0(0-9))*

« A replicated regular expression a", where n is a constant.
Example: L = (0 0 1)®

e Intersection: anf (we'll prove later that regular languages are closed under intersection)
Example: L = (&)* n (&)*

Operator Precedencein Regular Expressions

Regular expressions are strings in the language of regular expressions. Thus to interpret them we need to:

1. Parsethestring

2. Assign ameaning to the parse tree

Parsing regular expressionsisalot like parsing arithmetic expressions. To do it, we must assign precedence to the operators:

Regular Arithmetic
Expressions Expressions
Highest Kleene star exponentiation
concatenation
. . multiplication
intersection
L owest union addition
ab* O cd* Xy?+ij?

Regular Expressionsand Grammars
Recall that grammars are language generators. A grammar isarecipe for creating stringsin alanguage.
Regular expressions are analogous to grammars, but with two special properties:

1. Thehavelimited power. They can be used to define only regular languages.
2. They don't look much like other kinds of grammars, which generally are composed of sets of production rules.

But we can write more "standard" grammars to define exactly the same languages that regular expressions can define.
Specifically, any such grammar must be composed of rules that:

e havealeft hand side that is a single nonterminal
* havearight hand side that is€, or asingle terminal, or asingle terminal followed by a single nonterminal.
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Regular Grammar Example
L={w O {a b}* : jw|iseven}

((@a@) O (ab) O (ba) O (bb))* Notice how these rules correspond naturally to a FSM:
So¢ ~ ab
S afl /
L 1
T-a
T-b ab
T aS
T - bS

Generators and Recognizers

Generator Recognizer

\ Language /

Regular Languages

_—— “‘-\\\~

Regular Expressions
Regular Grammars ?
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Finite State Machines

Read K & S2.1
Do Homeworks 4 & 5.
Finite State M achines 1

A DFSM to accept odd integers:

Definition of a Deterministic Finite State M achine (DFSM)

M= (K, %, 9, s, F), where K isafinite set of states
2 isan alphabet
sO K istheinitial state
F O K isthe set of final states, and
o isthetransition function. It isfunction from (K x ) to K
i.e., each element of & maps from: a state, input symbol pair to a new state.

Informally, M acceptsastring w if M winds up in some state that is an element of F when it has finished reading w (if not, it
re ectsw).

The language accepted by M, denoted L (M), isthe set of all strings accepted by M.
Determinigtic finite state machines (DFSMs) are also called deterministic finite state automata (DFSAs or DFAS).
Computations Using FSM s

A computation of A FSM is a sequence of configurations, where a configuration is any element of K x2*.
Theyieldsrelation |-y:
(@ w) Fm (d, w) iff
e w=aw' for somesymbol all 2, and
- 0(@a=q
(Theyieldsrelation effectively runs M one step.)

[-w * isthereflexive, transitive closure of |-y.
(The [-»* relation runs M any number of steps.)

Formally, aFSM M acceptsastring w iff
(s w) [w * (q, €), for someq O F.

An Example Computation

A DFSM to accept odd integers:
On input 235, the configurations are:
(90, 235) i (90, 35)
I
I

Thus (90, 235) |-u+ (g1, €). (What does this mean?)
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Finite State M achines 2

A DFSM to accept $.50 in change:

M ore Examples

((28) 0 (ab) O (ba) T (bb))*

(b O €)(ab)*(all €)

M ore Examples
L1={wO{a b}* : every aisimmediately followed a b}

A regular expression for L1:

A DFSM for L1:

L2={w O{a, b}* : every a has a matching b somewhere before it}

A regular expression for L2:

A DFSM for L2:
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Another Example: Socket-based Network Communication

Client Server > ={Open, Req, Reply, Close}
open socket
send request
send reply L = Open (Req Reply)* (Reg [ €) Close
send request
send reply
M=
close socket

Definition of a Deterministic Finite State Transducer (DFST)

M=(K, Z, 0,9, s, F), where
K isafinite set of states
2 isaninput alphabet
Oisan output al phabet
sOK istheinitial state
F O K isthe set of final states, and
disthetransition function. It isfunction from

(K x 2) to (K x O*)

i.e., each element of d mapsfrom: astate, input symbol pair
to: anew state and zero or more output symbols (an output string)

M computes a function M (w) if, when it reads w, it outputs M(w).

Theorem: The output language of a deterministic finite state transducer (on final state) isregular.
A Simple Finite State Transducer

Convert 1'sto O'sand O'sto 1's (thisisn't just a finite state task -- it's a one state task)

1/0

0/1
An Odd Parity Generator

After every three bits, output afourth bit such that each group of four bits has odd parity.
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Nondeterministic Finite State Machines

ReadK & S2.2,2.3

Read Supplementary Materials. Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic
and Deterministic FSAs.

Do Homework 6.

Definition of a Nondeter ministic Finite State M achine (NDFSM/NFA)
M=(K, Z, A, s F), where

K isafinite set of states
> isan alphabet
sOK istheinitia state
F O K isthe set of final states, and
A isthetransitionrelation. Itisafinite subset of

(Kx(zD{e})) xK

i.e., each element of A contains:
aconfiguration (state, input symbol or €), and anew state.

M accepts a string w if there exists some path along which w drives M to some element of F.

The language accepted by M, denoted L (M), isthe set of all strings accepted by M, where computation is defined analogously to
DFSMs.

A Nondeterministic FSA
L={w : thereisasymbol gX not appearing in w}

Theideaisto guess (nondeterministically) which character will be the one that doesn't appear.

Another Nondeter ministic FSA
L,={w: aaoccursin w}

L,={x : bboccursinx}
L3={y :dLyor L2}

Ty ®Y
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Analyzing Nondeter ministic FSAs

Does this FSA accept: baaba
Remember: we just have to find one accepting path.

