Turing Machines

Read K & S4.1.
Do Homework 17.

Grammars, Recursively Enumer able L anguages, and Turing M achines

Recursively
»(Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Turing Machines

Can we come up with anew kind of automaton that has two properties:
» powerful enough to describe all computable things
unlike FSMs and PDAs
» simple enough that we can reason formally about it
like FSMs and PDAs
unlike real computers
Turing M achines

M| % a a b b a M| M| a

T

At each step, the machine may:

e gotoanew state, and Finite State Control
e @ther
e write on the current square, or S, S .. g, o

* move left or right

A Formal Definition
A Turing machineisaquintuple (K, Z, §, s, H):
K isafinite set of states;
> isan alphabet, containing at least 1 and ¢, but not - or —;
sOK istheinitia state;
H 0O K isthe set of halting states;
o isafunction from:

(K-H) x ¥ to K x E0{-, <}
non-halting state x input symbol state X action (write or move)
such that

(a) if the input symbol is 9, the actionis -, and
(b) ¢ can never be written .

Lecture Notes 20 Turing Machines

Notes on the Definition

1. Theinput tapeisinfinite to theright (and full of Q), but has awall to the left. Some definitions allow infinite tape in both
directions, but it doesn't matter.

2. disafunction, not arelation. So thisisadefinition for deterministic Turing machines.
3. 0 must be defined for all state, input pairs unless the state is a halt state.
4. Turing machines do not necessarily halt (unlike FSM's). Why? To halt, they must enter a halt state. Otherwise they loop.
5. Turing machines generate output so they can actually compute functions.
A Simple Example

A Turing Machine Odd Parity Machine:

d O d 0 1 1 0 d d d
2=0,1,0,Q ?
S=
H=
o=

Formalizing the Operation

O a a b b a a a (1)
O a a a b b a a a 2

?

A configuration of a Turing machine
M = (K, Z, 9, s, H) isamember of

K x Oz* x EEZ-{Q))oe
state input up input after
to scanned scanned square
square

Theinput after the scanned square may be empty, but it may not end with ablank. We assume the entire tape to the right of the
input isfilled with blanks.

«y (9, Gaab, b)
2 (h ¢Qasbb, €)

(g, Vaabb)
(h, 0Qaabb) ahalting configuration

Lecture Notes 20 Turing Machines 2

Yields
(O, Wiagly) |-m (O, Wosblp), &y anda 0%, iff ObO>0O{ <, -}, 0(q:, &) = (gx, b) and either:

DbOZ, wy=w, u;=Uy,anda =b (rewrite without moving the head)

| Wy | & | u |

[o |9 | a [a [b [b | 0 [0 [0 | 0Qaabb
?

| Wp | & | U |

o | | a | a | a [b [0 [0 |O| 0Qaaab

(2) b= —, w; =w,a, and either
(@ u=aguy, ifayzQoru #¢,

|<> | O | a | a | a | b | Q | Q | Q | 0Qaaab
I Wa | & | T Uy I
|<> = | a | a | a b | Q | Q | Q | 0Qaaab
?
or (b)u,=¢,ifggy=0andu;=¢
| Wy | & |u1|
[o | [a [a |[a | b [0 [0 |OQ | ©¢Qaab
| Wy | & |U1|T
[o | [a [a [a | b |0 [Q |O | ¢Qamb

If we scan left off the first square of the blank region, then drop that square from the configuration.
Yields, Continued

(3) b=, Wo = W1ay, and either

(@) U = &y
| Wy | . Ui |
[o [0 | a [a | a b [0 [o [Q | 00«
| W, T 2 | W |
[o] | a [a | a b | o [o | o | (Qaab
?
or b)uy=uw,=canda =0
| W1 | (= |u1|
o |9 | a |a |a |b [0 [0 |0 | 0Qaaab
| Wo ? | & |u)
o | Q | a | a Ja [b |O [Q | QO | ¢Daad

?

If we scan right onto the first square of the blank region, then a new blank appears in the configuration.

Lecture Notes 20 Turing Machines

Yields, Continued
For any Turing machine M, let |-\,* be the reflexive, transitive closure of |-y.

Configuration C, yields configuration C, if
Ci v* C

A computation by M is a sequence of configurations Cy, Cy, ..., C, for some n = 0 such that
Colm Cilm Cobm -ov I Cin
We say that the computation is of length n or that it has n steps, and we write
C0 |'Mn Cn
A Context-Free Example

M takes a tape of asthen b's, possibly with more a's, and adds b's as required to make the number of b's equal the number of a's.

% a a a a b Q Q Q

?

K={0,1,2345,6,7,8, 9}
>=ab 0,912

H={9) 5=

S=
Q/-
al, 2/q
al -
@,)
EI/2
o

@—'M O,
8
o/ -

all

O

An Example Computation

|a|a|a b|EI|E||E|

(0, 0Qaaab) |-y
(1, 0Qaaab) |-y
(2, 0Q1a8b) |-y
(3, 00128b) |-y
(3, 001a8b) |-y
(3, 001aab) |-y
(4, 001a82) |-y

Lecture Notes 20 Turing Machines 4

Notes on Programming
The machine has a strong procedural feel.

It's very common to have state pairs, in which the first writes on the tape and the second move. Some definitions allow both
actions at once, and those machines will have fewer states.

There are common idioms, like scan left until you find a blank.
Even avery simple machine is a nuisance to write.

A Notation for Turing Machines
(1) Define some basic machines

e Symbol writing machines
Foreacha X - {0}, define M, written just a, = ({s, h}, Z, §, s, {h}),
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s, ~)
Example:
awritesana

e Head moving machines
Foreacha{ —, -}, defineM,, written R(-)andL(<):
foreachb O X - {0}, &(s, b) = (h, @)
(s, 0) = (s ~)
Examples:
R moves one square to the right
aR writes an a and then moves one square to the right.

A Notation for Turing Machines, Cont'd

(2) The rules for combining machines: aswith FSMs
>%] a ' M,
M3

e Startinthe start state of M.

e Compute until M, reaches a halt state.

» Examine the tape and take the appropriate transition.

» Startinthe start state of the next machine, etc.

» Haltif any component reaches a halt state and has no place to go.

« |f any component fails to halt, then the entire machine may fail to halt.

Lecture Notes 20 Turing Machines

M, al elemsof > >M2 becomes M,

MM

M, al elemsof X

except a

eg., > xz0O

Lecture Notes 20

Shorthands

M, becomes M; ab l M,

M2

#’

MM,

becomes M?

