
Lecture Notes 20 Turing Machines 1

Turing Machines
Read K & S 4.1.
Do Homework 17.

Grammars, Recursively Enumerable Languages, and Turing Machines

 L

 Unrestricted
 Grammar Accepts

Turing Machines

Can we come up with a new kind of automaton that has two properties:
• powerful enough to describe all computable things
 unlike FSMs and PDAs
• simple enough that we can reason formally about it
 like FSMs and PDAs
 unlike real computers

Turing Machines

 ❑ � ❑ a b b a ❑ ❑ ❑

At each step, the machine may:
• go to a new state, and Finite State Control
• either

• write on the current square, or s1, s2, … h1, h2
• move left or right

A Formal Definition

A Turing machine is a quintuple (K, Σ, δ, s, H):
 K is a finite set of states;
 Σ is an alphabet, containing at least ❑ and �, but not → or ←;
 s ∈ K is the initial state;
 H ⊆ K is the set of halting states;
 δ is a function from:
 (K - H) × Σ to K × (Σ ∪ {→, ←})
 non-halting state × input symbol state × action (write or move)
 such that
(a) if the input symbol is �, the action is →, and
(b) � can never be written .

Recursively
Enumerable
Language

Turing
Machine

Lecture Notes 20 Turing Machines 2

Notes on the Definition

1. The input tape is infinite to the right (and full of ❑), but has a wall to the left. Some definitions allow infinite tape in both

directions, but it doesn't matter.

2. δ is a function, not a relation. So this is a definition for deterministic Turing machines.

3. δ must be defined for all state, input pairs unless the state is a halt state.

4. Turing machines do not necessarily halt (unlike FSM's). Why? To halt, they must enter a halt state. Otherwise they loop.

5. Turing machines generate output so they can actually compute functions.

A Simple Example

A Turing Machine Odd Parity Machine:

 ❑ � ❑ 0 1 1 0 ❑ ❑ ❑

Σ = 0, 1, �, ❑
s =
H =
δ =

Formalizing the Operation

 � a a b b ❑ ❑ ❑ (1)

 � ❑ a a b b ❑ ❑ ❑ (2)

A configuration of a Turing machine
 M = (K, Σ, δ, s, H) is a member of

 K × �Σ* × (Σ*(Σ - {❑})) ∪ ε
 state input up input after
 to scanned scanned square
 square

The input after the scanned square may be empty, but it may not end with a blank. We assume the entire tape to the right of the
input is filled with blanks.

(1) (q, �aab, b) = (q, �aabb)
(2) (h, �❑aabb, ε) = (h, �❑aabb) a halting configuration

Lecture Notes 20 Turing Machines 3

Yields

(q1, w1a1u1) |-M (q2, w2a2u2), a1 and a2 ∈ Σ, iff ∃ b ∈ Σ ∪ {←, →}, δ(q1, a1) = (q2, b) and either:

(1) b ∈ Σ, w1 = w2, u1 = u2, and a2 = b (rewrite without moving the head)

 | w1 | a1 | u1 |
 � ❑ a a b b ❑ ❑ ❑ �❑aabb

 | w2 | a2 | u2 |
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

Yields, Continued

(2) b = ←, w1 = w2a2, and either
 (a) u2 = a1u1, if a1 ≠ ❑ or u1 ≠ ε,

 | w1 | a1 | u1 |
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

 | w2 | a2 | u2 |
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

or (b) u2 = ε, if a1 = ❑ and u1 = ε
 | w1 | a1 |u1|
 � ❑ a a a b ❑ ❑ ❑ �❑aaab❑

 | w1 | a1 |u1|
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

If we scan left off the first square of the blank region, then drop that square from the configuration.

Yields, Continued

(3) b = →, w2 = w1a1, and either
 (a) u1 = a2u2

 | w1 | a1 | u1 |
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

 | w2 | a2 | u2 |
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

or (b) u1 = u2 = ε and a2 = ❑
 | w1 | a1 |u1|
 � ❑ a a a b ❑ ❑ ❑ �❑aaab

 | w2 | a2 |u2|
 � ❑ a a a b ❑ ❑ ❑ �❑aaab❑

If we scan right onto the first square of the blank region, then a new blank appears in the configuration.

Lecture Notes 20 Turing Machines 4

Yields, Continued

For any Turing machine M, let |-M* be the reflexive, transitive closure of |-M.

Configuration C1 yields configuration C2 if
 C1 |-M* C2.

A computation by M is a sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that
 C0 |-M C1 |-M C2 |-M … |-M Cn.

We say that the computation is of length n or that it has n steps, and we write
 C0 |-M

n Cn
A Context-Free Example

M takes a tape of a's then b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's.

 � ❑ a a a b ❑ ❑ ❑

K = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Σ = a, b, �, ❑, 1, 2
s = 0 H = {9} δ =

 0 a/1

 ❑ /→
 a,1,2/→ 1,2/←
 a/1 1/→ b/2 2/←
 1 2 3 4 5

 ❑/2 2/←
 ❑/❑ 6 ❑/→

 1/a;2/b
 7 8
 ∀ /→
 ❑/❑

 9

An Example Computation

 � ❑ a a a b ❑ ❑ ❑

 (0, �❑aaab) |-M
 (1, �❑aaab) |-M
 (2, �❑1aab) |-M
 (3, �❑1aab) |-M
 (3, �❑1aab) |-M
 (3, �❑1aab) |-M
 (4, �❑1aa2) |-M

 ...

Lecture Notes 20 Turing Machines 5

Notes on Programming

The machine has a strong procedural feel.

It's very common to have state pairs, in which the first writes on the tape and the second move. Some definitions allow both
actions at once, and those machines will have fewer states.

There are common idioms, like scan left until you find a blank.

Even a very simple machine is a nuisance to write.

A Notation for Turing Machines

(1) Define some basic machines

• Symbol writing machines
 For each a ∈ Σ - {�}, define Ma, written just a, = ({s, h}, Σ, δ, s, {h}),
 for each b ∈ Σ - {�}, δ(s, b) = (h, a)
 δ(s, �) = (s, →)
 Example:
 a writes an a

• Head moving machines
 For each a ∈ {←, →}, define Ma, written R(→) and L(←):
 for each b ∈ Σ - {�}, δ(s, b) = (h, a)
 δ(s, �) = (s, →)
 Examples:
 R moves one square to the right
 aR writes an a and then moves one square to the right.

A Notation for Turing Machines, Cont'd

(2) The rules for combining machines: as with FSMs

 >M1 a M2
 b

 M3

• Start in the start state of M1.
• Compute until M1 reaches a halt state.
• Examine the tape and take the appropriate transition.
• Start in the start state of the next machine, etc.
• Halt if any component reaches a halt state and has no place to go.
• If any component fails to halt, then the entire machine may fail to halt.

Lecture Notes 20 Turing Machines 6

Shorthands

 a
M1 M2 becomes M1 a, b M2
 b

M1 all elems of Σ M2 becomes M1 M2
 or
 M1M2

MM becomes M2

M1 all elems of Σ M2 becomes M1 x ≠ a M2
 except a
 and x takes on the value of the current square

M1 a, b M2 becomes M1 x = a, b M2

 and x takes on the value of the current square

 M x ? y M2

 if x = y then take the transition

e.g., > x ≠ ❑ Rx if the current square is not blank, go right and copy it.

Some Useful Machines

 > R ¬❑ find the first blank square to the right of the current square

 R

❑

 > L ¬❑ find the first blank square to the left of the current square

 L

❑

 > R ❑ find the first nonblank square to the right of the current square

 R¬ ❑

 > L ❑ find the first nonblank square to the left of the current square

 L¬ ❑

Lecture Notes 20 Turing Machines 7

More Useful Machines

La find the first occurrence of a to the left of the current square

Ra,b find the first occurrence of a or b to the right of the current square

La,b a M1 find the first occurrence of a or b to the left of the current square, then go to M1 if the detected
b character is a; go to M2 if the detected character is b

M2

Lx=a,b find the first occurrence of a or b to the left of the current square and set x to the value found

Lx=a,bRx find the first occurrence of a or b to the left of the current square, set x to the value found, move one
 square to the right, and write x (a or b)

An Example

Input: �❑w w ∈ {1}*
Output: �❑w3

Example: � ❑111❑❑❑❑❑❑❑❑❑❑❑❑❑

 >R1,❑ 1 #R

❑
#R#L

❑

 ❑

 L # 1
 ❑

 H

A Shifting Machine S←←←←
Input: ❑❑w❑
Output: ❑w❑

Example: ❑❑abba❑❑❑❑❑❑❑❑❑❑❑❑❑

 > L

❑
 R x ≠ ❑ ❑LxR

 x=❑

 L

Lecture Notes 21 Computing with Turing Machines 1

Computing with Turing Machines
Read K & S 4.2.
Do Homework 18.

Turing Machines as Language Recognizers

Convention: We will write the input on the tape as:
 �❑w❑ , w contains no ❑s
The initial configuration of M will then be:
 (s, �❑w)
A recognizing Turing machine M must have two halting states: y and n
Any configuration of M whose state is:
 y is an accepting configuration
 n is a rejecting configuration
Let Σ0, the input alphabet, be a subset of ΣM-{❑,�}
Then M decides a language L ⊆ Σ0* iff for any string
 w ∈ Σ0*it is true that:
 if w ∈ L then M accepts w, and
 if w ∉ L then M rejects w.
A language L is recursive if there is a Turing machine M that decides it.

A Recognition Example
L = {anbncn : n ≥ 0}

Example: �❑aabbcc❑❑❑❑❑❑❑❑❑

Example: �❑aaccb❑❑❑❑❑❑❑❑❑

 a’ a, b’ b, c’
 > R a a’ R b b’ R c c’ L

❑

 ❑, b’, c’ c, a’, c’, ❑
 b,c ❑, a, b’, a’
 b’,c’ R a, b, c, a’ n

 ❑
 y

Lecture Notes 21 Computing with Turing Machines 2

Another Recognition Example
L = {wcw : w ∈ {a, b}*}

Example: �❑abbcabb❑❑❑

Example: �❑acabb❑❑❑

 >R x=a,b ❑ Rc,❑

 c ❑ ❑ c

 R¬ # ¬❑ n ¬ (y ? x) Ry=¬ #

 ❑ y ? x

 y #L

❑

Do Turing Machines Stop?