Nondeter ministic and Deter ministic FSAs
Clearly, { Languages accepted by a DFSA} [ { Languages accepted by a NDFSA}
(Just treat d as )
More interestingly, Theorem: For each NDFSA, thereis an equivalent DFSA.
Proof: By construction

b,c

a,cC

ab

Another Nondeter ministic Example
b* (b(alc)cOb(@db)(cOeg))*b
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A “Real” Example

* Found by enemy

Hide
—J Coast clear

ound by enemy

Brother
kills gnemy

Kill enemy

Dealing with € Transitions

E(Q ={pOK:(qw) [*m (p, w}. E(q) istheclosure of {g} under therelation {(p,r): thereisatransition (p, €, r) O A}

An algorithm to compute E(q):

Defining the Deterministic FSA

GivenaNDFSA M =(K, %, A, s, F),
weconstruct  M'=(K', Z, &, s, F), where
Kl - 2K

S =E(9)
F={QUK:Qn Fz0O}
0 (Qa=0{E():p0IKand(q,ap) DA
for some q O Q}
Example: computing &' for the missing letter machine
s= {d0,q, g2 g3}
o= { ({d0, 1, 92, g3}, & {92, q3}),
({90, 91, 92, 3}, b, {q1, q3}),
({90, g1, 92, g3}, ¢, {q1, g2}),
({al, 92}, a {g2}), {91, g2}, b, {q1}), ({dl, 92}, c,{ql, g2})
(g1, g3}, & {g3}), {aL, g3}, b, {g1, g3}), ({al, g3}, c, {ql})
({92, g3}, & {g2,g3}), {92, g3}, b, {g3}), ({02, g3}, c, {g2})
({a1}, b, {a1}), (a1}, c, {ql})
({92}, a {g2}), {92}, c. {g2})
(a3}, a {a3}), (a3}, b, {a3}) }
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An Algorithm for Constructing the Deterministic FSA
Compute the E(g)s:
Compute s = E(s)
3. Compute d"
0'(Q,a) =0{E(p):pdKand (g, a p) O A for someq O Q}
Compute K' = a subset of 2
5. ComputeF={QOK':QnF£0}

NP

e

An Example - The Or Machine
L,={w: aaoccursinw}
L,={x : bboccursinx}
Le={y :0OLjorL,}

b b ab

OO G

a
Another Example

b* (b(al c)cOb(@db)(cOe))*b
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Sometimes the Number of States Grows Exponentially

Example:  The missing letter machine, with [Z|=n
No. of states after O chars: 1 > a
n

No. of new states after 1 char: (n_J =n

ac
: a0 g /D
No. of new states after 2 chars: n—2 =n(n-1)/2 -

n

b,c

No. of new states after 3 chars: (n J =n(n-1)(n-2)/6 ab

-3
Total number of states after n chars; 2" &

What If The Original FSA is Deterministic?

Compute the E(g)s:

s =E(qO0) =

3. Compute &
({q0}, odd, {q1})
({q0}, even, {q0})
({1}, odd, {q1})
({ g1}, even, {q0})

4. K'={{q0}, {ql}}

5. F={{q1}}

M'=M

NP

135,79

Thereal meaning of “determinism”
A FSA isdeterministic if, for each input and state, there is at most one possible transition.
DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with e-transitions and implicit dead states), but the formalism allows nondeterminism,
in general.

Determinism implies uniquely defined machine behavior.
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Interpreters for Finite State Machines

Deterministic FSAsas Algorithms

Example: No more than oneb S s := get-next-symbol;
if s= end-of-file then accept;
elseif s=athengoto S

a ab elseif s=bthengoto T;
b b T: S:= get-next-symbol;
@ 3 @ U if s= end-of-file then accept;
U elseif s=athengoto T;

elseif s=bthengoto U;

Length of Program: |K| x (|Z| + 2) etc.
Time required to analyze string w: O(jw| x [Z])

We have to write new code for every new FSM.

Until accept or reject do:
A Deterministic FSA Interpreter

TosimulaeM = (K, Z, 3, s, F): Simulate the no more than one b machine on input: aabaa

ST =5,
Repeat
i := get-next-symbol;
if i # end-of-string then
ST :=&(ST, i)
Until i = end-of-string;
If ST O F then accept else regject

Nondeter ministic FSAs as Algorithms
Real computers are deterministic, so we have three choices if we want to execute a nondeterministic FSA:

1. Convert the NDFSA to adeterministic one:
«  Conversion can take time and space 2<.
e Timeto analyze string w: O(|w])

2. Simulate the behavior of the nondeterministic one by constructing sets of states"on the fly" during execution
*  No conversion cost
«  Timeto analyze string w: O(jw| x K?)

3. Do adepth-first search of all paths through the nondeterministic machine.
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A Nondeter ministic FSA Interpreter
TosimulateM = (K, Z, A, s, F):

SET ST;
ST :=E(s);
Repeat
i := get-next-symbol;
if i #end-of-string then
ST1:=0
For all g O ST do
For all r 0 A(q, i) do
ST1:=ST10E(n);
ST :=ST1,;

Until i = end-of-string;
If ST n F# O then accept else reject

A Deterministic Finite State Transducer Interpreter

TosimulaeM = (K, Z, O, §, s, F), given that:
Oy(state, symbol) returns a single new state
(i.e., M isdeterministic), and
O,(state, symbol) returns an element of O*, the
string to be output.