N M, becomes M, x#a M,

=2

and x takes on the value of the current square

}Mz becomes M; x=ab 'Mz

and x takes on the value of the current square

M X?y | M,

if x =y then take the transition

if the current squareis not blank, go right and copy it.
Some Useful Machines
find the first blank square to the right of the current square
find the first blank square to the left of the current square

find the first nonblank square to the right of the current square

find the first nonblank sgquare to the left of the current square

Turing Machines

M or e Useful M achines
L, find the first occurrence of ato the left of the current square
Rap find the first occurrence of a or b to the right of the current square

Lap a ' M, find the first occurrence of a or b to the left of the current square, then go to M if the detected
character is a; go to M, if the detected character isb

M,
Lx=apb find the first occurrence of a or b to the left of the current square and set x to the value found
Lx=apRX find the first occurrence of a or b to the left of the current square, set x to the value found, move one
sguare to the right, and write x (a or b)
An Example
Input: oQw wO{1}*
Output: oaw?
Example; ¢ 0111000000000000a
o
>R, 1 | H#R HRHL
Q

#’1

O
I{_I_

A Shifting Machine S_

Input: acwd

Output: awl

Example: Q0abbal0000000000OAN0O
- I

>L, R x#Q ’DLXR

=

L

Lecture Notes 20 Turing Machines 7

Computing with Turing Machines

Read K & S4.2.
Do Homework 18.

Turing M achines as L anguage Recognizers

Convention: We will write the input on the tape as:
oQwQd , w contains no Qs
Theinitia configuration of M will then be:
(s, 0Qw)
A recognizing Turing machine M must have two halting states: y and n
Any configuration of M whose stateis:
y is an accepting configuration
nisarejecting configuration
Let 2, the input al phabet, be a subset of Z-{Q,0}
Then M decidesalanguage L [0 2y* iff for any string
w O Zp*it istrue that:
if w L then M acceptsw, and
if wL then M regjectsw.
A language L isrecursiveif thereisaTuring machine M that decidesit.

A Recognition Example
L={ab'c":n=0}

Example: 0Qaabbcc00000000

Example: ¢Qaacch00000000

Lecture Notes 21 Computing with Turing Machines

Anocther Recognition Example
L ={wew:wO{a b}*}

Example: 0QabbcabblQ

Example: 0Qacabbddd

(Y ?X) Ry=—s

b/?x
y #LD_/

Do Turing M achines Stop?

FSMs Always halt after n steps, where n is the length of the input. At that point, they either accept or reject.
PDAs Don't always halt, but there is an algorithm to convert any PDA into one that does halt.
Turing machines Can do one of three things:

(1) Halt and accept

(2) Halt and reject

(3) Not halt
And now there is no algorithm to determine whether a given machine always halts.

Computing Functions

LetZ, O -{0,Q} andletw O Zo*
Convention: We will writetheinput on thetapeas. ¢Qwd
Theinitia configuration of M will then be; (s, 0Qw)
Define M(w) =y iff:
* M haltsif started in the input configuration,
» thetape of M when it haltsis 0QyQ, and
c yUX"
Let f be any function from Z4* to >o*.

We say that M computesf if, for all w 0 Zg*, M(w) = f(w)

A function f isrecursiveif thereisa Turing machine M that computesit.

Lecture Notes 21 Computing with Turing Machines

Example of Computing a Function

f(w) = ww
Input: 0QwlA00d Output: 0QwwU
Define the copy machine C: oQwaaQ > oQwaw

Remember the S_ machine:

OQwwQ > OQww
- |
>L, R x#0Q | ULxR
<
L

Then the machine to computefisjust >CSL,.
Computing Numeric Functions
We say that a Turing machine M computes a function f from N¥ to N provided that
num(M (ng;n,;...nK)) = f(num(ny), ... num(ny))
Example: Succ(n)=n+1
We will represent ninbinary. SondJ 0 0 1{0,1}*

Input: 0QNAQ0Q0AA Output: 0Qn+14
0011110000 Output; ¢Q10000Q

Why Are We Working with Our Hands Tied Behind Our Backs?

Turing machines are more powerful than any of the other formalisms we have studied so far.

Turing machines are alot harder to work with than all the real computers we have available.

Why bother?

The very simplicity that makesit hard to program Turing machines makes it possible to reason formally about what they can do.
If we can, once, show that anything areal computer can do can be done (albeit clumsily) on a Turing machine, then we have a

way to reason about what real computers can do.

Lecture Notes 21 Computing with Turing Machines

Recursively Enumerable and Recursive Languages

Read K & S4.5.
Recursively Enumer able L anguages

Let 2, the input a phabet to a Turing machine M, be a subset of %, - {Q, ¢}
Let L O 5.

M semidecides L iff
for any string w [0 2¢*,

wiL= M halts on input w
wiL = M does not halt on input w
M(w) =1

L isrecursively enumerable iff there is a Turing machine that semidecidesit.
Examples of Recursively Enumerable L anguages

L={wO{a b}* :wcontainsat least onea}

1)
>R

Qb bbbbblddadad

4

L={wO{ab,(,)}* :wcontainsat least one set of balanced parentheses}

v 1o
E'ia) Pl
T
OQbbbbbb)aaodQ
—
{—

Recursively Enumerable Languagesthat Aren't Also Recursive

A Real Life Example:
L ={w O {friends} :w will answer the message you've just sent out}

Theoretical Examples

L ={Turing machines that halt on a blank input tape}
Theorems with valid proofs.

Lecture Notes 22 Recursively Enumerable and Recursive Languages

Why Are They Called Recursively Enumerable L anguages?
Enumerate means list.

We say that Turing machine M enumer ates the language L iff, for some fixed state g of M,
L ={w: (s 0Q) [v* (g, 0Qw)}

A language is Turing-enumer able iff there is a Turing machine that enumeratesiit.
Note that g is not a halting state. It merely signals that the current contents of the tape should be viewed as a member of L.
Recur sively Enumerable and Turing Enumerable

Theorem: A language isrecursively enumerableiff it is Turing-enumerable.