FSMs Always halt after n steps, where n is the length of the input. At that point, they either accept or reject.

PDAs Don't always halt, but there is an algorithm to convert any PDA into one that does halt.

Turing machines Can do one of three things:
 (1) Halt and accept
 (2) Halt and reject
 (3) Not halt

And now there is no algorithm to determine whether a given machine always halts.

Computing Functions

Let Σ0 ⊆ Σ - {�, ❑} and let w ∈ Σ0*

Convention: We will write the input on the tape as: �❑w❑

The initial configuration of M will then be: (s, �❑w)

Define M(w) = y iff:
• M halts if started in the input configuration,
• the tape of M when it halts is �❑y❑, and
• y ∈ Σ0*

Let f be any function from Σ0* to Σ0*.

We say that M computes f if, for all w ∈ Σ0*, M(w) = f(w)

A function f is recursive if there is a Turing machine M that computes it.

Lecture Notes 21 Computing with Turing Machines 3

Example of Computing a Function

f(w) = ww

Input: �❑w❑❑❑❑❑❑ Output: �❑ww❑

Define the copy machine C: �❑w❑❑❑❑❑❑ � �❑w❑w❑

Remember the S← machine:
 �❑w❑w❑ � �❑ww❑

 > L

❑
 R x ≠ ❑ ❑ L x R

 x=❑

 L
Then the machine to compute f is just >C S L

❑←

Computing Numeric Functions

We say that a Turing machine M computes a function f from Nk to N provided that

 num(M(n1;n2;…nk)) = f(num(n1), … num(nk))

Example: Succ(n) = n + 1

We will represent n in binary. So n∈ 0 ∪ 1{0,1}*

Input: �❑n❑❑❑❑❑❑ Output: �❑n+1❑
 �❑1111❑❑❑❑ Output: �❑10000❑

Why Are We Working with Our Hands Tied Behind Our Backs?

Turing machines are more powerful than any of the other formalisms we have studied so far.

Turing machines are a lot harder to work with than all the real computers we have available.

Why bother?

The very simplicity that makes it hard to program Turing machines makes it possible to reason formally about what they can do.
If we can, once, show that anything a real computer can do can be done (albeit clumsily) on a Turing machine, then we have a
way to reason about what real computers can do.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 1

Recursively Enumerable and Recursive Languages

Read K & S 4.5.

Recursively Enumerable Languages

Let Σ0, the input alphabet to a Turing machine M, be a subset of ΣM - {❑, �}

Let L ⊆ Σ0*.

M semidecides L iff
 for any string w ∈ Σ0*,
 w ∈ L � M halts on input w
 w ∉ L � M does not halt on input w
 M(w) = ↑

L is recursively enumerable iff there is a Turing machine that semidecides it.

Examples of Recursively Enumerable Languages

L = {w ∈ {a, b}* : w contains at least one a}

 ¬a
 > R

 ❑ b b b b b b ❑ ❑ ❑ ❑ ❑

L = {w ∈ {a, b, (,) }* : w contains at least one set of balanced parentheses}

 ❑
 > R),❑) ❑L(,❑
 ❑

 L

❑

 ❑ b b b b b b) ❑ ❑ ❑ ❑ ❑

Recursively Enumerable Languages that Aren't Also Recursive

A Real Life Example:
 L = {w ∈ {friends} : w will answer the message you've just sent out}

Theoretical Examples
 L = {Turing machines that halt on a blank input tape}
 Theorems with valid proofs.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 2

Why Are They Called Recursively Enumerable Languages?
Enumerate means list.

We say that Turing machine M enumerates the language L iff, for some fixed state q of M,
 L = {w : (s, �❑) |-M* (q, �❑w)}

 q w

A language is Turing-enumerable iff there is a Turing machine that enumerates it.

Note that q is not a halting state. It merely signals that the current contents of the tape should be viewed as a member of L.

Recursively Enumerable and Turing Enumerable

Theorem: A language is recursively enumerable iff it is Turing-enumerable.
Proof that Turing-enumerable implies RE: Let M be the Turing machine that enumerates L. We convert M to a machine M' that
semidecides L:
1. Save input w.
2. Begin enumerating L. Each time an element of L is enumerated, compare it to w. If they match, accept.

 w

 =w? halt
 w3, w2, w1

 M M'

The Other Way

Proof that RE implies Turing-enumerable:
If L ⊆ Σ* is a recursively enumerable language, then there is a Turing machine M that semidecides L.
A procedure to enumerate all elements of L:
Enumerate all w ∈ Σ* lexicographically.
 e.g., ε, a, b, aa, ab, ba, bb, …
As each string wi is enumerated:
1. Start up a copy of M with wi as its input.
2. Execute one step of each Mi initiated so far, excluding only those that have previously halted.
3. Whenever an Mi halts, output wi.

ε [1]
ε [2] a [1]
ε [3] a [2] b [1]
ε [4] a [3] b [2] aa [1]
ε [5] a [4] b [3] aa [2] ab [1]
ε [6] a [5] aa [3] ab [2] ba [1]

Lecture Notes 22 Recursively Enumerable and Recursive Languages 3

Every Recursive Language is Recursively Enumerable

If L is recursive, then there is a Turing machine that decides it.

From M, we can build a new Turing machine M' that semidecides L:

1. Let n be the reject (and halt) state of M.
2. Then add to δ'

 ((n, a), (n, a)) for all a ∈ Σ

 a/a
 y n y n

What about the other way around?
Not true. There are recursively enumerable languages that are not recursive.

The Recursive Languages Are Closed Under Complement

Proof: (by construction) If L is recursive, then there is a Turing machine M that decides L.

We construct a machine M' to decide L by taking M and swapping the roles of the two halting states y and n.
M: M':

 y n n y

This works because, by definition, M is
• deterministic
• complete

Are the Recursively Enumerable Languages Closed Under Complement?

M: M':

 h

Lemma: There exists at least one language L that is recursively enumerable but not recursive.

Proof that M' doesn't exist: Suppose that the RE languages were closed under complement. Then if L is RE, L would be RE. If
that were true, then L would also be recursive because we could construct M to decide it:
1. Let T1 be the Turing machine that semidecides L.
2. Let T2 be the Turing machine that semidecides L.
3. Given a string w, fire up both T1 and T2 on w. Since any string in Σ* must be in either L or L, one of the two machines will

eventually halt. If it's T1, accept; if it's T2, reject.
But we know that there is at least one RE language that is not recursive. Contradiction.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 4

Recursive and RE Languages

Theorem: A language is recursive iff both it and its complement are recursively enumerable.

Proof:
• L recursive implies L and ¬L are RE: Clearly L is RE. And, since the recursive languages are closed under complement,

¬L is recursive and thus also RE.
• L and ¬L are RE implies L recursive: Suppose L is semidecided by M1 and ¬L is semidecided by M2. We construct M to

decide L by using two tapes and simultaneously executing M1 and M2. One (but not both) must eventually halt. If it's M1,
we accept; if it's M2 we reject.

Lexicographic Enumeration

We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order. A language L is
lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it.

Example: L = {anbncn}

 Lexicographic enumeration:

Proof

Theorem: A language is recursive iff it is lexicographically Turing-enumerable.

Proof that recursive implies lexicographically Turing enumerable: Let M be a Turing machine that decides L. Then M'
lexicographically generates the strings in Σ* and tests each using M. It outputs those that are accepted by M. Thus M'
lexicographically enumerates L.

 Σ*3, Σ*2, Σ*1 ∈ L? yes Σ*k
 no

 M
 M'

Proof, Continued

Proof that lexicographically Turing enumerable implies recursive: Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M' starts up M and waits until either M generates w (so M' accepts), M generates a string that comes after w
(so M' rejects), or M halts (so M' rejects). Thus M' decides L.

 w

 = w? yes
 L3, L2, L1
 > w? no
 M
 no more Lis? no

 M'

Lecture Notes 22 Recursively Enumerable and Recursive Languages 5

Partially Recursive Functions

 Languages Functions
Tm always halts recursive recursive
Tm halts if yes recursively

enumerable
 ?

 domain range

Suppose we have a function that is not defined for all elements of its domain.

Example: f: N → N, f(n) = n/2

Partially Recursive Functions

 domain range

One solution: Redefine the domain to be exactly those elements for which f is defined:

 domain
 range

But what if we don't know? What if the domain is not a recursive set (but it is recursively enumerable)? Then we want to define
the domain as some larger, recursive set and say that the function is partially recursive. There exists a Turing machine that halts
if given an element of the domain but does not halt otherwise.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 6

Language
Summary

 IN OUT

Semidecidable Recursively
Enumerable Enumerable
Unrestricted grammar

Decision procedure Recursive Diagonalization
Lexicicographically enumerable Reduction
Complement is recursively enumer.

CF grammar Context Free Pumping
PDA Closure
Closure

Regular expression Regular Pumping
FSM Closure
Closure

Lecture Notes 23 Turing Machine Extensions 1

Turing Machine Extensions
Read K & S 4.3.1, 4.4.
Do Homework 19.

Turing Machine Definitions

An alternative definition of a Turing machine:
 (K, Σ, Γ, δ, s, H):

Γ is a finite set of allowable tape symbols. One of these is ❑.

Σ is a subset of Γ not including ❑, the input symbols.

δ is a function from:
 K × Γ to K × (Γ - {❑}) × {←, →}
 state, tape symbol, L or R

 ❑ ❑ a b b a ❑ ❑ ❑

Example transition: ((s, a), (s, b, →))

Do these Differences Matter?
Remember the goal:

Define a device that is:
• powerful enough to describe all computable things,
• simple enough that we can reason formally about it

Both definitions are simple enough to work with, although details may make specific arguments easier or harder.

But, do they differ in their power?

Answer: No.

Consider the differences:
• One way or two way infinite tape: we're about to show that we can simulate two way infinite with ours.
• Rewrite and move at the same time: just affects (linearly) the number of moves it takes to solve a problem.

Turing Machine Extensions

In fact, there are lots of extensions we can make to our basic Turing machine model. They may make it easier to write Turing
machine programs, but none of them increase the power of the Turing machine because:

We can show that every extended machine has an equivalent basic machine.