ST =5,
Repesat:
i ;= get-next-symbol;
if i# end-of-string then
write((ST, i));
ST := 3(ST, i)
Until i = end-of-string;
If ST O F then accept elsereject
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Equivalence of Regular Languages and FSMs

ReadK & S2.4
Read Supplementary Materials. Regular Languages and Finite State Machines: Generating Regular Expressions from Finite
State Machines.

Do Homework 8.
Equivalence of Regular Languagesand FSMs

Theorem: The set of languages expressible using regular expressions (the regular languages) equals the class of languages
recognizable by finite state machines. Alternatively, alanguageisregular if and only if it is accepted by afinite state machine.

Proof Strategies
Possible Proof Strategies for showing that two sets, a and b are equal (also for iff):

1. Start with a and apply valid transformation operators until b is produced.

Example:
Prove:
An(BOC=(AnB)OANC
An(BOC) =BOC)NnA commutativity

=(BnA)O(CnA) distributivity
=(AnB)O(ANCQC) commutativity

2. Do two separate proofs: (1) a= b, and (2) b =a, possibly using totally different techniques. In this case, we show first (by
construction) that for every regular expression there is a corresponding FSM. Then we show, by induction on the number of
states, that for every FSM, there is a corresponding regular expression.

For Every Regular Expression Thereisa Corresponding FSM

Well show this by construction.

Example:

a*(b O g)a

Review - Regular Expressions

The regular expressions over an aphabet >* are all strings over the alphabet > [0 {(, ), O, [, *} that can be obtained as follows:
1. 0 and each member of X isaregular expression.
2.1f a, B areregular expressions, then so is af.
3.1f a, B areregular expressions, thensoisap .
4. If a isaregular expression, then soisa*.
5. If a isaregular expression, then so is (a).
6. Nothing elseis aregular expression.

We also allow € and o™, etc. but these are just shorthands for 0* and aa*, etc. so they do not need to be considered for
completeness.
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For Every Regular Expression Thereisa Corresponding FSM

Formalizing the Construction: The class of regular languages is the smallest class of languages that contains [0 and each of the
singleton strings drawn from Z, and that is closed under

e Union

»  Concatenation, and

* Kleenestar

Clearly we can construct an FSM for any finite language, and thus for O and all the singleton strings. If we could show that the
class of languages accepted by FSMsis also closed under the operations of union, concatenation, and Kleene star, then we could
recursively construct, for any regular expression, the corresponding FSM, starting with the singleton strings and building up the
machine as required by the operations used to express the regular expression.

FSMsfor Primitive Regular Expressions

AnFSM for O; An FSM for € (O*):

An FSM for asingle element of

Closure of FSMsUnder Union

To create a FSM that accepts the union of the languages accepted by machines M1 and M2:
1. Create anew start state, and, from it, add e-transitions to the start states of M1 and M2.

Closure of FSM s Under Concatenation

To create a FSM that accepts the concatenation of the languages accepted by machines M1 and M2:
1. StatwithM1.

2. Fromevery final state of M1, create an e-transition to the start state of M2.

3. Thefinal states are the final states of M2.
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Closure of FSMsUnder Kleene Star

To create an FSM that accepts the Kleene star of the language accepted by machine M1:
Start with M1.

Create a new start state SO and make it afinal state (so that we can accept €).
Create an e-transition from SO to the start state of M 1.

Create e-transitions from all of M1'sfinal states back to its start state.

Make all of M1'sfinal statesfinal.

SAE I A

Note: we need a new start state, SO, because the start state of the new machine must be afinal state, and this may not be true of
M1's start state.

Closure of FSMs Under Complementation
To create an FSM that accepts the complement of the language accepted by machine M 1.

1. Make M1 deterministic.
2. Reversefina and nonfinal states.

A Complementation Example

il X(@®@

Closure of FSM s Under |nter section

L1nL2= .

Write thisin terms of operations we have already proved closure for:

e Union
»  Concatenation
e Kleenestar
e Complementation
An Example

(b O ab*a)*ab*
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For Every FSM Thereisa Corresponding Regular Expression

Pr oof:

(1) Thereisatrivial regular expression that describes the strings that can be recognized in going from one state to itself ({€} plus
any other single characters for which there are loops) or from one state to another directly (i.e., without passing through any other
states), namely all the single characters for which there are transitions.

(2) Using (1) asthe base case, we can build up aregular expression for an entire FSM by induction on the number assigned to
possible intermediate states we can pass through. By adding them in only one at atime, we always get simple regular
expressions, which can then be combined using union, concatenation, and Kleene star.

Key ldeasin the Proof

Idea 1: Number the states and, at each induction step, increase by one the states that can serve as intermediate states.

Idea 2: To get from state | to state J without passing through any intermediate state numbered greater than K, a machine may

either:

1. Gofrom to Jwithout passing through any state numbered greater than K-1 (which we'll take as the induction hypothesis), or

2. Gofroml to K, then from K to K any number of times, then from K to J, in each case without passing through any
intermediate states numbered greater than K-1 (the induction hypothesis, again).

So well start with no intermediate states allowed, then add them in one at atime, each time building up the regular expression

with operations under which regular languages are closed.