Proof that Turing-enumerableimplies RE: Let M be the Turing machine that enumerates L. We convert M to a machine M' that
semidecidesL:

1. Saveinputw.

2. Beginenumerating L. Each time an element of L is enumerated, compare it tow. If they match, accept.

=w? }—Pp halt

; W3, W, W1

The Other Way

Proof that RE implies Turing-enumerable;
If L O X* isarecursively enumerable language, then thereisa Turing machine M that semidecidesL.
A procedure to enumerate all elementsof L:
Enumerate all w O Z* lexicographically.

eg., € a b, aa ab, ba bb, ...
As each string w; is enumerated:
1. Start up acopy of M with w; asitsinput.
2. Execute one step of each M; initiated so far, excluding only those that have previously halted.
3. Whenever an M; halts, output w;.

e[1]

e[2] a [1]

e[3] a [2] b [1]

e[4] a [3] b [2] aa [1]

e[9] a [4] b [3] aa [2] ab [1]

€ [6] a [5] aa [3] ab [2] ba [1]

Lecture Notes 22 Recursively Enumerable and Recursive Languages 2

Every Recursive Languageis Recursively Enumerable
If L isrecursive, then there is a Turing machine that decidesit.
From M, we can build a new Turing machine M' that semidecides L:
1. Letnbethergect (and halt) state of M.

2. Thenaddto o'
((n, @), (n, @) foralad =

3 »@)
® ®

What about the other way around?
Not true. There are recursively enumerable languages that are not recursive.

/Da/a

The Recursive Languages Are Closed Under Complement
Proof: (by construction) If L isrecursive, then thereisa Turing machine M that decides L.

We construct amachine M' to decide L by taking M and swapping the roles of the two halting statesy and n.
M: M

¥ O >
0 O 0

This works because, by definition, M is
e deterministic
e complete

b 4

Arethe Recursively Enumerable L anguages Closed Under Complement?

M: M":

’Qﬁg

Lemma: There exists at least one language L that is recursively enumerable but not recursive.

Proof that M" doesn't exist: Suppose that the RE languages were closed under complement. Thenif L isRE, L would be RE. If

that were true, then L would also be recursive because we could construct M to decideit:

1. Let T, bethe Turing machine that semidecidesL.

2. Let T, be the Turing machine that semidecides L.

3. Givenastring w, fireup both T, and T, onw. Since any stringin 2* must bein either L or L, one of the two machines will
eventually halt. If it's T4, accept; if it's T, reject.

But we know that there is at least one RE language that is not recursive. Contradiction.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 3

Recursive and RE Languages
Theorem: A languageis recursive iff both it and its complement are recursively enumerable.

Proof:

* LrecursiveimpliesL and -L are RE: Clearly L isRE. And, since the recursive languages are closed under complement,
=L isrecursive and thus also RE.

e Land-L areREimpliesL recursive: SupposelL issemidecided by M1 and - L is semidecided by M2. We construct M to
decide L by using two tapes and simultaneously executing M1 and M2. One (but not both) must eventually halt. If itsM1,
we accept; if it's M2 we regject.

L exicographic Enumeration

We say that M lexicographically enumerates L if M enumerates the elements of L in lexicographic order. A languagelL is
lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumeratesit.

Example: L ={ab"c"}

L exicographic enumeration:
Pr oof

Theorem: A languageis recursive iff it islexicographically Turing-enumerable.
Proof that recursive implies lexicographically Turing enumerable: Let M be a Turing machine that decidesL. Then M’

lexicographically generates the stringsin >* and tests each using M. It outputs those that are accepted by M. Thus M'
lexicographically enumerates L.

yes —1——» %,
no

Z*31 Z*21 Z*l —’ DL?

vV Vv

Proof, Continued
Proof that lexicographically Turing enumerable impliesrecursive: Let M be a Turing machine that |exicographically enumerates

L. Then, oninput w, M' startsup M and waits until either M generates w (so M' accepts), M generates a string that comes after w
(so M' rejects), or M halts (so M' rgjects). Thus M' decidesL.

L

=wW? ——» yes
> L3 Lo Ly
>SW?—1p Nno
M
nomoreLiS?———— 1 » no

Lecture Notes 22 Recursively Enumerable and Recursive Languages 4

Partially Recursive Functions

L anguages Functions
Tm aways halts recursive recursive
Tm hdtsif yes recursively ?
enumer able
{;\‘ K
domain range

Suppose we have a function that is not defined for all elements of its domain.
Example: f: N - N, f(n) =n/2

Partially Recursive Functions

ST

domain range

One solution: Redefine the domain to be exactly those elements for which f is defined:

) \
domain 7
range

But what if we don't know? What if the domain isnot arecursive set (but it is recursively enumerable)? Then we want to define
the domain as some larger, recursive set and say that the function is partially recursive. There exists a Turing machine that halts
if given an element of the domain but does not halt otherwise.

Lecture Notes 22 Recursively Enumerable and Recursive Languages 5

Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure

Lecture Notes 22 Recursively Enumerable and Recursive Languages

ouT

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure

Turing Machine Extensions

Read K & S4.3.1, 4.4.
Do Homework 19.

Turing M achine Definitions

An alternative definition of a Turing machine:
(K, Z, T, 98, s H):

I" isafinite set of allowable tape symbols. One of theseisQ.
2 isasubset of I' not including 4, the input symbals.

o isafunction from:

KxT o Kx (T-{Q)x{, -}
state, tapesymbol, L or R
a a a b b a a a a

“

Example transition: ((s, a), (s, b, -))

Do these Differences M atter ?
Remember the goal:

Define adevicethat is:
» powerful enough to describe all computable things,
» simple enough that we can reason formally about it

Both definitions are simple enough to work with, although details may make specific arguments easier or harder.
But, do they differ in their power?
Answer: No.

Consider the differences:
« Oneway or two way infinite tape: we're about to show that we can simulate two way infinite with ours.
* Rewrite and move at the same time: just affects (linearly) the number of movesit takes to solve a problem.

Turing M achine Extensions

In fact, there are lots of extensions we can make to our basic Turing machine model. They may make it easier to write Turing
machine programs, but none of them increase the power of the Turing machine because:

We can show that every extended machine has an equivalent basic machine.

We can also place a bound on any change in the complexity of a solution when we go from an extended machine to a basic
machine.