We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic
machine.

Some possible extensions:
• Multiple tapes
• Two-way infinite tape
• Multiple read heads
• Two dimensional “sheet” instead of a tape
• Random access machine
• Nondeterministic machine

Lecture Notes 23 Turing Machine Extensions 2

Multiple Tapes

 ❑ ❑ a b b a ❑ ❑ ❑

 ❑ b a b b a ❑ ❑ ❑

 ❑ ❑ 1 2 2 1 ❑ ❑ ❑

The transition function for a k-tape Turing machine:

((K-H) , Σ1 to (K, Σ1' ∪ {←, →}
 , Σ2 , Σ2' ∪ {←, →}
 , . , .
 , . , .
 , Σk) , Σk' ∪ {←, →})

Input: input as before on tape 1, others blank
Output: output as before on tape 1, others ignored

An Example of a Two Tape Machine

Copying a string

 ❑ ❑ a b b a ❑ ❑ ❑

 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

 ❑ ❑ a b b a ❑ ❑ ❑

 ❑ ❑ a b b a ❑ ❑ ❑

 ❑ ❑ a b b a ❑ ❑ ❑

 ❑ ❑ a b b a ❑ ❑ ❑

Lecture Notes 23 Turing Machine Extensions 3

Another Two Tape Example - Addition

 ❑ 1 0 1 ; 1 1 0 ❑

 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

 ❑ 0 0 0 0 1 1 0 ❑

 ❑ 1 0 1 ❑ ❑ ❑ ❑ ❑

Adding Tapes Adds No Power
Theorem: Let M be a k-tape Turing machine for some k ≥ 1. Then there is a standard Turing machine M' where Σ ⊆ Σ', and such
that:
• For any input string x, M on input x halts with output y on the first tape iff M' on input x halts at the same halting state and

with the same output on its tape.
• If, on input x, M halts after t steps, then M' halts after a number of steps which is O(t ⋅ (|x| + t)).
Proof: By construction

 � ❑ a b a ❑ ❑
 � 0 0 1 0 0 0 0 ❑ ❑
 � a b b a b a
 0 1 0 0 0 0 0

Alphabet (Σ') of M' = Σ ∪ (Σ × {0, 1})k
 e.g., �, (�, 0, �, 0), (❑, 0, a, 1)

The Operation of M'
 � ❑ a b a ❑ ❑
 � 0 0 1 0 0 0 0 ❑ ❑
 � a b b a b a
 0 1 0 0 0 0 0

1. Set up the multitrack tape:

1) Shift input one square to right, then set up each square appropriately.
2. Simulate the computation of M until (if) M would halt: (start each step to the right of the divided tape)

1) Scan left and store in the state the k-tuple of characters under the read heads. Move back right.
2) Scan left and update each track as required by the transitions of M. Move back right.

i) If necessary, subdivide a new square into tracks.
3. When M would halt, reformat the tape to throw away all but track 1, position the head correctly, then go to M's halt

state.
How Many Steps Does M' Take?

Let: x be the input string, and
 t be the number of steps it takes M to execute.
Step 1 (initialization) O(|x|)
Step 2 (computation)
 Number of passes = t
 Work at each pass: 2.1 = 2 ⋅ (length of tape)
 = 2 ⋅ (|x| + 2 + t)
 2.2 = 2 ⋅ (|x| + 2 + t)
 Total = O(t ⋅ (|x| + t))
Step 3 (clean up) O(length of tape)
Total = O(t ⋅ (|x| + t))

Lecture Notes 23 Turing Machine Extensions 4

Two-Way Infinite Tape
Our current definition:

 � a b c d ❑ ❑

Proposed definition:

 ❑ ❑ g f e a b c d ❑

Simulation:

Track 1 � a b c d ❑ ❑

Track 2 � e f g ❑ ❑ ❑

Simulating a PDA

The components of a PDA:
• Finite state controller
• Input tape
• Stack
The simulation:
• Finite state controller:
• Input tape:
• Stack:

Track 1 � a a a b b ❑
 (Input)

Track 2 � ❑ a a ❑ ❑ ❑

Corresponding to
 a
 a

Simulating a Turing Machine with a PDA with Two Stacks

 � a b a a # a a b a

 ����

 a #
 a a
 b a
 a b
 � a

Lecture Notes 23 Turing Machine Extensions 5

Random Access Turing Machines
A random access Turing machine has:
• a fixed number of registers
• a finite length program, composed of instructions with operators such as read, write, load, store, add, sub, jump
• a tape
• a program counter
Theorem: Standard Turing machines and random access Turing machines compute the same things. Furthermore, the number of
steps it takes a standard machine is bounded by a polynomial in the number of steps it takes a random access machine.

Nondeterministic Turing Machines

A nondeterministic Turing machine is a quintuple (K, Σ, ∆, s, H)
where K, Σ, s, and H are as for standard Turing machines, and ∆ is a subset of
 ((K - H) × Σ) × (K × (Σ ∪ {←, →}))

 �❑abab

 �❑abab �❑abab

 �❑abab �❑bbab

What does it mean for a nondeterministic Turing machine to compute something?
• Semidecides - at least one halts.
• Decides - ?
• Computes - ?

Nondeterministic Semideciding

Let M = (K, Σ, ∆, s, H) be a nondeterministic Turing machine. We say that M accepts an input
 w ∈ (Σ - {�, ❑})* iff
(s, �❑w) yields a least one accepting configuration.

We say that M semidecides a language
 L ⊆ (Σ - {�, ❑})* iff
 for all w ∈ (Σ - {�, ❑})*:
 w ∈ L iff
 (s, �❑w) yields a least one halting configuration.

An Example
L = {w ∈ {a, b, c, d}* : there are two of at least one letter}
 ¬a/→

 2 a

 ∀ /→ a/→ ¬b/→
 →
 0 ❑/→ 1 b/→ 3 b h

 c/→ ¬c/→ c

 d/→ 4

 ¬d/→ d

 5

Lecture Notes 23 Turing Machine Extensions 6

Nondeterministic Deciding and Computing

M decides a language L if, for all w ∈ (Σ - {�, ❑})* :
1. all of M's computations on w halt, and
2. w ∈ L iff at least one of M's computations accepts.

M computes a function f if, for all w ∈ (Σ - {�, ❑})* :
1. all of M's computations halt, and
2. all of M's computations result in f(w)

Note that all of M's computations halt iff:

There is a natural number N, depending on M and w, such that there is no configuration C satisfying
 (s, �❑w) |-M

N C.
An Example of Nondeterministic Deciding

L = {w ∈ {0, 1}* : w is the binary encoding of a composite number}

M decides L by doing the following on input w:

1. Nondeterministically choose two binary numbers 1 < p, q, where |p| and |q| ≤ |w|, and write them on the tape, after w,

separated by ;.

 �❑110011;111;1111❑❑

2. Multiply p and q and put the answer, A, on the tape, in place of p and q.

 �❑110011;1011111❑❑

3. Compare A and w. If equal, go to y. Else go to n.

Equivalence of Deterministic and Nondeterministic Turing Machines

Theorem: If a nondeterministic Turing machine M semidecides or decides a language, or computes a function, then there is a
standard Turing machine M' semideciding or deciding the same language or computing the same function.

Note that while nondeterminism doesn’t change the computational power of a Turing Machine, it can exponentially increase its
speed!

Proof: (by construction)
For semideciding: We build M', which runs through all possible computations of M. If one of them halts, M' halts

Recall the way we did this for FSMs: simulate being in a combination of states.

Will this work here?

What about: Try path 1. If it accepts, accept. Else
 Try path 2. If it accepts, accept. Else
 •
 •

Lecture Notes 23 Turing Machine Extensions 7

The Construction

At any point in the operation of a nondeterministic machine M, the maximum number of branches is
 r = |K| ⋅ (|Σ| + 2)
 states actions

So imagine a table:

 1 2 3 r
(q1,σ1) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-)
(q1,σ2) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-) (p-,σ-)
(q1,σn)
(q2,σ1)

(q|K|,σn)

Note that if, in some configuration, there are not r different legal things to do, then some of the entries on that row will repeat.

The Construction, Continued

Md: (suppose r = 6)

 Tape 1: Input

 Tape 2: 1 3 2 6 5 4 3 6

Md chooses its 1st move from column 1
Md chooses its 2nd move from column 3
Md chooses its 3rd move from column 2
 •
 •
 until there are no more numbers on Tape 2

Md either:
• discovers that M would accept, or
• comes to the end of Tape 2.

In either case, it halts.

The Construction, Continued
M' (the machine that simulates M):

 Tape 1: Input

 Tape 2: Copy of Input
 Md
 Tape 3: 1 3 2 6 5 4 3 6

Steps of M':
 write ε on Tape 3
 until Md accepts do
 (1) copy Input from Tape 1 to Tape 2
 (2) run Md

 (3) if Md accepts, exit
 (4) otherwise, generate lexicographically next string on Tape 3.

Pass 1 2 3 7 8 9
Tape3 ε 1 2 ⋅⋅⋅ 6 11 12 ⋅⋅⋅ 2635

Lecture Notes 23 Turing Machine Extensions 8

Nondeterministic Algorithms

Other Turing Machine Extensions

Multiple heads (on one tape)
Emulation strategy: Use tracks to keep track of tape heads. (See book)

Multiple tapes, multiple heads

Emulation strategy: Use tracks to keep track of tapes and tape heads.

Two-dimensional semi-infinite “tape”
Emulation strategy: Use diagonal enumeration of two-dimensional grid. Use second tape to help you keep track of
where the tape head is. (See book)

Two-dimensional infinite “tape” (really a sheet)

Emulation strategy: Use modified diagonal enumeration as with the semi-infinite case.

What About Turing Machine Restrictions?

Can we make Turing machines even more limited and still get all the power?

Example:

We allow a tape alphabet of arbitrary size. What happens if we limit it to:

• One character?
• Two characters?
• Three characters?

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 1

Problem Encoding, TM Encoding, and the Universal TM

Read K & S 5.1 & 5.2.

Encoding a Problem as a Language

A Turing Machines deciding a language is analogous to the TM solving a decision problem.