The Formula

Adding in state k as an intermediate state we can use to go fromii to j, described using paths that don't use k:

(O—(—O

R@,j, k) =R(i,j,k-1) /* what you could do without k

R(, k, k-1) - /* go from i to the new intermediate state without using k or higher

R(k, k, k-1)* /* then go from the new intermediate state back to itself as many times as you want
R(k, j, k-1) /* then go from the new intermediate state to j without using k or higher

Solution: [J R(s,q,N) OqOF
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An Example of the Induction

g

a a a

O—O0—0—0
_/ A/

Going through no intermediate states:

(1,1,0) =¢ (1,20 =a (1,3,00=0 (2,30 =a (330)=¢0b (34,0)=a
Allow 1 as an intermediate state:

Allow 2 as an intermediate state:
(1,3,2=(4,3,1)0(1,2 12,2, D)*(2,3,1)
= 0O O a e* a
= aa
Allow 3 as an intermediate state:
(1,3,3)=(4,3,2 0(1,3,2)(3,3,2*(3, 3,2
aa 0O a (¢0b* (¢0Ob)
aab*
(14,4,20(1,3,2)(3,3,2*3,4,2
0 a (0b* a

(1,4,3)

O
:
Q

An Easier Way - See Packet
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(2) Remove states and arcs and replace with arcs labelled with larger and larger regular expressions. States can be removed in
any order, but don’t remove either the start or final state.

(Notice that the removal of state 3 resulted in two new paths because there were two incoming paths to 3 from another state and 1
outgoing path to another state, so 2x1 =2.) Thetwo pathsfrom 2 to 1 should be coalesced by unioning their regular expressions

(not shown).
Ncl) € IabDaaa*bDba*b

(ab O aaa*b O ba*b)*(a O €)
RO O

Thus, the equivalent regular expression is:
(ab O aaa*b O ba*b)*(a O €)

Using Regular Expressionsin the Real World (PERL)
M atching floating point numbers:

-2 ([0-9]+(\.[0-9]*)? | \.[0-9]+)

Matching | P addr esses:

([0-9]+ (\. [0-9]+) {3})

Finding doubled words:

\< ([A-ZaZ]+) \s+\1\>

From Friedl, J., Mastering Regular Expressions, O’ Reilly,1997.

Note that some of these constructs are more powerful than regular expressions.
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Regular Grammar s and Nondeter ministic FSAs

Any regular language can be defined by aregular grammar, in which all rules
* havealeft hand side that is a single nonterminal

e havearight hand side that is €, asingle terminal, a single nonterminal, or a single terminal followed by a single nonterminal .
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) 0 (ba) U (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

: ab I
ab

An Algorithm to Generate the NDFSM from a Regular Grammar

1. Create anonterminal for each state in the NDFSM.
2. sisthe start state.
3. |If thereareany rules of theform X — w, for somew(X , then create an additional state labeled #.
4. For eachrule of theform X - w'Y, add atransition from X to Y labeledw (w0 X [ €).
5. For eachrule of theform X — w, add atransition from X to # labeled w (w O ).
6. For eachrule of theform X - ¢, mark state X final.
7. Mark state # final.
Example 1 - Even Length Strings
S-¢ T a
S ar T->b
S- bT T aS
Example 2 - One Character Missing
So¢ A - bA C-aC
S- aB A 5 CcA C - bC
S aC A - ¢ Coe
S - bA B - aB
S - bC B - cB
S~ cCcA B¢
S-cB
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An Algorithm to Generate a Regular Grammar from an NDFSM

1. Create anonterminal for each state in the NDFSM.

2. The start state becomes the starting nonterminal

3. For eachtransition &(T, a) = U, make arule of theform T - aU.
4. For eachfinal state T, makearule of theform T - «.

Example:

Conversion Algorithms between Regular Language For malisms

Regular
Grammar

|

NFSM

(NFA)
Regular /

Expression

DFSM
(DFA)
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Languages That Are and Are Not Regular

ReadL & S25,2.6
Read Supplementary Materials. Regular Languages and Finite State Machines: The Pumping Lemma for Regular Languages.
Do Homework 9.

Deciding Whether a L anguage is Regular

Theorem: There exist languages that are not regular.
Lemma: There are an uncountable number of languages.
Proof of Lemma:

Let: 3 beafinite, nonempty alphabet, e.g., {a b, c}.

Then Z* contains all finite strings over X.
eg., {€& a b, c, aa ab, bc, abc, bba, bbaa, bbbaac}

>* iscountably infinite, because its elements can be enumerated one at atime, shortest first.

Any language L over X isasubset of 2*, eg., L1={a aa, asa, asaa, aaaaa, ...}
L2 = {ab, abb, abbb, abbbb, abbbbb, ...}
The set of all possible languages is thus the power set of *.

The power set of any countably infinite set is not countable. So there are an uncountable number of languages over >*.

Some L anguages Are Not Regular
Theorem: There exist languages that are not regular.
Proof:
(1) There are a countably infinite number of regular languages. This true because every description of aregular language is of
finite length, so there is a countably infinite number of such descriptions.
(2) There are an uncountable number of languages.

Thus there are more languages than there are regular languages. So there must exist some language that is not regular.
Showing That a L anguage is Regular

Techniques for showing that alanguage L isregular:

Show that L has afinite number of elements.

Exhibit aregular expression for L.

Exhibit a FSA for L.

Exhibit aregular grammar for L.

Describe L as afunction of one or more other regular languages and the operators 1[I, n, *, -, =. We use here the fact that
the regular languages are closed under all these operations.

Define additional operators and prove that the regular languages are closed under them. Then use these operators asin 5.

arwONE

o

Example
Let>={0,1,2, ... 9}
Let L O X* bethe set of decimal representations for nonnegative integers (with no leading 0's) divisible by 2 or 3.

L, = decimal representations of nonnegative integers without leading 0's.
L;=00{1,2,...9}{0-9}*
So L, isregular.

L, = decimal representations of nonnegative integers without leading O's divisible by 2

L,=Lin 2*{0, 2 4,6, 8}
So L,isregular.
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Example, Continued
Ls=L;anddivisibleby 3

Recall that anumber isdivisible by 3 if and only if the sum of itsdigitsis divisible by 3. We can build a FSM to determine that
and accept the language L z,, Which is composed of strings of digits that sum to a multiple of 3.