Some possible extensions:

e Multiple tapes

* Two-way infinite tape

e Multiple read heads

e Twodimensiona “sheet” instead of atape
* Random access machine

* Nondeterministic machine

Lecture Notes 23 Turing Machine Extensions

Multiple Tapes

a a a b b a a a
a b a b b a a a
»
a a 1 2 2 1 a a
-~
The transition function for a k-tape Turing machine:
(K-H) , 2z, to (K, 2 0{, >}
122 122'['{*1—'}
2 vZeO0{ <, -})

Input: input as before on tape 1, others blank
Output: output as before on tape 1, others ignored

An Example of a Two Tape Machine
Copying a string

a| Q| a b b a a | AQ
+ »
|D|EI|EI|EI|EI|EI EIlEI
+
a| Q| a b b a a | AQ
+
| Q| a b b a a | Q
¢ <~
| Q| a b b a a | Q
+
| Q| a b b a a | Q
4+)

Lecture Notes 23 Turing Machine Extensions

Anocther Two Tape Example - Addition

lo [1 Jo [2] [1]1 [0 [a
+

aQ | (a | | ;7 o | a9 (a 1|14
+

o | o [o [o] o 1] 1[0 |a

y— >

a (1 (o | 1 | | | | a |49

y— ~

Adding Tapes Adds No Power

Theorem: Let M be ak-tape Turing machine for somek = 1. Then thereis astandard Turing machine M' where X (0 %', and such

that:

For any input string x, M on input x halts with output y on the first tape iff M' on input x halts at the same halting state and
with the same output on its tape.
If, oninput X, M halts after t steps, then M" halts after a number of steps which is O(t C{|x| + t)).

Proof: By construction

O a a b a a a
¢ 0 0 1 0 0 0 0 a a
O a b b a b a
0 1 0 0 0 0 0
Alphabet (=) of M'= 2 O (= x {0, 1})
eg., ¢,(,0,90,0,(@Q,0,a1
The Operation of M'
O Q a b a Q Q
O 0 0 1 0 0 0 0 Q Q
0 a b b a b a
0 1 0 0 0 0 0
1 Set up the multitrack tape:
1) Shift input one square to right, then set up each square appropriately.
2. Simulate the computation of M until (if) M would halt: (start each step to the right of the divided tape)
1) Scan left and store in the state the k-tuple of characters under the read heads. Move back right.
2) Scan left and update each track as required by the transitions of M. Move back right.
i) If necessary, subdivide a new sguare into tracks.
3. When M would halt, reformat the tape to throw away all but track 1, position the head correctly, then go to M's halt
State.
How Many Steps DoesM' Take?
Let: X be the input string, and
t be the number of stepsit takes M to execute.
Step 1 (initialization) O([x)
Step 2 (computation)
Number of passes=t
Work at each pass: 2.1 =2 (length of tape)
=2[x[+2+1)
22=20x|+2+1)
Total = O(t ({(|x| +1))
Step 3 (clean up) O(length of tape)

Total = O(t x| +1))

Lecture Notes 23 Turing Machine Extensions 3

Two-Way Infinite Tape
Our current definition:

o lalblcld o la
Proposed definition: +
o [a Jg [f e lalolf]ec|dal]a]
o +
Simulation:
Track 1 |<>|a|b|c|d|EIIEI

-

Track 2 | o [e | ¢+ | ¢ | o] o [

Simulating a PDA
The components of a PDA:
Finite state controller
Input tape
Stack
The simulation:
Finite state controller:

Input tape:
Stack:
Track 1 I O | a I a | a | b | b I a
(Input) +
Trackz\ | o | o] a|] a | o] a |o
-

Corresponding to

Simulating a Turing Machine with a PDA with Two Stacks

olafolalaf#fafalbla] | | | [[|

n

< | [T|o|w
L [T | | | &

Lecture Notes 23 Turing Machine Extensions

Random Access Turing M achines

A random access Turing machine has:
» afixed number of registers
« afinitelength program, composed of instructions with operators such as read, write, load, store, add, sub, jJump
* atape
e aprogram counter
Theorem: Standard Turing machines and random access Turing machines compute the same things. Furthermore, the number of
steps it takes a standard machine is bounded by a polynomial in the number of stepsit takes a random access machine.

Nondeter ministic Turing Machines

A nondeter ministic Turing machine is a quintuple (K,Z,A s H)
where K, Z, s, and H are as for standard Turing machines, and A isasubset of
(K-H)xX)x(Kx(ZO{~, -}))

0Qabab
0Qabab O0Qabab
0Qabab OUbbab

What does it mean for a nondeterministic Turing machine to compute something?
* Semidecides - at |east one halts.
* Decides - ?
« Computes - ?
Nondeter ministic Semideciding

Let M = (K, Z, A, s, H) be anondeterministic Turing machine. We say that M accepts an input
w O (Z - {0, Q})* iff
(s, 0Qw) yields aleast one accepting configuration.

We say that M semidecides alanguage
L O(Z-{0,Q})* iff
foralw O (Z-{0,Q})*:
w O L iff
(s, 0Qw) yields aleast one halting configuration.

An Example
L={wO{a b,c,d}* : therearetwo of at |east one letter}
_|d—>
a
0/ - al -
i 0) Q/- | 1 b/ -
v
c/ -
d/ -

Lecture Notes 23 Turing Machine Extensions 5

Nondeter ministic Deciding and Computing
M decides alanguage L if, for all w O (Z - {0, Q})* :
1. all of M's computations on w halt, and
2. w OL iff at least one of M's computations accepts.
M computesafunction f if, for all w O (Z - {0, Q})* :
1. all of M's computations halt, and
2. all of M's computations result in f(w)
Note that all of M's computations halt iff:
Thereisanatural number N, depending on M and w, such that thereis no configuration C satisfying
(s, 0Qw) |-u" C.
An Example of Nondeter ministic Deciding
L ={w O{0, 1}* : wisthe binary encoding of a composite number}

M decides L by doing the following on input w:

1. Nondeterministically choose two binary numbers 1 < p, g, where |p| and |g| < |w|, and write them on the tape, after w,
Separated by ;.

04d110011;111;1111004
2. Multiply p and g and put the answer, A, on the tape, in place of p and g.
04d110011;101111100Q
3. CompareA andw. If equal,gotoy. Elsegoton.
Equivalence of Deterministic and Nondeter ministic Turing M achines

Theorem: If a nondeterministic Turing machine M semidecides or decides alanguage, or computes a function, then thereisa
standard Turing machine M' semideciding or deciding the same language or computing the same function.

Note that while nondeterminism doesn’t change the computational power of a Turing Machine, it can exponentially increase its
speed!

Proof: (by construction)
For semideciding: We build M', which runs through all possible computations of M. If one of them halts, M' halts

Recall the way we did thisfor FSMs: simulate being in a combination of states.
Will thiswork here?

What about: Try path 1. If it accepts, accept. Else
Try path 2. If it accepts, accept. Else

Lecture Notes 23 Turing Machine Extensions

The Construction

At any point in the operation of a nondeterministic machine M, the maximum number of branchesis

r= Kl O (z+2
states actions
So imagine atable:
1 2 3 r

(ql,Ul) (p-,U-) (p'vo') (p_!U_) (p'vo') (p_!U_)
(91,02) (p-,0-) (p-,0-) (p-,0-) (p-,0-) (p-,0-)
(ql,0n)
(g2,01)
(9K],on)

Note that if, in some configuration, there are not r different legal things to do, then some of the entries on that row will repeat.