Problem: Is the number n prime?
Instance of the problem: Is the number 9 prime?
Encoding of the problem, ����n����: n as a binary number. Example: 1001

Problem: Is an undirected graph G connected?
Instance of the problem: Is the following graph connected?

 1 2 3

 4 5

Encoding of the problem, ����G����:

1) |V| as a binary number
2) A list of edges represented by pairs of binary numbers being the vertex numbers that the edge connects
3) All such binary numbers are separated by “/”.
Example: 101/1/10/10/11/1/100/10/101

Problem View vs. Language View

Problem View: It is unsolvable whether a Turing Machine halts on a given input. This is called the Halting Problem.

Language View: Let H = {�M, w� : TM M halts on input string w}
H is recursively enumerable but not recursive.

The Universal Turing Machine

Problem: All our machines so far are hardwired.

Question: Does it make sense to talk about a programmable Turing machine that accepts as input
 program input string
executes the program, and outputs
 output string

Yes, it's called the Universal Turing Machine.

Notice that the Universal Turing machine semidecides H = {�M, w� : TM M halts on input string w} = L(U).

To define the Universal Turing Machine U we need to do two things:
1. Define an encoding operation for Turing machines.
2. Describe the operation of U given an input tape containing two inputs:

• encoded Turing machine M,
• encoded input string to be given to M.

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 2

Encoding a Turing Machine M

We need to describe M = (K, Σ, δ, s, H) as a string. To do this we must:
1. Encode δ
2. Specify s.
3. Specify H (and y and n, if applicable)

1. To encode δ, we need to:

1. Encode the states
2. Encode the tape alphabet
3. Specify the transitions

1.1 Encode the states as
 qs : s ∈ {0, 1}+ and
 |s| = i and
 i is the smallest integer such that 2i ≥ |K|

 Example: 9 states i = 4
 s = q0000,
 remaining states: q0001, q0010, q0011,
 q0100, q0101, q0110, q0111, q1000

Encoding a Turing Machine M, Continued

1.2 Encode the tape alphabet as
 as : s ∈ {0, 1}+ and
 |s| = j and
 j is the smallest integer such that 2j ≥ |Σ| + 2 (the + 2 allows for ← and →)
 Example: Σ = {�, ❑, a, b} j = 3
 ❑ = a000
 � = a001
 ← = a010
 → = a011
 a = a100
 b = a101

Encoding a Turing Machine M, Continued
1.3 Specify transitions as (state, input, state, output)
 Example: (q00,a000,q11,a000)
2. Specify s as q0i

3. Specify H:
• States with no transitions out are in H.
• If M decides a language, then H = {y, n}, and we will adopt the convention that y is the lexicographically smaller of

the two states.
 y = q010 n = q011

Encoding Input Strings

We encode input strings to a machine M using the same character encoding we use for M.
For example, suppose that we are using the following encoding for symbols in M:

symbol representation
❑ a000
� a001
← a010
→ a011
a a100

Then we would represent the string s = �aa❑a as "s" = �s� = a001a100a100a000a100

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 3

An Encoding Example
Consider M = ({s, q, h}, {❑, �,a}, δ, s, {h}), where δ =

state symbol δ
s a (q, ❑)
s ❑ (h, ❑)
s � (s, →)
q a (s, a)
q ❑ (s, →)
q � (q, →)

The representation of M, denoted, "M", �M�, or sometimes ρ(M) =
(q00,a100,q01,a000), (q00,a000,q11,a000), (q00,a001,q00,a011),
(q01,a100,q00,a100), (q01,a000,q00,a011), (q01,a001,q01,a011)

Another Win of Encoding

One big win of defining a way to encode any Turing machine M:

• It will make sense to talk about operations on programs (Turing machines). In other words, we can talk about some
Turing machine T that takes another Turing machine (say M1) as input and transforms it into a different machine
(say M2) that performs some different, but possibly related task.

Example of a transforming TM T:
Input: a machine M1 that reads its input tape and performs some operation P on it.
Output: a machine M2 that performs P on an empty input tape:

>R x ≠ ❑ ❑

 ❑

 L� R M1

The Universal Turing Machine

The specification for U:
 U("M" "w") = "M(w)"

 "M ------------------------------ M" "w------------------------w"
 1 0 0 0 0 0 0
 � ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑
 ❑ ❑ ❑ ❑ ❑ ❑ ❑
 ❑ ❑ ❑ ❑ ❑ ❑ ❑�
 ❑ ❑ ❑ ❑ ❑ ❑ ❑

 "� ❑" "w--------------------w" ❑ ❑
 1 0 0 0 0 0 0
 � "M ---------------------------- M" ❑ ❑ ❑ ❑ ❑
 1 0 0 0 0 0 0
 q 0 0 0 ❑ ❑ ❑
 1 ❑ ❑ ❑ ❑ ❑ ❑

Initialization of U:

1. Copy "M" onto tape 2
2. Insert "�❑" at the left edge of tape 1, then shift w over.
3. Look at "M", figure out what i is, and write the encoding of state s on tape 3.

state/symbol representation
s q00
q q01
h q11
❑ a000
� a001
← a010
→ a011
a a100

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 4

The Operation of U

 a 0 0 1 a 0 0
 1 0 0 0 0 0 0
 � "M ---------------------------- M" ❑ ❑ ❑ ❑ ❑
 1 0 0 0 0 0 0
 q 0 0 0 ❑ ❑ ❑
 1 ❑ ❑ ❑ ❑ ❑ ❑

Simulate the steps of M:

1. Start with the heads:
 tape 1: the a of the character being scanned,
 tape 2: far left
 tape 3: far left

2. Simulate one step:
 1. Scan tape 2 for a quadruple that matches current state, input pair.
 2. Perform the associated action, by changing tapes 1 and 3. If necessary, extend the tape.
 3. If no quadruple found, halt. Else go back to 2.

An Example

Tape 1: a001a000a100a100a000a100
 � ❑ a a ❑ a

Tape 2: (q00,a000,q11,a000), (q00,a001,q00,a011),
 (q00,a100,q01,a000), (q01,a000,q00,a011),
 (q01,a001,q01,a011), (q01,a100,q00,a100)

Tape 3: q01

Result of simulating the next step:

Tape 1: a001a000a100a100a000a100
 � ❑ a a ❑ a

Tape 3: q00

If A Universal Machine is Such a Good Idea …

Could we define a Universal Finite State Machine?

Such a FSM would accept the language
 L = {"F" "w" : F is a finite state machine, and w ∈ L(F) }

Lecture Notes 25 Grammars and Turing Machines 1

Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

 L

 Unrestricted
 Grammar Accepts

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple
 (V, Σ, R, S), where

• V is an alphabet,
• Σ (the set of terminals) is a subset of V,
• R (the set of rules) is a finite subset of

• (V* (V-Σ) V*) × V*,
context N context → result

• S (the start symbol) is an element of V - Σ.
We define derivations just as we did for context-free grammars.
The language generated by G is

 {w ∈ Σ* : S �G* w}
There is no notion of a derivation tree or rightmost/leftmost derivation for unrestricted grammars.

Unrestricted Grammars
Example: L = anbncn, n > 0

S → aBSc
S → aBc
Ba → aB
Bc → bc
Bb → bb

Another Example

L = {w ∈ {a, b, c}+ : number of a's, b's and c's is the same}
S → ABCS
S → ABC
AB → BA
BC → CB
AC → CA
BA → AB

CA → AC
CB → BC
A → a
B → b
C → c

Recursively
Enumerable
Language

Turing
Machine

Lecture Notes 25 Grammars and Turing Machines 2

A Strong Procedural Feel

Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we're in a
particular phase.

It's very common to have two main phases:
• Generate the right number of the various symbols.
• Move them around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is recursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar → TM): by construction of a nondeterministic Turing machine.

If (TM → grammar): by construction of a grammar that mimics backward computations of M.

Proof that Grammar →→→→ Turing Machine

Given a grammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

 � ❑ a b a ❑ ❑
 � 0 1 0 0 0 0 0 ❑ ❑
 � a S T a b ❑
 0 1 0 0 0 0 0

For each nondeterministic "incarnation":
• Tape 1 holds the input.
• Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side
of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.

Lecture Notes 25 Grammars and Turing Machines 3

Proof that Turing Machine →→→→ Grammar

Suppose that M semidecides a language L (it halts when fed strings in L and loops otherwise). Then we can build M' that halts in
the configuration (h, �❑).

We will define G so that it simulates M' backwards.
We will represent the configuration (q, �uaw) as
 >uaqw<

M'
 goes from

 � ❑ a b b a ❑ ❑ ❑

 � ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Then, if w ∈ L, we require that our grammar produce a derivation of the form
S �G >❑h< (produces final state of M')
 �G* >❑abq< (some intermediate state of M')
 �G* >❑sw< (the initial state of M')
 �G w< (via a special rule to clean up >❑s)
 �G w (via a special rule to clean up <)

The Rules of G

S → >❑h< (the halting configuration)

>❑s → ε (clean-up rules to be applied at the end)
< → ε

Rules that correspond to δ:

If δ(q, a) = (p, b) : bp → aq

If δ(q, a) = (p, →) : abp → aqb ∀ b ∈ Σ
 a❑p< → aq<

If δ(q, a) = (p, ←), a ≠ ❑ pa → aq

If δ(q, ❑) = (p, ←) p❑b → ❑qb ∀ b ∈ Σ
 p< → ❑q<

Lecture Notes 25 Grammars and Turing Machines 4

A REALLY Simple Example
M' = (K, {a}, δ, s, {h}), where
 δ ={ ((s, ❑), (q, →)), 1
 ((q, a), (q, →)), 2
 ((q, ❑), (t, ←)), 3
 ((t, a), (p, ❑)), 4
 ((t, ❑), (h, ❑)), 5
 ((p, ❑), (t, ←)) 6

L = a*

 S →>❑h<
 >❑s → ε
 < → ε

(1) ❑❑q→ ❑s❑
 ❑aq → ❑sa
 ❑❑q< → ❑s<
(2) a❑q → aq❑
 aaq → aqa
 a❑q< → aq<

(3) t❑❑ → ❑q❑
 t❑a → ❑qa
 t< → ❑q<
(4) ❑p → at
(5) ❑h → ❑t
(6) t❑❑ → ❑p❑
 t❑a → ❑pa
 t< → ❑p<