L3:Llﬂ L3a

Flna“y, L=L,0Ls
Another Example

>={0-9}
L ={w: wisthe socia security number of aliving US resident}
Finiteness - Theoretical vs. Practical

Any finite language isregular. The size of the language doesn't matter.

Parity < Soc. Sec. >#
Checking Checking

But, from an implementation point of view, it very well may.
When isan FSA a good way to encode the facts about a language?
What are our alternatives?

FSA's are good at |ooking for repeating patterns. They don't bring much to the table when the language is just a set of unrelated
strings.

Showing that a Language is Not Regular
The argument, “I can't find aregular expression or aFSM”, won't fly. (But a proof that there cannot exist aFSM is ok.)
Instead, we need to use two fundamental properties shared by regular languages:

1. Wecanonly use afinite amount of memory to record essential properties.
Example:
a'b"is not regular

2. Theonly way to generate/accept an infinite language with a finite description is to use Kleene star (in regular expressions) or
cycles (in automata). This forces some kind of simple repetitive cycle within the strings.
Example:
ab*a generates aba, abba, abbba, abbbba, etc.
Example:
{d":n=1isaprime number} isnot regular.
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Exploiting the Repetitive Property

%)b%)aga>©b>(:>

If aFSM of n states accepts any string of length = n, how many strings does it accept?

L = bab*ab n

Xy*z must bein L.
So L includes: baab, babab, babbab, babbbbbbbbbbab
The Pumping Lemma for Regular Languages

If L isregular, then
ON = 1, such that
O stringsw O L, where jw| = N,
0x,y,z,suchthat  w=xyz
and Xy|< N,
and yZ£E,
and O0g=0,xy%zisinL.

Example: L = a'b"

aaaaaaaaaabbbbbbbbbb
X y z
ON=1 CdlitN
O long strings w We pick one
0x,y, z Weshow nox, y, z

Example: a"'b" is not Regular
N is the number from the pumping lemma (or one more, if N is odd).

Choose w = aV2p/2

. (Sincethisiswhat it takes to be “long enough”: |w|= N)
1 2
aaaaaaaaaalbbbbbbbbbb

X y z

We show that thereis no x, y, z with the required properties:
yl<N,
Y #E,
O0g=0,xy%zisinL.

Three cases to consider:
« yfalsinregion1:

» yfalsacrossregions1and 2:

« yfalsinregion3:
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Example: a"b" is not Regular

Second try:
Choose w to be be a*b". (Since we get to choose any win L.)
1 2
aaaaaaaaaa|bbbbbbbbbb
X y | z

We show that thereis no x, y, z with the required properties:
xyl< N,
YZE,
0g=0,xy%isinL.

Since [xy] < N,y must beinregion 1. Soy = &’ for someg= 1. Pumpingin or out (any g but 1) will violate the constraint that the
number of @ s hasto equal the number of b's.

A Complete Proof Using the Pumping Lemma
Proof that L = {a""} is not regular:

Suppose L isregular. Since L isregular, we can apply the pumping lemmato L. Let N be the number from the pumping lemma
for L. Choosew = a"b". Notethat w 0 L and jw|= N. From the pumping lemma, there exists some x, y, z where xyz = w and
IXy|<N, y#e, and0g=0,xy%z OL. Becausexy|< N,y =a (yisal a's). Wechoose q =2 and xy%z = &"*¥b". Becausely|>
0, then xy?z 0 L (the string has more a'sthan b's). Thus for all possible x, y, z: xyz = w, [fy, xy% O L. Contradiction. [0 L is
not regular.

Note: the underlined parts of the above proof is“boilerplate” that can be reused. A complete proof should have this text or
something equivalent.

You get to choose w. Make it asingle string that depends only on N. Choose w so that it makes your proof easier.
Y ou may end up with various cases with different q values that reach a contradiction. Y ou have to show that all possible cases
lead to a contradiction.

Proof of the Pumping Lemma

Since L isregular it is accepted by some DFSA, M. Let N be the number of statesin M. Let w beastring in L of length N or
more.

N

aaaaaaaaaabbbbbbbbbb
Xy

Xy

Then, inthefirst N steps of the computation of M onw, M must visit N+1 states. But there are only N different states, so it must
have visited the same state more than once. Thusit must have looped at least once. Well call the portion of w that corresponds
totheloopy. Butif it can loop once, it can loop an infinite number of times. Thus:

» M can recognize xy% for all values of g = 0.

e y # ¢ (sincethere wasaloop of length at least one)

* |xy|< N (since we found y within the first N steps of the computation)
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Another Pumping Example
L = {w=ab": K > J} (moreb'sthan as)
Choosew = a'b™*"*
N

aaaaaaaaaabbbbbbbbbbb
X y 2

We are guaranteed to pump only as, since |xy| < N. So there exists a number of copies of y that will cause there to be more a's
than b's, thus violating the claim that the pumped string isin L.

A Slightly Different Example of Pumping
L = {w=ab" : J> K} (moreasthan b's)

Choosew = a¥pN

N
aaaaaaaaaabbbbbbbbbbb
X Yy z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat areinL.

What can we do?

Another Slightly Different Example of Pumping

L = {w=ab":J=K}

Choosew = a¥*pVN
N
aaaaaaaaaabbbbbbbbbbb
X y z

We are guaranteed that y isa string of at least one a, since [xy| < N. But if we pump in a's we get even more asthan b's, resulting
instringsthat arein L.

If we pump out, thenif y isjust athen we still have astringinL.