The Construction, Continued
Mg: (supposer = 6)

Tape 1: I nput

Tape 2: 13265436

Mg chooses its 1st move from column 1
Mg chooses its 2nd move from column 3
Mg chooses its 3rd move from column 2

until there are no more numbers on Tape 2

My either:
e discoversthat M would accept, or
e comesto the end of Tape 2.

In either casg, it halts.
The Construction, Continued
M' (the machine that simulates M):

Tape 1: Input
Tape 2: Copy of Input
Mg
Tape 3: 13265436
Steps of M*:
write g on Tape 3
until My accepts do
(2) copy Input from Tape 1 to Tape 2
(2) run My
(3) if My accepts, exit
(4) otherwise, generate lexicographically next string on Tape 3.
Pass 1 2 3 7 8 9
Tape3 € 1 2 I 6 11 12 11l 2635
Lecture Notes 23 Turing Machine Extensions

Nondeter ministic Algorithms

Other Turing M achine Extensions

Multiple heads (on one tape)
Emulation strategy: Use tracks to keep track of tape heads. (See book)

Multiple tapes, multiple heads
Emulation strategy: Use tracks to keep track of tapes and tape heads.

Two-dimensional semi-infinite “tape’
Emulation strategy: Use diagonal enumeration of two-dimensional grid. Use second tape to help you keep track of
where the tape head is. (See book)
Two-dimensional infinite “tape” (really a sheet)
Emulation strategy: Use modified diagonal enumeration as with the semi-infinite case.
What About Turing M achine Restrictions?
Can we make Turing machines even more limited and still get all the power?
Example:
We alow atape aphabet of arbitrary size. What happensif we limit it to:
* Onecharacter?

* Two characters?
e Three characters?

Lecture Notes 23 Turing Machine Extensions

Problem Encoding, TM Encoding, and the Universal TM

ReadK & S5.1& 5.2.
Encoding a Problem asa L anguage
A Turing Machines deciding alanguage is analogous to the TM solving adecision problem.

Problem: |sthe number n prime?
Instance of the problem: Isthe number 9 prime?
Encoding of the problem, (n): nasabinary number. Example: 1001

Problem: Isan undirected graph G connected?
Instance of the problem: Isthe following graph connected?

I—2—3

NN

4 5

Encoding of the problem, (G):
1) |V|asabinary number
2) Alist of edges represented by pairs of binary numbers being the vertex numbers that the edge connects
3) All such binary numbers are separated by “/”.
Example: 101/1/10/10/11/1/100/10/101

Problem View vs. Language View
Problem View: It isunsolvable whether a Turing Machine halts on agiven input. Thisis called the Halting Problem.

Language View: Let H ={(M, w) : TM M halts on input string w}
H isrecursively enumerable but not recursive.

The Universal Turing Machine
Problem: All our machines so far are hardwired.
Question: Does it make sense to talk about a programmable Turing machine that accepts as input
program input string

executes the program, and outputs

output string
Yes, it's called the Universal Turing Machine.
Notice that the Universal Turing machine semidecidesH = {(M, w) : TM M halts oninput string w} = L(U).
To define the Universal Turing Machine U we need to do two things:
1. Define an encoding operation for Turing machines.
2. Describe the operation of U given an input tape containing two inputs:

e encoded Turing machine M,
* encoded input string to be givento M.

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine

Encoding a Turing Machine M

We need to describe M = (K, Z, 9, s, H) asastring. To do thiswe must:
1. Encoded

2. Specify s.

3. Specify H (and y and n, if applicable)

1. To encode &, we need to:
1. Encode the states
2. Encode the tape a phabet
3. Specify thetransitions

1.1 Encode the states as
gs :s0{0,1}" and
|s|=iand
i isthe smallest integer such that 2' > |K|

Example: 9 states i=4
s = 0000,
remaining states: q0001, 0010, 0011,
0100, 0101, @0110, q0111, 1000

Encoding a Turing Machine M, Continued

1.2 Encode the tape al phabet as
as :sO{0, 1} and
Isl=] and |
j isthe smallest integer such that 2 > |Z] + 2 (the+ 2 dlowsfor — and -)
Example 2 ={0,0,a, b} j=3
= a000
= ao01
<= aolo
- = a011l
a= al100
b= al101

Encoding a Turing Machine M, Continued
1.3 Specify transitionsas (state, input, state, output)
Example: (000,a000,011,a000)

2. Specify sas q0'
3. Specify H:

+ Stateswith no transitions out arein H.

* If M decides alanguage, then H = {y, n}, and we will adopt the convention that y is the lexicographically smaller of

the two states.
y =q010 n=g01l1
Encoding Input Strings

We encode input strings to a machine M using the same character encoding we use for M.
For example, suppose that we are using the following encoding for symbolsin M:

symbol representation
a a000
O a001
- a010
- a0ll
a a100

Then we would represent the string s = 0aala as "s' =(s) =a001a100a100a000a100

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 2

An Encoding Example
Consider M = ({s, q, h}, {Q, ¢,a}, 8, s, {h}), where 6 =

state symbol 0 state/symbol representation

S a (9.9 s o0
S Q (h, Q) q qo1
s 0 (s,) h qll
q a (s,@ Q a000
q Q (s) 0 a001
q 0 (g -) < 2010

- a0ll

a al00

The representation of M, denoted, "M", (M), or sometimes p(M) =
(900,a100,q01,a000), (q00,a000,g11,a000), (q00,a001,q00,a011),
(g01,a100,q00,a100), (q01,a000,000,a011), (g01,a001,q01,a011)

Another Win of Encoding

One big win of defining away to encode any Turing machine M:
» It will make senseto talk about operations on programs (Turing machines). In other words, we can talk about some
Turing machine T that takes another Turing machine (say M) asinput and transforms it into a different machine
(say M) that performs some different, but possibly related task.

Example of atransforming TM T:
I nput: amachine M, that reads its input tape and performs some operation P on it.
Output: amachine M, that performs P on an empty input tape:

L, R M,

The Universal Turing Machine
The specification for U:
u'M" "w") ="M(w)"

M M ['w
1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q
0 Q Q Q 0 Q 0
Q Q 0 Q Q Q oo
0 0 0 0 0 0 0
"0 o | w w | QO Q
1 0 0 0 0 0 0
0 "M M" Q 0 0 0 Q
1 0 0 0 0 0 0
q 0 0 0 Q Q Q
1 Q Q Q Q Q Q

Initialization of U:
1. Copy "M" onto tape 2
2. Insert"0O" at the left edge of tape 1, then shift w over.
3. Look at"M", figure out what i is, and write the encoding of state s on tape 3.