Working It Out

 S →>❑h< 1
 >❑s → ε 2
 < → ε 3

(1) ❑❑q→ ❑s❑ 4
 ❑aq → ❑sa 5
 ❑❑q< → ❑s< 6
(2) a❑q → aq❑ 7
 aaq → aqa 8
 a❑q< → aq< 9

(3) t❑❑ → ❑q❑ 10
 t❑a → ❑qa 11
 t< → ❑q< 12
(4) ❑p → at 13
(5) ❑h → ❑t 14
(6) t❑❑ → ❑p❑ 15
 t❑a → ❑pa 16
 t< → ❑p< 17

>❑saa< 1
>❑aqa< 2
>❑aaq< 2
>❑aa❑q< 3
>❑aat< 4
>❑a❑p< 6
>❑at< 4
>❑❑p< 6
>❑t< 5
>❑h<

S � >❑h< 1
 � >❑t< 14
 � >❑❑p< 17
 � >❑at< 13
 � >❑a❑p< 17
 � >❑aat< 13
 � >❑aa❑q< 12
 � >❑aaq< 9
 � >❑aqa< 8
 � >❑saa< 5
 � aa< 2
 � aa 3

Lecture Notes 25 Grammars and Turing Machines 5

An Alternative Proof

An alternative is to build a grammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols
to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

The first (generate) part of G:
Creates all strings over Σ* of the form
 w = � � ❑ ❑ Qs a1 a1 a2 a2 a3 a3 ❑ ❑ …

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
 � � ❑ ❑ a 1 b 2 c c b 4 Q3 a 3

 Examples of rules:
 b b Q 4 → b 4 Q 4 (rewrite b as 4)
 b 4 Q 3 → Q 3 b 4 (move left)

The third (cleanup) part of G erases the junk if M ever reaches h.

 Example rule:
 # h a 1 → a # h (sweep # h to the right erasing the working “tape”)

Computing with Grammars

We say that G computes f if, for all w, v ∈Σ *,
 SwS �G* v iff v = f(w)
Example:
 S1S �G* 11
 S11S �G* 111 f(x) = succ(x)
A function f is called grammatically computable iff there is a grammar G that computes it.

Theorem: A function f is recursive iff it is grammatically computable.
In other words, if a Turing machine can do it, so can a grammar.

Example of Computing with a Grammar

f(x) = 2x, where x is an integer represented in unary

G = ({S, 1}, {1}, R, S), where R =
 S1 → 11S
 SS → ε

Example:

 Input: S111S

 Output:

Lecture Notes 25 Grammars and Turing Machines 6

More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
• zerok (n1, n2, … nk) = 0
• identityk,j (n1, n2, … nk) = nj
• successor(n) = n + 1
Combining functions:
• Composition of g with h1, h2, … hk is
 g(h1(), h2(), … hk())
• Primitive recursion of f in terms of g and h:
 f(n1,n2,…nk, 0) = g(n1,n2,…nk)
 f(n1,n2,…nk,m+1) = h(n1,n2,…nk, m, f(n1, n2,…nk,m))

Example: plus(n, 0) = n
 plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivially true: all primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:
Lexicographically enumerate the unary primitive recursive functions, f0, f1, f2, f3, ….
Define g(n) = fn(n) + 1.
G is clearly computable, but it is not on the list. Suppose it were fm for some m. Then
 fm(m) = fm(m) + 1, which is absurd.

 0 1 2 3 4
f0
f1
f2
f3 27
f4

Suppose g is f3. Then g(3) = 27 + 1 = 28. Contradiction.

Functions that Aren't Primitive Recursive

Example: Ackermann's function: A(0, y) = y + 1
 A(x + 1, 0) = A(x, 1)
 A(x + 1, y + 1) = A(x, A(x + 1, y))

 0 1 2 3 4
0 1 2 3 4 5
1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125
4 13 65533 265536-3 * 2 3265536

− # 2 32
265536

− %

* 19,729 digits
105940 digits
% 10105939

 digits

1017 seconds since big bang
1087 protons and neutrons
10-23 light seconds = width
 of proton or neutron

Thus writing digits at the speed of light on all protons and neutrons in the universe (all lined up) starting at the big bang would
have produced 10127 digits.

Lecture Notes 25 Grammars and Turing Machines 7

Recursive Functions

A function is µµµµ-recursive if it can be obtained from the basic functions using the operations of:
• Composition,
• Recursive definition, and
• Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is a function f of k arguments defined as:
f(n1,n2,…nk) = the least m such at g(n1,n2,…nk,m)=1, if such an m exists,
 0 otherwise

A function g is minimalizable iff for every n1,n2,…nk, there is an m such that g(n1,n2,…nk,m)=1.

Theorem: A function is µ-recursive iff it is recursive (i.e., computable by a Turing machine).

Partial Recursive Functions
Consider the following function f:
 f(n) = 1 if TM(n) halts on a blank tape
 0 otherwise

The domain of f is the natural numbers. Is f recursive?

 domain range

Theorem: There are uncountably many partially recursive functions (but only countably many Turing machines).

Functions and Machines

Partial Recursive

Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines

Lecture Notes 25 Grammars and Turing Machines 8

Languages and Machines

Recursively Enumerable

Languages

Recursive
Languages

Context-Free
Languages

Deterministic
Context-Free
Languages

Regular
Languages

FSMs

DPDAs

NDPDAs

Turing Machines

Is There Anything In Between CFGs and Unrestricted Grammars?

Answer: yes, various things have been proposed.

Context-Sensitive Grammars and Languages:

A grammar G is context sensitive if all productions are of the form
 x → y
 and |x| ≤ |y|

In other words, there are no length-reducing rules.

A language is context sensitive if there exists a context-sensitive grammar for it.

Examples:
 L = {anbncn, n > 0}
 L = {w ∈ {a, b, c}+ : number of a's, b's and c's is the same}

Lecture Notes 25 Grammars and Turing Machines 9

Context-Sensitive Languages are Recursive

The basic idea: To decide if a string w is in L, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L = {anbncn : n ≥ 0}

 �❑aabbcc❑❑❑❑❑❑❑❑❑

 a’ a,b’ b,c’
 > R a a’ R b b’ R c c’ L

❑

 ❑,b’,c’ c,a’,c’,❑
 b,c ❑,a,b’,a’
 b’,c’ R a,b,c,a’ n

 ❑
 y

Context-Sensitive Languages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build a machine B with a two track tape. On input w, B keeps w on the first tape. On the second tape, it
nondeterministically constructs all derivations of G. The key is that as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. There is also a proof that from any lba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.

Lecture Notes 25 Grammars and Turing Machines 10

Languages and Machines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive

Languages

Context-Free
Languages

Deterministic
Context-Free
Languages

Regular

Languages

FSMs

DPDAs

NDPDAs

Linear Bounded Automata

Turing Machines

Lecture Notes 25 Grammars and Turing Machines 11

The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive

Languages

Context-Free
Languages

Regular
 Type 0 Type 1 Type 2 (Type 3)

Languages
FSMs

PDAs

Linear Bounded Automata

Turing Machines

Lecture Notes 26 Undecidability 1

Undecidabilty

Read K & S 5.1, 5.3, & 5.4.
Read Supplementary Materials: Recursively Enumerable Languages, Turing Machines, and Decidability.
Do Homeworks 21 & 22.

Church's Thesis
(Church-Turing Thesis)

An algorithm is a formal procedure that halts.

The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.

Another way to state it: All "reasonable" formal models of computation are equivalent to the Turing machine.

This isn't a formal statement, so we can't prove it. But many different computational models have been proposed and they all turn
out to be equivalent.

Examples:

�� unrestricted grammars
�� lambda calculus
�� cellular automata
�� DNA computing
�� quantum computing (?)

The Unsolvability of the Halting Problem

Suppose we could implement the decision procedure

HALTS(M, x)
M: string representing a Turing Machine
x: string representing the input for M
If M(x) halts then True
 else False

Then we could define
 TROUBLE(x)
 x: string
 If HALTS(x, x) then loop forever
 else halt

So now what happens if we invoke TROUBLE(“TROUBLE”), which invokes HALTS(“TROUBLE”, “TROUBLE”)

If HALTS says that TROUBLE halts on itself then TROUBLE loops. IF HALTS says that TROUBLE loops, then TROUBLE
halts. Either way, we reach a contradiction, so HALTS(M, x) cannot be made into a decision procedure.

Lecture Notes 26 Undecidability 2

Another View

The Problem View: The halting problem is undecidable.

The Language View: Let H =
 {"M" "w" : TM M halts on input string w}
H is recursively enumerable but not recursive.

Why?

H is recursively enumerable because it can be semidecided by U, the Universal Turing Machine.

But H cannot be recursive. If it were, then it would be decided by some TM MH. But MH("M" "w") would have to be:
 If M is not a syntactically valid TM, then False.
 else HALTS("M" "w")

But we know cannot that HALTS cannot exist.

If H were Recursive

H = {"M" "w" : TM M halts on input string w}

Theorem: If H were also recursive, then every recursively enumerable language would be recursive.

Proof: Let L be any RE language. Since L is RE, there exists a TM M that semidecides it.

Suppose H is recursive and thus is decided by some TM O (oracle).

We can build a TM M' from M that decides L:
1. M' transforms its input tape from �❑w❑ to �❑"M""w"❑.
2. M' invokes O on its tape and returns whatever answer O returns.

So, if H were recursive, all RE languages would be. But it isn't.

Undecidable Problems, Languages that Are Not Recursive, and Partial Functions

The Problem View: The halting problem is undecidable.

The Language View: Let H =
 {"M" "w" : TM M halts on input string w}
H is recursively enumerable but not recursive.

The Functional View: Let f (w) = M(w)
 f is a partial function on Σ*

 "M""w" pairs

Lecture Notes 26 Undecidability 3

 Other Undecidable Problems About Turing Machines

• Given a Turing machine M, does M halt on the empty tape?
• Given a Turing machine M, is there any string on which M halts?
• Given a Turing machine M, does M halt on every input string?
• Given two Turing machines M1 and M2, do they halt on the same input strings?
• Given a Turing machine M, is the language that M semidecides regular? Is it context-free? Is it recursive?