What can we do?
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Another Pumping Example

L = abad"
Choose w = aba“bM
N
a_b@aaaaaaaabbbbbbbbbbb
Xy z

What are the choices for (x, y):
(€, @)

(¢, ab)

(¢, aba")

(a b)

(a ba')

(aba*, a")

What if L isRegular?
Given alanguage L that is regular, pumping will work: L = (ab)* Choose w = (ab)"

There must exist an x, y, and z wherey is pumpable.

abababab ababab abababababab
X y z
Suppose y = ababab Then, foralq=0, xy%zOL

Note that this does not prove that L isregular. It just failsto prove that it is not.
Using Closure Properties

Once we have some languages that we can prove are not regular, such as a'b", we can use the closure properties of regular
languages to show that other languages are also not regular.

Example: > ={a b}
L ={w: w contains an equal humber of asand b's}
a*b* isregular. So, if L isregular, thenL; =L n a*b* isregular.
But L, isprecisely a'b". So L isnot regular.
Don’t Try to Use Closure Backwards

One Closure Theorem:
If Lyand L, areregular, thensois Lz=1L;n Ly
But what if L3z and L, are regular? What can we say about L,?

|_3 = Ll al L2.

A
Example: ab=abn a'b"
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A Harder Example of Pumping

z={a}
L ={w=a": K isaprime number} [X| + [z] is prime.
x| + ly| + |z| is prime.
N [X| + 2ly| + [z] is prime.
aaaaaaaaaaaaa [X| + 3ly|] + [z is prime, and so forth.
X y z

Distribution of [x| + qly| + |z|:
I I

Distribution of primes:
|1
I

But the Prime Number Theorem tells us that the primes " spread out”, i.e., that the number of primes not exceeding x is
asymptotic to x/In x.

Note that when q = [x| + [z], [xy%2| = (ly| + L)x(jx| + |z]), which is composite (non-prime) if both factors are > 1. If you're careful
about how you choose N in a pumping lemma proof, you can make this true for both factors.

Automata Theory is Just the Scaffolding

Our results so far give ustools to:
e Show alanguageisregular by:
e Showing that it has a finite number of elements,
» Providing aregular expression that definesit,
e Constructing a FSA that acceptsit, or
»  Exploiting closure properties
e Show alanguage is not regular by:
»  Using the pumping lemma, or
«  Exploiting closure properties.

But to use these tools effectively, we may also need domain knowledge (e.g., the Prime Number Theorem).
M ore Examples

>={0,1,2,3,4,5,6,7}

L ={w =theoctal representation of a number that isdivisible by 7}

Example elements of L:
7,16 (14), 43 (35), 61 (49), 223 (147)

M ore Examples
Z={W,H,QE, S T, B (measure bar)}
L = {w = w represents a song written in 4/4 time}

Example element of L:
WBWBHHBHQQBHHBQEEQEEB
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M ore Examples
>={0-9}
L ={w =isaprime Fermat number}
The Fermat numbers are defined by
F = 22n+1, n=1,23, ..

Example elements of L:
F.=5,F,=17,F;= 257, F, = 65,537

Another Example
>={0-9* =}
L={w=a*b=c: a,b,c0{0-9}" and int(a) * int(b) = int(c)}

The Bottom Line
A languageisregular if:

OR
The Bottom Line (Examples)

*  The set of decimal representations for nonnegative * Theset of strings over {a, b} that contain an equal

integers divisible by 2 or 3 number of asand b's.
e Thesocia security numbers of living US residents. e The octal representations of numbers that are divisible
»  Parity checking by 7
. af‘b” * Thesongsin4/4time
« db*wherek>j *  The set of prime Fermat numbers

« dwherekisprime

Decision Procedures

A decision procedureis an agorithm that answers a question (usually “yes’ or “no”) and terminates. The whole idea of a
decision procedure itself raises a new class of questions. In particular, we can now ask,

1. Isthere adecision procedure for question X?
2. What isthat procedure?
3. How efficient is the best such procedure?

Clearly, if we jump immediately to an answer to question 2, we have our answer to question 1. But sometimes it makes sense to
answer question 1 first. For onething, it tells us whether to bother looking for answers to questions 2 and 3.

Examples of Question 1:
Isthere a decision procedure, given aregular expression E and astring S, for determining whether Sisin L(E)?

Isthere a decision procedure, given a Turing machine T and an input string S, for determining whether T halts on S?
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Decision Proceduresfor Regular Languages
Let M be adeterministic FSA. Thereis a decision procedure to determine whether:

e wOL(M) for somefixed w
e L(M)isempty

« L(M)isfinite

e L(M)isinfinite

Let M, and M, be two deterministic FSAs. Thereis a decision procedure to determine whether M, and M, are equivalent. Let L,
and L, be the languages accepted by M; and M,. Then the language

L :(Llﬂ_'Lz)D(_'Llﬂ L2)
= (Li-L) O (L2-Ly)

must beregular. L isempty iff Ly = L,. Thereisadecision procedure to determine whether L is empty and thus whether L, = L,
and thus whether M, and M, are equivalent.
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A Review of Equivalence Relations

Do Homework 7.
A Review of Equivalence Relations
A relation R is an equivalence relation if it is: reflexive, symmetric, and transitive.
Example: R = the reflexive, symmetric, transitive closure of:
(Bob, Bill), (Bob, Butch), (Butch, Bud),

(Jim, Joe), (Joe, John), (Joe, Jared),
(Tim, Tom), (Tom, Tad)

An equivalence relation on anonempty set A creates a partition of A. We write the elements of the partition as[a], [&], ...

Example:

Another Equivalence Relation
Example: R = the reflexive, symmetric, transitive closure of:
(apple, pear), (pear, banana), (pear, peach),

(peas, mushrooms), (peas, onions), (peas, zucchini)
(bread, rice), (rice, potatoes), (rice, pasta)

Partition:
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State Minimization for DFAs

ReadK & S2.7
Do Homework 10.