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine 3

The Operation of U

a 0 0 1 a 0 0
1 0 0 0 0 0 0
O "M M" a a a a Q
1 0 0 0 0 0 0
o} 0 0 0 a a a
1 a a a a a a

Simulate the steps of M:

1. Start with the heads:
tape 1: the a of the character being scanned,
tape 2: far left
tape 3: far left

2. Simulate one step:
1. Scan tape 2 for a quadrupl e that matches current state, input pair.

2. Perform the associated action, by changing tapes 1 and 3. If necessary, extend the tape.
3. If no quadruple found, halt. Else go back to 2.

An Example

Tape 1. a001a000a100a100a000a100
O QO a a Q4 a

Tape 2: (q00,a000,g11,a000), (q00,a001,0q00,a011),
(900,a100,q01,a000), (q01,a000,g00,a011),
(g01,a001,q01,a011), (q01,a100,000,a100)

Tape 3. 01
+

Result of simulating the next step:

Tape 1. a001a000a100a100a000a100
O O a a QO a

Tape 3: qO0

+

If A Universal Machineis Such a Good ldea ...
Could we define a Universal Finite State Machine?

Such a FSM would accept the language
L={"F'"w": Fisafinite state machine, and w OJ L(F) }

Lecture Notes 24 Problem Encoding, Turing Machine Encoding, and the Universal Turing Machine

Grammars and Turing Machines

Do Homework 20.

Grammars, Recursively Enumerable Languages, and Turing Machines

Recursively
Enumerable
Language

Unrestricted
Grammar

Turing
M achine

Unrestricted Grammars

An unrestricted, or Type 0, or phrase structure grammar G is a quadruple

(V, 2, R, S), where

V isan alphabet,
> (the set of terminals) is a subset of V,
R (the set of rules) is afinite subset of
o (V* (V-2) V*) X V*,
context N context - result
S (the start symbol) isan element of V - 2.

We define derivations just as we did for context-free grammars.
The language generated by G is

{wOZx*:S=c* w}

There is no notion of a derivation tree or rightmost/Ieftmost derivation for unrestricted grammars.

Unrestricted Grammars

Example: L =ab"c", n>0

S - aBSc
S - aBc
Ba - aB
Bc - bc
Bb - bb
Another Example

L={w0O{a b, c}": number of as, b'sand c'sis the same}

S - ABCS CA - AC
S -~ ABC CB - BC
AB - BA A-a
BC - CB B-b
AC - CA C-c
BA - AB

Lecture Notes 25 Grammars and Turing Machines

A Strong Procedural Feel
Unrestricted grammars have a procedural feel that is absent from restricted grammars.

Derivations often proceed in phases. We make sure that the phases work properly by using nonterminals as flags that we'rein a
particular phase.

It's very common to have two main phases:

* Generate the right number of the various symbols.

e Movethem around to get them in the right order.

No surprise: unrestricted grammars are general computing devices.

Equivalence of Unrestricted Grammarsand Turing M achines

Theorem: A language is generated by an unrestricted grammar if and only if it isrecursively enumerable (i.e., it is semidecided
by some Turing machine M).

Proof:
Only if (grammar — TM): by construction of a nondeterministic Turing machine.

If (TM - grammar): by construction of a grammar that mimics backward computations of M.
Proof that Grammar — Turing Machine
Given agrammar G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

olc|o|e
Flo g
ol|ln|o|w
o|H|o|T
olo |o|w
ol|o|o|g
o|0|o|Db

For each nondeterministic "incarnation":
e Tapel holdstheinput.
» Tape 2 holds the current state of a proposed derivation.

At each step, M nondeterministically chooses aruleto try to apply and a position on tape 2 to start looking for the left hand side

of therule. Or it chooses to check whether tape 2 equalstape 1. If any such machine succeeds, we accept. Otherwise, we keep
looking.

Lecture Notes 25 Grammars and Turing Machines 2

Proof that Turing Machine - Grammar

Suppose that M semidecides alanguage L (it halts when fed stringsin L and loops otherwise). Then we can build M' that haltsin
the configuration (h, 0Q).

We will define G so that it simulates M backwards.
We will represent the configuration (g, Ouaw) as

>uagw<

M

goes from
O a a b b a a a a
O a a a a a a a a

Then, if w O L, we require that our grammar produce a derivation of the form
S=¢ >0h< (producesfina state of M")

=s* >0abg< (some intermediate state of M")

=s* >Qsw< (theinitial state of M")

= W< (viaa specid ruleto clean up >Qs)
=c W (viaaspecia ruleto clean up <)
TheRulesof G
S - >0h< (the halting configuration)
>0s - € (clean-up rules to be applied at the end)
< 5 8
Rules that correspond to &:
If &(a, &) = (p, b) : bp - aq
If &(g, @ =(p, »): abp-agp ObOZX
alp< - ag<
If (g, d=(p,), az0 pa - aq
1f &(q, Q) =(p, <) pab - Qgb ObOX
p< - dg<

Lecture Notes 25 Grammars and Turing Machines 3

A REALLY Simple Example

M'= (K, {a}, o, s, {h}), where
o={ ((s Q). (@ ~)). 1
((qr a-)! (qv _'))l 2
((qr D)! (t! ‘_))l 3
((t,a), (p,Q)), 4
((t,), (h,), 5
((pr D)! (t! ‘_)) 6
L=a
S - >0h< 3 taQ - Qg4
>Us - € tda - Uga
<5 € t< - Ug<
4 Qp - at
(1) Qdg- A4 (5) Qh - Qt
Qaq - Qsa (6) Q- Qpd
Udg< - Us< tQa - Upa
2 alq - ag t< - Qp<
aq - aga
alg< - ag<
Working It Out
S - >0h< 1 3 tQQ - QoA 10
>0s - € 2 tda - Uga 11
<€ 3 t< - Ug< 12
(4 Up - at 13
(1) Qdg- A4 4 (5) Qh - Qt 14
Oag - Qsa 5 (6) taa - Qpa 15
QQg< - As< 6 t0a - Qpa 16
(2 alq - ag 7 t< - Qp< 17
aq - aga 8
ado< - ag< 9
>0saa< 1 S = >0h< 1
>Qaga< 2 = >Ui< 14
>Uaag< 2 = >U0p< 17
>Qaalg< 3 = >Uat< 13
>Qaat< 4 = >0adp< 17
>0 p< 6 = >Laat< 13
>Qat< 4 = >Qaaldg< 12
>00p< 6 = >Uaag< 9
>0t< 5 = >0aga< 8
>0h< = >0saa< 5
= aa< 2
= aa 3
Lecture Notes 25 Grammars and Turing Machines

An Alternative Proof
An dternative isto build agrammar G that simulates the forward operation of a Turing machine M. It uses alternating symbols

to represent two interleaved tapes. One tape remembers the starting string, the other “working” tape simulates the run of the
machine.