Post Correspondence Problem

Consider two lists of strings over some alphabet Σ. The lists must be finite and of equal length.

A = x1, x2, x3, …, xn
B = y1, y2, y3, …, yn

Question: Does there exist some finite sequence of integers that can be viewed as indexes of A and B such that, when elements of
A are selected as specified and concatenated together, we get the same string we get when elements of B are selected also as
specified?

For example, if we assert that 1, 3, 4 is such a sequence, we’re asserting that x1x3x4 = y1y3y4

Any problem of this form is an instance of the Post Correspondence Problem.

Is the Post Correspondence Problem decidable?

Post Correspondence Problem Examples

i A B
1 1 111
2 10111 10
3 10 0

i A B
1 10 101
2 011 11
3 101 011

Some Languages Aren't Even Recursively Enumerable

A pragmatically non RE language: L1={ (i, j) : i, j are integers where the low order five digits of i are a street address number
and j is the number of houses with that number on which it rained on November 13, 1946 }

An analytically non RE language: L2={x : x = "M" of a Turing machine M and M("M") does not halt}

Why isn't L2 RE? Suppose it were. Then there would be a TM M* that semidecides L2. Is "M*" in L2?
• If it is, then M*("M*") halts (by the definition of M* as a semideciding machine for L2)
• But, by the definition of L2, if "M*" ∈ L2, then M*("M*") does not halt.
Contradiction. So L2 is not RE.

Another Non RE Language

H

Why not?

Lecture Notes 26 Undecidability 4

Reduction

Let L1, L2 ⊆ Σ* be languages. A reduction from L1 to L2 is a recursive function τ: Σ* → Σ* such that
 x ∈ L1 iff τ(x) ∈ L2.
Example:
 L1 = {a, b : a,b ∈ N : b = a + 1}

 � τ = Succ

 � a, b becomes Succ(a), b

 L2 = {a, b : a,b ∈ N : a = b}

If there is a Turing machine M2 to decide L2, then I can build a Turing machine M1 to decide L1:
1. Take the input and apply Succ to the first number.
2. Invoke M2 on the result.
3. Return whatever answer M2 returns.

Reductions and Recursive Languages

Theorem: If there is a reduction from L1 to L2 and L2 is recursive, then L1 is recursive.

ττττ y ∈∈∈∈ L2?

M1

yes yes

 x

y =
τ(x)

M2

x ∈∈∈∈ L1?

no no

Theorem: If there is a reduction from L1 to L2 and L1 is not recursive, then L2 is not recursive.

Reductions and RE Languages

Theorem: If there is a reduction from L1 to L2 and L2 is RE, then L1 is RE.

ττττ y ∈∈∈∈ L2?

M1

halt halt

 x

y =
τ(x)

M2

x ∈∈∈∈ L1?

Theorem: If there is a reduction from L1 to L2 and L1 is not RE, then L2 is not RE.

Lecture Notes 26 Undecidability 5

Can it be Decided if M Halts on the Empty Tape?

This is equivalent to, "Is the language L2 = {"M" : Turing machine M halts on the empty tape} recursive?"

 L1 = H = {s = "M" "w" : Turing machine M halts on input string w}

 � τ

(?M2) L2 = {s = "M" : Turing machine M halts on the empty tape}

Let τ be the function that, from "M" and "w", constructs "M*", which operates as follows on an empty input tape:

1. Write w on the tape.
2. Operate as M would have.

If M2 exists, then M1 = M2(Mτ(s)) decides L1.

A Formal Reduction Proof

Prove that L2 = {�M�: Turing machine M halts on the empty tape} is not recursive.

Proof that L2 is not recursive via a reduction from H = {�M, w�: Turing machine M halts on input string w}, a non-recursive
language. Suppose that there exists a TM, M2 that decides L2. Construct a machine to decide H as M1(�M, w�) = M2(τ(�M, w�)).
The τ function creates from �M� and �w� a new machine M*. M* ignores its input and runs M on w, halting exactly when M halts
on w.

• �M, w� ∈ H � M halts on w � M* always halts �ε ∈ L(M*) � �M*� ∈ L2 � M2 accepts � M1 accepts.
• �M, w� ∉ H � M does not halt on w � ε ∉ L(M*) � �M*� ∉ L2 � M2 rejects � M1 rejects.

Thus, if there is a machine M2 that decides L2, we could use it to build a machine that decides H. Contradiction. ∴ L2 is not
recursive.

Important Elements in a Reduction Proof

• A clear declaration of the reduction “from” and “to” languages and what you’re trying to prove with the reduction.
• A description of how a machine is being constructed for the “from” language based on an assumed machine for the “to”

language and a recursive τ function.
• A description of the τ function’s inputs and outputs. If τ is doing anything nontrivial, it is a good idea to argue that it is

recursive.
• Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where

needed.
• Run through the logic that demonstrates how the “from” language is being decided by your reduction. You must do both

accepting and rejecting cases.
• Declare that the reduction proves that your “to” language is not recursive.

The Most Common Mistake: Doing the Reduction Backwards

The right way to use reduction to show that L2 is not recursive:
1. Given that L1 is not recursive,
2. Reduce L1 to L2, i.e. show how to solve L1 (the known one) in terms of L2 (the unknown one)

L1

L2

Example: If there exists a machine M2 that solves L2, the problem of deciding whether a Turing machine halts on a blank tape,
then we could do H (deciding whether M halts on w) as follows:
1. Create M* from M such that M*, given a blank tape, first writes w on its tape, then simulates the behavior of M.
2. Return M2("M*").

Doing it wrong by reducing L2 (the unknown one to L1): If there exists a machine M1 that solves H, then we could build a
machine that solves L2 as follows:
1. Return (M1("M", "")).

Lecture Notes 26 Undecidability 6

Why Backwards Doesn't Work

Suppose that we have proved that the following problem L1 is unsolvable: Determine the number of days that have elapsed since
the beginning of the universe.

Now consider the following problem L2: Determine the number of days that had elapsed between the beginning of the universe
and the assassination of Abraham Lincoln.

Reduce L1 to L2:
L1 = L2 + (now - 4/9/1865)

L1

L2

Reduce L2 to L1:
L2 = L1 - (now - 4/9/1865)

L2

L1

Why Backwards Doesn't Work, Continued

L1 = days since beginning of universe
L2 = elapsed days between the beginning of the universe and the assassination of Abraham Lincoln.
L3 = days between the assassination of Abraham Lincoln and now.

Considering L2:
Reduce L1 to L2:
L1 = L2 + (now - 4/9/1865)

L1

L2

Reduce L2 to L1:
L2 = L1 - (now - 4/9/1865)

L2

L1

Considering L3:
Reduce L1 to L3:
L1 = oops

L1

L3

Reduce L3 to L1:
L3 = L1 - 365 - (now - 4/9/1866)

L3

L1

Is There Any String on Which M Halts?

 L1 = H = {s = "M" "w" : Turing machine M halts on input string w}

 � τ

(?M2) L2 = {s = "M" : there exists a string on which Turing machine M halts}

Let τ be the function that, from "M" and "w", constructs "M*", which operates as follows:

1. M* examines its input tape.
2. If it is equal to w, then it simulates M.
3. If not, it loops.

Clearly the only input on which M* has a chance of halting is w, which it does iff M would halt on w.

If M2 exists, then M1 = M2(Mτ(s)) decides L1.

Lecture Notes 26 Undecidability 7

Does M Halt on All Inputs?

 L1 = {s = "M" : Turing machine M halts on the empty tape}

 � τ

(?M2) L2 = {s = "M" : Turing machine M halts on all inputs}

Let τ be the function that, from "M", constructs "M*", which operates as follows:

1. Erase the input tape.
2. Simulate M.

Clearly M* either halts on all inputs or on none, since it ignores its input.

If M2 exists, then M1 = M2(Mτ(s)) decides L1.

Rice's Theorem

Theorem: No nontrivial property of the recursively enumerable languages is decidable.

Alternate statement: Let P: 2Σ*→{true, false} be a nontrivial property of the recursively enumerable languages. The language
{“M”: P(L(M)) = True} is not recursive.

By "nontrivial" we mean a property that is not simply true for all languages or false for all languages.

Examples:
• L contains only even length strings.
• L contains an odd number of strings.
• L contains all strings that start with "a".
• L is infinite.
• L is regular.

Note:
Rice's theorem applies to languages, not machines. So, for example, the following properties of machines are decidable:

• M contains an even number of states
• M has an odd number of symbols in its tape alphabet

Of course, we need a way to define a language. We'll use machines to do that, but the properties we'll deal with are properties of
L(M), not of M itself.

Proof of Rice's Theorem

Proof: Let P be any nontrivial property of the RE languages.
 L1 = H = {s = "M" "w" : Turing machine M halts on input string w}

 � τ

(?M2) L2 = {s = "M" : P(L(M)) = true}

Either P(∅) = true or P(∅) = false. Assume it is false (a matching proof exists if it is true). Since P is nontrivial, there is some
language LP such that P(LP) is true. Let MP be some Turing machine that semidecides LP.

Let τ construct "M*", which operates as follows:
1. Copy its input y to another track for later.
2. Write w on its input tape and execute M on w.
3. If M halts, put y back on the tape and execute MP.
4. If MP halts on y, accept.

Claim: If M2 exists, then M1 = M2(Mτ(s)) decides L1.

Lecture Notes 26 Undecidability 8

Why?

Two cases to consider:
• "M" "w" ∈ H � M halts on w � M* will halt on all strings that are accepted by MP � L(M*) = L(MP) = LP � P(L(M*)) =

P(LP) = true � M2 decides P, so M2 accepts "M*" � M1 accepts.

• "M" "w" ∉ H � M doesn’t halt on w � M* will halt on nothing � L(M*) = ∅ � P(L(M*)) = P(∅) = false � M2 decides

P, so M2 rejects "M*" � M1 rejects.

Using Rice’s Theorem

Theorem: No nontrivial property of the recursively enumerable languages is decidable.

To use Rice’s Theorem to show that a language L is not recursive we must:

• Specify a language property, P(L)

• Show that the domain of P is the set of recursively enumerable languages.