State Minimization

Consider:

I's this a minimal machine?

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can't easily find the unreachable states directly. But we can find the reachable ones and determine the unreachable ones from
there. An algorithm for finding the reachable states:

2
@

a b

©
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Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and thus one is redundant) if all stringsin 2* have the same fate, regardless of
which of the two states the machine isin. But how can wetell this?

The simple case:

b a
ab

Two states have identical sets of transitions out.

Getting Rid of Redundant States
The harder case:

The outcomes are the same, even though the states aren't.
Finding an Algorithm for Minimization
Capture the notion of equivalence classes of strings with respect to alanguage.
Capture the (weaker) notion of equivalence classes of strings with respect to alanguage and a particular FSA.
Prove that we can always find a deterministic FSA with a number of states equal to the number of equivalence classes of strings.
Describe an agorithm for finding that deterministic FSA.
Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent with respect to alanguage L if, no matter what is tacked on to them
on theright, either they will both bein L or neither will. Why isthis the right notion? Because it corresponds naturally to what
the states of arecognizing FSM have to remember.
Example:

(1) a b b a b

(2 b a b a b

SupposeL ={w O {ab}* : w|iseven}. Are (1) and (2) equivalent?

Suppose L ={w O {ab}* : every aisimmediately followed by b}. Are (1) and (2) equivaent?
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Defining Equivalence for Strings

If two strings are equivalent with respect to L, wewritex = y. Formally, x =_ y if, 0z 00 2*,
xzOLiffyzOL.
Notice that = is an equivalence relation.

Example:
Z={a b}
L ={wOZXZ* : every aisimmediately followed by b }
€ aa bbb
a bb baa
b aba
aab

The equivalence classes of = :

[z | isthe number of equivalence classes of =.

Another Example of =_

Z={a b}
L={wOZX*: |w|iseven}
€ bb aabb
a aba bbaa
b aab aabaa
aa bbb
baa

The equivalence classes of = :

Yet Another Example of =

z ={a b}

L = aab*a
€ ba aabb
a bb aabaa
b asa aabbba
aa aba aabbaa
ab aab

bab

The equivalence classes of = :

An Example of = Where All Elementsof L Are Not in the Same Equivalence Class

Z={a b}
L ={w O {a, b}* : no two adjacent characters are the same}
€ bb aabaa
a aba aabbba
b aab aabbaa
aa baa
aabb

The equivalence classes of = :
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Is|= | Always Finite?

Z={ab}

L=4dab"
€ aa acaa
a aba acooa
b aca

The equivalence classes of = :
Bringing FSMsinto the Picture
=_isanidea relation.

What if we now consider what happens to strings when they are being processed by areal FSM?

()

> ={a b} L={wOZXZ*: jw|iseven}

Define ~y to relate pairs of strings that drive M from s to the same state.

Formally, if M isadeterministic FSM, then x ~y y if thereis some state qin M such that (s, x) |- ' (g, €) and (s, y) | w (q, €).

Noticethat M is an equivalence relation.

An Example of ~M

)

> ={a b} L={wOZX*: |w|iseven}

€ bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa
The equivalence classes of ~: [~ml=
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Z={a b}

3
a
b
aa

The equivalence classes of ~:

~. [e, aa bb, asbb, bbag]

L={w0OZx*:|w|]iseven}

o

Ancther Example of ~M

fwl

bb
aba

bbb

The Relationship Between = and ~y

iseven

[, b, aba, agb, bbb, baa, agbag] jw] is odd

~u, 3 State machine:
ql: [g, aa, bb, aabb, bbaa]
g2: [a, aba, baa, aabaa] (ab 0 ball aall bb)*a

q3: [b, agb, bbb]

~u, 2 State machine;
gl: [, aa, bb, aabb, bbaa]
g2: [a, b, aba, aab, bbb, baa, aabaa] |w|is odd

= [even length]

I

(3 state)

M [even length]

[

i

seven

=0

|~ml =

(ab 0 ba aa ] bb)*b

i

ina

seven

~u isarefinement of =.

The Refinement

[odd length]

N\

odd endi ng:l

odd ending
inb

An equivalence relation R is a refinement of another one Siff

XRy - xSy

In other words, R makes all the same distinctions S does, plus possibly more.

IRI= S|
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~v isa Refinement of =.
Theorem: For any deterministic finite automaton M and any stringsx, y [0 2*, if X ~y y, then x = y.
Proof: If x ~y y, then x and y drive m to the same state g. From @, any continuation string w will drive M to some stater. Thus
xw and yw both drive M tor. Either risafinal state, in which case they both accept, or it is not, in which case they both reject.
But thisis exactly the definition of = .

Corallary: v |2 =L |-

Going the Other Way
When is this true?

If X = mythenx —yy.
Finding the Minimal FSM for L
What's the smallest number of states we can get away with in a machine to accept L?
Example: L={wOZXZ*: jw|iseven}

The equivalence classes of = :

Minimal number of statesfor M(L) =
Thisfollows directly from the theorem that says that, for any machine M that acceptsL, |~y| must be at least aslarge as =, |.
Can we aways find a machine with this minimal number of states?

The Myhill-Nerode Theorem

Theorem: Let L be aregular language. Then thereis a deterministic FSA that accepts L and that has precisely |z | states.
Proof: (by construction)
M= K states, corresponding to the equivalence classes of =, .

s=[g], the equivalence class of € under =,.