Thefirst (generate) part of G:
Creates all strings over >* of the form
w=000UQsaayawazaUl...

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:
¢00d0alb2cch4Q3a3

Examples of rules:
bbQ4 - b4Q4 (rewritebas4)
b4Q3 - Q3b4 (moveleft)

Thethird (cleanup) part of G erasesthejunk if M ever reaches h.

Examplerule:
#hal - a#h (sweep# hto theright erasing the working “tape”)

Computing with Grammars
We say that G computesf if, for all w, v X *,
SWS =c* v iff v =1f(w)
Example:
S1S =c* 11
S11S =6 111 f(x) = succ(x)
A function f is called grammatically computable iff there is agrammar G that computesit.

Theorem: A function f isrecursiveiff it is grammatically computable.
In other words, if a Turing machine can do it, so can agrammar.

Example of Computing with a Grammar
f(x) = 2x, where x is an integer represented in unary
G=({S 1},{1},R,S), whereR =
Sl - 11S
SS- ¢
Example:

Input: S111S

Output:

Lecture Notes 25 Grammars and Turing Machines 5

More on Functions: Why Have We Been Using Recursive as a Synonym for Computable?
Primitive Recursive Functions

Define a set of basic functions:
e zerog(ng, Ny, ...NY) =0
o identity; (N, My, ... MY =1y
e successor(n)=n+1
Combining functions:
» Composition of g with hy, hy, ... h¢is
g(ha(), ho(), ... hi()
e Primitiverecursion of f intermsof g and h:
f(ng,No,...Nk, 0) = g(Ng,Na,...1NK)
f(ny,Ny,...Nk,M+1) = h(ng,Ny,...N, M, f(Nyg, Ny,...NK,M))

Example: plus(n, 0) =n
plus(n, m+1) = succ(plus(n, m))

Primitive Recursive Functions and Computability

Trivialy true; al primitive recursive functions are Turing computable.
What about the other way: Not all Turing computable functions are primitive recursive.

Proof:

Lexicographically enumerate the unary primitive recursive functions, fo, fy, o, 3,

Define g(n) = f,(n) + 1.

Gisclearly computable, but it isnot on thelist. Supposeit were f,, for somem. Then
fm(m) = fi(m) + 1, which is absurd.

0 1 2 3 4
fo

fy

fa

fa 27

fa

Suppose gisfs. Theng(3) =27 + 1 =28. Contradiction.
Functionsthat Aren't Primitive Recursive

Example: Ackermann's function: A, y)=y+1
Ax+1,0)=A(x1)
Ax+1Ly+1)=AX AX+1Y))

0 1 2 3

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 65533 2203«

27 -3 ¢ 22 -3 %

* 19,729 digits 10*" seconds since big bang
10 digits 10% protons and neutrons
% 10" digits 102 light seconds = width

of proton or neutron
Thus writing digits at the speed of light on all protons and neutronsin the universe (al lined up) starting at the big bang would
have produced 10'’ digits.

Lecture Notes 25 Grammars and Turing Machines

Recursive Functions

A functionis p-recursiveif it can be obtained from the basic functions using the operations of:
e Composition,

* Recursive definition, and

* Minimalization of minimalizable functions:

The minimalization of g (of k + 1 arguments) is afunction f of k arguments defined as:
f(ng,ny,...nK) = theleast m such at g(ng,ny,. .. Nk,M)=1, if such an m exists,
0 otherwise
A function g is minimalizable iff for every ny,n,,...ny, there isan m such that g(ny,ny, ... N, M)=1.
Theorem: A functionis p-recursiveiff it isrecursive (i.e., computable by a Turing machine).
Partial Recursive Functions
Consider the following function f:
f(n) = 1if TM(n) halts on ablank tape
0 otherwise

The domain of f isthe natural numbers. Isf recursive?

domain range

Theorem: There are uncountably many partialy recursive functions (but only countably many Turing machines).

Functions and M achines

Partial Recursive
Functions

Recursive
Functions

Primitive Recursive
Functions

Turing Machines

Lecture Notes 25 Grammars and Turing Machines

Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Turing Machines

IsThere Anything In Between CFGs and Unrestricted Grammar s?

Answer: yes, various things have been proposed.
Context-Sensitive Grammar s and L anguages:
A grammar G is context sensitiveif all productions are of the form

X -y

and [x| < ly|
In other words, there are no length-reducing rules.
A language is context senditive if there exists a context-sensitive grammar for it.
Examples:

L ={a%"c",n>0}
L={wO{a b,c}" : number of as, b'sand c'sis the same}

Lecture Notes 25 Grammars and Turing Machines

Context-Sensitive L anguages are Recursive

Thebasicidea: Todecideif astringw isinL, start generating strings systematically, shortest first. If you generate w, accept. If
you get to strings that are longer than w, reject.

Linear Bounded Automata

A linear bounded automaton is a nondeterministic Turing machine the length of whose tape is bounded by some fixed constant k
times the length of the input.

Example: L={db"c¢":n=0}

0Qaabbcc10000000a0a

(¥ e (3
> a }'a’ R h }b’ R—e) C L,

ca ,c&/
Q,ab'.a
n

Context-Sensitive L anguages and Linear Bounded Automata

Theorem: The set of context-sensitive languages is exactly the set of languages that can be accepted by linear bounded automata.

Proof: (sketch) We can construct a linear-bounded automaton B for any context-sensitive language L defined by some grammar
G. We build amachine B with atwo track tape. Oninput w, B keepsw on thefirst tape. On the second tape, it
nondeterministically constructs all derivations of G. The key isthat as soon as any derivation becomes longer than |w| we stop,
since we know it can never get any shorter and thus match w. Thereis also a proof that from any |ba we can construct a context-
sensitive grammar, analogous to the one we used for Turing machines and unrestricted grammars.

Theorem: There exist recursive languages that are not context sensitive.