• Show that P is nontrivial:

��P is true of at least one language
��P is false of at least one language

Using Rice’s Theorem: An Example

L = {s = "M" : there exists a string on which Turing machine M halts}.
 = {s = "M" : L(M) ≠ ∅ }

• Specify a language property, P(L):

P(L) = True iff L ≠ ∅

• Show that the domain of P is the set of recursively enumerable languages.

 The domain of P is the set of languages semidecided by some TM. This is exactly the set of RE languages.

• Show that P is nontrivial:
 P is true of at least one language: P({ε}) = True
 P is false of at least one language: P(∅) = False

Inappropriate Uses of Rice’s Theorem

Example 1:
L = {s = "M" : M writes a 1 within three moves}.

• Specify a language property, P(L)
 P(M?) = True if M writes a 1 within three moves,
 False otherwise
• Show that the domain of P is the set of recursively enumerable languages.
 ??? The domain of P is the set of all TMs, not their languages

Example 2:
L = {s = "M1" "M2": L(M1) = L(M2)}.

• Specify a language property. P(L)

P(M1?, M2?) = True if L(M1) = L(M2)
 False otherwise
• Show that the domain of P is the set of recursively enumerable languages.
 ??? The domain of P is RE × RE

Lecture Notes 26 Undecidability 9

Given a Turing Machine M, is L(M) Regular (or Context Free or Recursive)?

Is this problem decidable?

No, by Rice’s Theorem, since being regular (or context free or recursive) is a nontrivial property of the recursively enumerable
languages.

We can also show this directly (via the same technique we used to prove the more general claim contained in Rice’s Theorem):

Given a Turing Machine M, is L(M) Regular (or Context Free or Recursive)?

 L1 = H = {s = "M" "w" : Turing machine M halts on input string w}

 � τ
(?M2) L2 = {s = "M" : L(M) is regular}

Let τ be the function that, from "M" and "w", constructs "M*", whose own input is a string
 t = "M*" "w*"
M*("M*" "w*") operates as follows:

1. Copy its input to another track for later.
2. Write w on its input tape and execute M on w.
3. If M halts, invoke U on "M*" "w*".
4. If U halts, halt and accept.

If M2 exists, then ¬M2(M*(s)) decides L1 (H).

Why?
If M does not halt on w, then M* accepts ∅ (which is regular).
If M does halt on w, then M* accepts H (which is not regular).

Undecidable Problems About Unrestricted Grammars

• Given a grammar G and a string w, is w ∈ L(G)?
• Given a grammar G, is ε ∈ L(G)?
• Given two grammars G1 and G2, is L(G1) = L(G2)?
• Given a grammar G, is L(G) = ∅ ?

Given a Grammar G and a String w, Is w ∈∈∈∈ L(G)?

 L1 = H = {s = "M" "w" : Turing machine M halts on input string w}

 � τ

(?M2) L2 = {s = "G" "w" : w ∈ L(G)}

Let τ be the construction that builds a grammar G for the language L that is semidecided by M. Thus
 w ∈ L(G) iff M(w) halts.

Then τ("M" "w") = "G" "w"

If M2 exists, then M1 = M2(Mτ(s)) decides L1.

Lecture Notes 26 Undecidability 10

Undecidable Problems About Context-Free Grammars

• Given a context-free grammar G, is L(G) = Σ*?
• Given two context-free grammars G1 and G2, is L(G1) = L(G2)?
• Given two context-free grammars G1 and G2, is L(G1) ∩ L(G2) = ∅ ?
• Is context-free grammar, G ambiguous?
• Given two pushdown automata M1 and M2, do they accept precisely the same language?
• Given a pushdown automaton M, find an equivalent pushdown automaton with as few states as possible.

Given Two Context-Free Grammars G1 and G2, Is L(G1) = L(G2)?

 L1 = {s = "G" a CFG G and L(G) = Σ*}

 � τ

(?M2) L2 = {s = "G1" "G2" : G1 and G2 are CFGs and L(G1) = L(G2)}

Let τ append the description of a context free grammar GΣ* that generates Σ*.

Then, τ("G") = "G" "GΣ*"

If M2 exists, then M1 = M2(Mτ(s)) decides L1.

Non-RE Languages

There are an uncountable number of non-RE languages, but only a countably infinite number of TM’s (hence RE languages).
∴ The class of non-RE languages is much bigger than that of RE languages!

Intuition: Non-RE languages usually involve either infinite search or knowing a TM will infinite loop to accept a string.

{�M�: M is a TM that does not halt on the empty tape}
{�M�: M is a TM and L(M) = Σ*}
{�M�: M is a TM and there does not exist a string on which M halts}

Proving Languages are not RE
�� Diagonalization
�� Complement RE, not recursive
�� Reduction from a non-RE language
�� Rice’s theorem for non-RE languages (not covered)

Diagonalization

L={�M�: M is a TM and M(�M�) does not halt} is not RE

Suppose L is RE. There is a TM M* that semidecides L. Is �M*� in L?
• If it is, then M*(�M*�) halts (by the definition of M* as a semideciding machine for L)
• But, by the definition of L, if �M*� ∈ L, then M*(�M*�) does not halt.
Contradiction. So L is not RE.

(This is a very “bare-bones” diagonalization proof.)

Diagonalization can only be easily applied to a few non-RE languages.

Lecture Notes 26 Undecidability 11

Complement of an RE, but not Recursive Language

Example: H = {�M, w�: M does not accept w}
Consider H = {�M, w�: M is a TM that accepts w}:

�� H is RE—it is semidecided by U, the Universal Turing Machine.
�� H is not recursive—it is equivalent to the halting problem, which is undecidable.

From the theorem, H is not RE.

Reductions and RE Languages

Theorem: If there is a reduction from L1 to L2 and L2 is RE, then L1 is RE.

ττττ y ∈∈∈∈ L2?

M1

halt halt

 x

y =
τ(x)

M2

x ∈∈∈∈ L1?

Theorem: If there is a reduction from L1 to L2 and L1 is not RE, then L2 is not RE.

Reduction from a known non-RE Language

Using a reduction from a non-RE language:

 L1 = H = {�M, w�: Turing machine M does not halt on input string w}

 � τ

(?M2) L2 = {�M�: there does not exist a string on which Turing machine M halts}

Let τ be the function that, from �M� and �w�, constructs �M*�, which operates as follows:
1. Erase the input tape (M* ignores its input).
2. Write w on the tape
3. Run M on w.

ττττ M2

M1

halt halt

�M, w�

�M*�

M*

Mw halt haltx

�M, w� ∈ H � M does not halt on w � M* does not halt on any input � M* halts on nothing � M2 accepts (halts).
�M, w� ∉ H � M halts on w � M* halts on everything � M2 loops.

If M2 exists, then M1(�M, w�) = M2(Mτ(�M, w�)) and M1 semidecides L1. Contradiction. L1 is not RE. ∴ L2 is not RE.

Lecture Notes 26 Undecidability 12

Language
Summary

 IN OUT

Semidecidable Recursively
Enumerable Enumerable
Unrestricted grammar

Decision procedure Recursive Diagonalization
Lexicicographically enumerable Reduction
Complement is recursively enumer.

CF grammar Context Free Pumping
PDA Closure
Closure

Regular expression Regular Pumping
FSM Closure
Closure

Lecture Notes 27 Complexity Theory 1

Introduction to Complexity Theory

Read K & S Chapter 6.

Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is
“easy” or “hard”. Complexity theory tries to answer this question.

Recall that a computational problem can be recast as a language recognition problem.

Some “easy” problems:

�� Pattern matching
�� Parsing
�� Database operations (select, join, etc.)
�� Sorting

Some “hard” problems:

�� Traveling salesman problem
�� Boolean satisfiability
�� Knapsack problem
�� Optimal flight scheduling

“Hard” problems usually involve the examination of a large search space.

Big-O Notation

�� Gives a quick-and-dirty measure of function size
�� Used for time and space metrics

A function f(n) is O(g(n)) whenever there exists a constant c, such that |f(n)| ≤ c⋅|g(n)| for all n ≥ 0.

(We are usually most interested in the “smallest” and “simplest” function, g.)

Examples:

 2n3 + 3n2⋅log(n) + 75n2 + 7n + 2000 is O(n3)
 75⋅2n + 200n5 + 10000 is O(2n)

A function f(n) is polynomial if f(n) is O(p(n)) for some polynomial function p.

If a function f(n) is not polynomial, it is considered to be exponential, whether or not it is O of some exponential function

 (e.g. n log n).

In the above two examples, the first is polynomial and the second is exponential.

Comparison of Time Complexities

Speed of various time complexities for different values of n, taken to be a measure of problem size. (Assumes 1 step per
microsecond.)

f(n)\n 10 20 30 40 50 60
n .00001 sec. .00002 sec. .00003 sec. .00004 sec. .00005 sec. .00006 sec.
n2 .0001 sec. .0004 sec. .0009 sec. .0016 sec. .0025 sec. .0036 sec.
n3 .001 sec. .008 sec. .027 sec. .064 sec. .125 sec. .216 sec.
n5 .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2 min. 13.0 min.
2n .001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 yr. 366 cent.
3n .059 sec. 58 min. 6.5 yr. 3855 cent. 2x108 cent. 1.3x1013 cent.

Faster computers don’t really help. Even taking into account Moore’s Law, algorithms with exponential time complexity are
considered intractable. ∴ Polynomial time complexities are strongly desired.

Lecture Notes 27 Complexity Theory 2

Polynomial Land

If f1(n) and f2(n) are polynomials, then so are:
�� f1(n) + f2(n)
�� f1(n) ⋅ f2(n)
�� f1(f2(n))

This means that we can sequence and compose polynomial-time algorithms with the resulting algorithms remaining polynomial-
time.

Computational Model

For formally describing the time (and space) complexities of algorithms, we will use our old friend, the deciding TM (decision
procedure).

There are two parts:

�� The problem to be solved must be translated into an equivalent language recognition problem.
�� A TM to solve the language recognition problem takes an encoded instance of the problem (of size n symbols) as input

and decides the instance in at most TM(n) steps.

We will classify the time complexity of an algorithm (TM) to solve it by its big-O bound on TM(n).

We are most interested in polynomial time complexity algorithms for various types of problems.