F={[x]:xOL}

O([x], a) = [xal

For this construction to prove the theorem, we must show:

1. Kisfinite
2. diswell defined, i.e., 8([X], @ = [xd] isindependent of x.
3. L=L(M)
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The Proof
(1) K isfinite.
Since L isregular, there must exist amachine M, with |~y| finite. We know that
Il Z =
Thus |=_ | isfinite.
(2) diswell defined.
Thisisassured by the definition of =_, which groups together precisely those strings that have the same fate with respect to L.

The Proof, Continued
) L=L(M)
Suppose we knew that ([x], y) Fu* ([xy], €).
Now let [X] be[€] and let sbeastringin >*.
Then

(€], o) [u* ([S], €)

M will accept sif [g] O F.
By the definition of F, [s] O Fiff al stringsin[s] areinL.
So M accepts precisely the stringsin L.

The Proof, Continued

Lemma: ([x], y) Fv* ([xy], €)
By induction on |y|:
Trivia if ly]=0.
Suppose true for ly| = n.
Show truefor |y| = n+1
Lety =y'a, for some character a. Then,

lyl=n
(X1, ya) Im* ([xy], & (induction hypothesis)
(Ixy'] @ Fv* ([xy'd, €) (definition of &)
(€1, y'a) Fw* ([xy'dl, €) (trans. of |w*)
(X1, y) Fw* ([xy], €) (definition of y)

Another Version of the Myhill-Nerode Theorem

Theorem: A language isregular iff |= | isfinite.

Example:
Consider: L=ab"
a, aa, ada, adaa, asaaa . ..
Equivalence classes:
Pr oof:

Regular - |+ | isfinite: If L isregular, then there exists an accepting machine M with afinite number of statesN. We know that
N = [z |. Thus|=_|isfinite.

|= | isfinite - regular: If |z |isfinite, then the standard DFSA M, acceptsL. Since L isaccepted by aFSA, itisregular.
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Constructing the Minimal DFA from =_

z={ab}
L ={w O {a b}* : no two adjacent characters are the same}

The equivalence classes of = :

1: [€] €

2: [a, ba, aba, baba, ababa, ...] (big )(ab)*a
3: [b, ab, bab, abab, ...] (ad )(ba)*b
4: [bb, aa, bba, bbb, ...] the rest

»  Equivalence classes become states
o Start stateis[e]
e Fina dtatesare al equivalence classesin L

© 0([x], @) =[xd]

Using Myhill-Nerode to Prove that L isnot Regular
L={a": nisprime}

Consider: €
a

aa
aaa
acaa

Equivalence classes:

So Where Do We Stand?
1. Weknow that for any regular language L there exists a minimal accepting machine M, .
2. Weknow that |K| of M equals [=|.
3.  Weknow how to construct M, from=,.
But is this good enough?

Consider:
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Constructing a Minimal FSA Without Knowing =_
We want to take as input any DFSA M' that accepts L, and output a minimal, equivalent DFSA M.

What we need is adefinition for "equivalent”, i.e., mergeable states.

Define g = p iff for al stringsw O 2*, either w drives M to an accepting state from both g and p or it drives M to arejecting state
from both g and p.

Example:
> ={a b} L={wOZx*: |w|]iseven}

Constructing = asthe Limit of a Sequence of Approximating Equivalence Relations =,

(Where nisthe length of the input strings that have been considered so far)

WEe'll consider input strings, starting with €, and increasing in length by 1 at each iteration. Well start by way overgrouping
states. Then we'll split them apart as it becomes apparent (with longer and longer strings) that their behavior is not identical.

Initially, =, has only two equivalence classes: [F] and [K - F], since on input €, there are only two possible outcomes, accept or
reject.

Next consider strings of length 1, i.e., each element of 2. Split any equivalence classes of =, that don't behave identically on all
inputs. Notethat in all cases, =, isarefinement of = ;.

Continue, until no splitting occurs, computing =, from =,,5.
Constructing =, Continued
More precisely, for any two statespand q 0 K andany n= 1, q =, p iff:

1. q=,1p, AND
2. foradlalZ, d(p, a) =, 0(q, a
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The Construction Algorithm
The equivalence classes of = are F and K-F.
Repeat forn=1,2,3 ...
For each equivalence class C of =, do
For each pair of elementsp and qin C do
For eachain X do
Seeif &(p, &) =n-13(q, )
If there are any differences in the behavior of p and g, then split them and create a new equivalence
class.
Until =, ==,,. =isthisanswer. Then use these equivalence classes to coal esce states.

An Example

Z={ab}
b A
O —©
b a
a bj
a a
4 b O e b 6

ab
S =
El =
==

Another Example

(a*b*)*

Minimal machine:
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Another Example
Example: L={w O {a, b}* : |w|iseven}

((28) 0 (ab) O (ba) T (bb))*

S- ¢ T-a
S arl T-b
S bT T > aS

Anocther Example, Continued

Minimize:

ab

"(T

ab ab

Minima machine:
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Summary of Regular Languages and Finite State Machines

Grammars, Languages, and M achines

Language

Accepts
Machine
Regular Grammars, L anguages, and M achines

Most interesting languages are infinite. So we can't write them down. But we can write down finite grammars and finite
machine specifications, and we can define algorithms for mapping between and among them.

Grammars M achines
Regular 4 )  Nondeterministic
Expressions FSAs

Deterministic
FSAs
Regular
Grammars
Minimal
DFSAs

What Does“Finite State” Really Mean?
There are two kinds of finite state problems:
e Thosein which:
e Some history matters.
* Only afinite amount of history matters. In particular, it's often the case that we don't care what order things

occurred in.
Examples:
e Parity

* Money in avending machine
*  Seat belt buzzer
* Those that are characterized by patterns.

Examples:
e Switching circuits:
» Telephone
* Railroad

» Trafficlights
e Lexicd anaysis
° grep
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