Encoding a Problem

Traveling Salesman Problem: Given a set of cities and the distances between them, what is the minimum distance tour a
salesman can make that covers all cities and returns him to his starting city?

Stated as a decision question over graphs: Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a
bound B, is there a circuit that covers all V where ΣΣΣΣd(e) ≤ B? (Here a minimization problem was turned into a bound problem.)

A possible encoding the problem:

�� Give |V| as an integer.
�� Give B as an integer.
�� Enumerate all (v1, v2, d) as a list of triplets of integers (this gives both E and d).
�� All integers are expressed as Boolean numbers.
�� Separate these entries with commas.

Note that the sizes of most “reasonable” problem encodings are polynomially related.

What about Turing Machine Extensions?

Most TM extensions are can be simulated by a standard TM in a time polynomially related to the time of the extended machine.

�� k-tape TM can be simulated in O(T2(n))
�� Random Access Machine can be simulated in O(T3(n))

(Real programming languages can be polynomially related to the RAM.)

BUT… The nondeterminism TM extension is different.

A nondeterministic TM can be simulated by a standard TM in O(2p(n)) for some polynomial p(n).
Some faster simulation method might be possible, but we don’t know it.

Recall that a nondeterministic TM can use a “guess and test” approach, which is computationally efficient at the expense of
many parallel instances.

Lecture Notes 27 Complexity Theory 3

The Class P

P = { L : there is a polynomial-time deterministic TM, M that decides L }

Roughly speaking, P is the class of problems that can be solved by deterministic algorithms in a time that is polynomially related
to the size of the respective problem instance.

The way the problem is encoded or the computational abilities of the machine carrying out the algorithm are not very important.

Example: Given an integer n, is there a positive integer m, such that n = 4m?

Problems in P are considered tractable or “easy”.

The Class NP

NP = { L: there is a polynomial time nondeterministic TM, M that decides L }

Roughly speaking, NP is the class of problems that can be solved by nondeterministic algorithms in a time that is polynomially
related to the size of the respective problem instance.

Many problems in NP are considered “intractable” or “hard”.

Examples:

�� Traveling salesman problem: Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a
bound B, is there a circuit that covers all V where ΣΣΣΣd(e) ≤ B?

�� Subgraph isomorphism problem: Given two graphs G1 and G2, does G1 contain a subgraph isomorphic to G2?

The Relationship of P and NP

We’re considering only solvable (decidable) problems.

Clearly P ⊆ NP.

P is closed under complement.

NP probably isn’t closed under complement. Why?

Whether P = NP is considered computer science’s greatest unsolved problem.

Recursive

NP

P

Lecture Notes 27 Complexity Theory 4

Why NP is so Interesting

�� To date, nearly all decidable problems with polynomial bounds on the size of the solution are in this class.

�� Most NP problems have simple nondeterministic solutions.

�� The hardest problems in NP have exponential deterministic time complexities.

�� Nondeterminism doesn’t influence decidability, so maybe it shouldn’t have a big impact on complexity.

�� Showing that P = NP would dramatically change the computational power of our algorithms.

Stephen Cook’s Contribution (1971)

�� Emphasized the importance of polynomial time reducibility.

�� Pointed out the importance of NP.

�� Showed that the Boolean Satisfiability (SAT) problem has the property that every other NP problem can be

polynomially reduced to it. Thus, SAT can be considered the hardest problem in NP.

�� Suggested that other NP problems may also be among the “hardest problems in NP”.

This “hardest problems in NP” class is called the class of “NP-complete” problems.

Further, if any of these NP-complete problems can be solved in deterministic polynomial time, they all can and, by implication,
P = NP.

Nearly all of complexity theory relies on the assumption that P ≠ NP.

Polynomial Time Reducibility

A language L1 is polynomial time reducible to L2 if there is a polynomial-time recursive function τ such that ∀ x ∈ L1 iff τ(x) ∈
L2.

If L1 is polynomial time reducible to L2, we say L1 reduces to L2 (“polynomial time” is assumed) and we write it as L1 ∝ L2.

Lemma: If L1 ∝ L2, then (L2 ∈ P) � (L1 ∈ P). And conversely, (L1 ∉ P) � (L2 ∉ P).

Lemma: If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3.

L1 and L2 are polynomially equivalent whenever both L1 ∝ L2 and L2 ∝ L1.

Polynomially equivalent languages form an equivalence class. The partitions of this equivalence class are related by the partial
order ∝ .
P is the “least” element in this partial order.

What is the “maximal” element in the partial order?

Lecture Notes 27 Complexity Theory 5

The Class NP-Complete

A language L is NP-complete if L ∈ NP and for all other languages L’ ∈ NP, L’ ∝ L.

NP-Complete problems are the “hardest” problems in NP.

Lemma: If L1 and L2 belong to NP, L1 is NP-complete and L1 ∝ L2, then L2 is NP-complete.

Thus to prove a language L2 is NP-complete, you must do the following:

1. Show that L2 ∈ NP.
2. Select a known NP-complete language L1.
3. Construct a reduction τ from L1 to L2.
4. Show that τ is polynomial-time function.

How do we get started? Is there a language that is NP-complete?

Boolean Satisfiability (SAT)

Given a set of Boolean variables U = {u1, u2, …, um} and a Boolean expression in conjunctive normal form (conjunctions of
clauses—disjunctions of variables or their negatives), is there a truth assignment to U that makes the Boolean expression true
(satisfies the expression)?

Note: All Boolean expressions can be converted to conjunctive normal form.
Example: (x1∨ ¬ x2 ∨ x3) ∧ (¬x3 ∨ x4 ∨ ¬ x2)

Cook’s Theorem: SAT is NP-complete.

1. Clearly SAT ∈ NP.
2. The proof constructs a complex Boolean expression that satisfied exactly when a NDTM accepts an input string x

where |w| = n. Because the NDTM is in NP, its running time is O(p(n)). The number of variables is polynomially
related to p(n).

SAT is NP-complete because SAT ∈∈∈∈ NP and for all other languages L’ ∈∈∈∈ NP, L’ ∝∝∝∝ SAT.

Reduction Roadmap

The early NP-complete reductions took this structure. Each phrase represents a problem. The arrow represents a reduction from
one problem to another.

Today, thousands of diverse problems have been shown to be NP-complete.

Let’s now look at these problems.

τ M2

n

y

M1

w τ(w)

SAT

3SAT

3DM VC

PARTITION HC CLIQUE

Lecture Notes 27 Complexity Theory 6

3SAT (3-satisfiability)

Boolean satisfiability where each clause has exactly 3 terms.

3DM (3-Dimensional Matching)

Consider a set M ⊆ X × Y × Z of disjoint sets, X, Y, & Z, such that |X| = |Y| = |Z| = q. Does there exist a matching, a subset
M’⊆ M such that |M’| = q and M’ partitions X, Y, and Z?

This is a generalization of the marriage problem, which has two sets men & women and a relation describing acceptable
marriages. Is there a pairing that marries everyone acceptably?

The marriage problem is in P, but this “3-sex version” of the problem is NP-complete.

PARTITION

Given a set A and a positive integer size, s(a) ∈ N+, for each element, a ∈ A. Is there a subset A’ ⊆ A such that

ΣΣΣΣ s(a) = ΣΣΣΣ s(a) ?

 a∈ A’ a∈ A-A’

VC (Vertex Cover)

Given a graph G = (V, E) and an integer K, such that 0 < K ≤ |V|, is there a vertex cover of size K or less for G, that is, a subset
V’ ⊆ V such that |V’| ≤ K and for each edge, (u, v) ∈ E, at least one of u and v belongs to V’?

CLIQUE

Given a graph G = (V, E) and an integer J, such that
0 < J ≤ |V|, does G contain a clique of size J or more, that is a subset V’ ⊆ V such that |V’| ≥ J and every two vertices in V’ are
joined by an edge in E?

HC (Hamiltononian Circuit)

Given a graph G = (V, E), does there exist a Hamiltonian circuit, that is an ordering <v1, v2, …, vn> of all V such that
 (v|V|, v1) ∈ E and (vi, vi+1) ∈ E for all i, 1 ≤ i < |V|?

Traveling Salesman Prob. is NP-complete

Given a graph G = (V, E), a positive distance function for each edge d: E→N+, and a bound B, is there a circuit that covers all V
where ΣΣΣΣd(e) ≤ B?

To prove a language TSP is NP-complete, you must do the following:

1. Show that TSP ∈ NP.
2. Select a known NP-complete language L1.
3. Construct a reduction τ from L1 to TSP.
4. Show that τ is polynomial-time function.

TSP ∈∈∈∈ NP: Guess a set of roads. Verify that the roads form a tour that hits all cities. Answer “yes” if the guess is a tour and the
sum of the distances is ≤ B.

Reduction from HC: Answer the Hamiltonian circuit question on G = (V, E) by constructing a complete graph where “roads”
have distance 1 if the edge is in E and 2 otherwise. Pose the TSP problem, is there a tour of length ≤ |V|?

Lecture Notes 27 Complexity Theory 7

Notes on NP-complete Proofs

The more NP-complete problems are known, the easier it is to find a NP-complete problem to reduce from.

Most reductions are somewhat complex.

It is sufficient to show that a restricted version of the problem is NP-complete.

More Theory

NP has a rich structure that includes more than just P and NP-complete. This structure is studied in later courses on the theory of
computation.

The set of recursive problems outside of NP (and including NP-complete) are called NP-hard. There is a proof technique to
show that such problems are at least as hard as NP-complete problems.

Space complexity addresses how much tape does a TM use in deciding a language. There is a rich set of theories surrounding
space complexity.

Dealing with NP-completeness

You will likely run into NP-complete problems in your career. For example, most optimization problems are NP-complete.

Some techniques for dealing with intractable problems:

�� Recognize when there is a tractable special case of the general problem.
�� Use other techniques to limit the search space.
�� For optimization problems, seek a near-optimal solution.

The field of linear optimization springs out of the latter approach. Some linear optimization solutions can be proven to be “near”
optimal.

A branch of complexity theory deals with solving problems within some error bound or probability.

For more: Read Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S.
Johnson, 1979.

NP-hard

NP

P

NP-complete
(part of NP-hard)

Recursive