Lecture Notes 25 Grammars and Turing Machines 9

Languages and M achines

Recursively Enumerable
Languages

Recursive
Languages

Context-Sensitive
Languages

Context-Free
Languages

Deterministic

Context-Free
Languages

NDPDAs

Linear Bounded Automata

Turing Machines

Lecture Notes 25 Grammars and Turing Machines

10

Lecture Notes 25

The Chomsky Hierarchy

Recursively Enumerable
Languages

Context-Sensitive
Languages

Context-Free
Languages

Regular
(Type?3)
Languages
FSMs

TypeO [Typel [Type2

Linear Bounded Automata

Turing Machines

Grammars and Turing Machines

11

Undecidabilty

Read K & S5.1,5.3, & 5.4.
Read Supplementary Materials. Recursively Enumerable Languages, Turing Machines, and Decidability.
Do Homeworks 21 & 22.
Church'sThesis
(Church-Turing Thesis)

An algorithm isaformal procedure that halts.
The Thesis: Anything that can be computed by any algorithm can be computed by a Turing machine.
Another way to stateit: All "reasonable" formal models of computation are equivalent to the Turing machine.

Thisisn't aformal statement, so we can't proveit. But many different computational models have been proposed and they all turn
out to be equivalent.

Examples:

unrestricted grammars
lambda calculus
cellular automata
DNA computing
guantum computing (?)

The Unsolvability of the Halting Problem

Suppose we could implement the decision procedure
HALTS(M, x)
M: string representing a Turing Machine
X: string representing the input for M
If M(x) haltsthen True

else False
Then we could define
TROUBLE(x)
X: string
If HALTS(x, x) then loop forever
else halt

So now what happensif we invoke TROUBLE(“TROUBLE"), which invokes HALTS(* TROUBLE”, “TROUBLE")

If HALTS saysthat TROUBLE halts on itself then TROUBLE loops. |F HALTS saysthat TROUBLE loops, then TROUBLE
halts. Either way, we reach a contradiction, so HALTS(M, x) cannot be made into a decision procedure.

Lecture Notes 26 Undecidability 1

Another View

The Praoblem View: The halting problem is undecidable.
TheLanguage View: Let H =

{"M""w" : TM M halts on input string w}
H isrecursively enumerable but not recursive.
Why?
H isrecursively enumerable because it can be semidecided by U, the Universal Turing Machine.
But H cannot berecursive. If it were, then it would be decided by some TM MH. But MH("M" "w") would have to be:

If M isnot asyntactically valid TM, then False.

else HALTS("M" "w")
But we know cannot that HALTS cannot exist.
If H were Recursive
H={"M""w":TM M halts on input string w}
Theorem: If H were also recursive, then every recursively enumerable language would be recursive.
Proof: Let L be any RE language. Since L isRE, thereexistsaTM M that semidecidesit.
Suppose H isrecursive and thusis decided by some TM O (oracle).
We can buildaTM M' from M that decidesL:
1. M'transformsitsinput tape from 0QwQ to 0Q"M""w"Q.
2. M'invokes O on itstape and returns whatever answer O returns.
So, if H were recursive, al RE languages would be. But it isn't.
Undecidable Problems, Languagesthat Are Not Recursive, and Partial Functions

The Praoblem View: The halting problem is undecidable.
ThelLanguage View: LetH =

{"M""w" : TM M halts on input string w}

H isrecursively enumerable but not recursive.

The Functional View: Letf (w)=M(w)
fisapartia function on Z*

"M"w! pal I's

Lecture Notes 26 Undecidability

Other Undecidable Problems About Turing Machines
* GivenaTuring machine M, does M halt on the empty tape?
e GivenaTuring machine M, isthere any string on which M halts?
* GivenaTuring machine M, does M halt on every input string?

e Given two Turing machines M; and M, do they halt on the same input strings?
* GivenaTuring machine M, isthe language that M semidecidesregular? Isit context-free? Isit recursive?

Post Correspondence Problem
Consider two lists of strings over some alphabet . The lists must be finite and of equal length.

A =Xq, Xo, X3, ...y Xn
B=yu,¥2V¥3 ...i¥n

Question: Does there exist some finite sequence of integers that can be viewed as indexes of A and B such that, when elements of
A are selected as specified and concatenated together, we get the same string we get when elements of B are selected also as
specified?

For example, if we assert that 1, 3, 4 is such a sequence, we're asserting that X;XsX4 = Y1YaYa

Any problem of thisform is an instance of the Post Correspondence Problem.

I's the Post Correspondence Problem decidable?

Post Correspondence Problem Examples

i A B

1 1 111
2 10111 10
3 10 0

i A B

1 10 101
2 011 11
3 101 011

Some L anguages Aren't Even Recursively Enumer able

A pragmatically non RE language: Li={ (i, j) : i, j areintegers where the low order five digits of i are a street address number
and j isthe number of houses with that number on which it rained on November 13, 1946 }

An analytically non RE language: L,={x : x ="M" of a Turing machine M and M("M") does not halt}
Why isn't L, RE? Supposeit were. Then therewould beaTM M* that semidecidesL,. IS"M*" inL,?
e Ifitis, then M*("M*") halts (by the definition of M* as a semideciding machine for L,)
* But, by the definition of L,, if "M*" O L,, then M*("M*") does not halt.
Contradiction. So L, isnot RE.

Another Non RE Language
H

Why not?

Lecture Notes 26 Undecidability 3

Reduction
Let L4, L, 0 2* belanguages. A reduction fromL;toL,isarecursivefunctiont: * — 3* such that
x O Ly iff t(x) O L.
Example:
L;={ab:ab0ON:b=a+1}
U T = Succ
U a, bbecomes Succ(a), b
L,={ab:ab0ON:a=hb}
If thereisa Turing machine M, to decide L,, then | can build a Turing machine M to decide L ;:
1. Taketheinput and apply Succ to the first number.
2. Invoke M, on the result.
3. Return whatever answer M, returns.

Reductions and Recursive L anguages

Theorem: If thereisareduction fromL,to L, and L, isrecursive, then L, isrecursive.

X
Mg, xOL?
y=, M Yes), YES,,
Tt YOL? s ol

Theorem: If thereisareduction from L, to L, and L, isnot recursive, then L, is not recursive.

Reductions and RE L anguages
Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X

x OL,?

= M2
?

halt, |halt
|l |4l

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.

Lecture Notes 26 Undecidability

Can it be Decided if M Halts on the Empty Tape?

Thisisequivalent to, "Isthe language L, = {"M" : Turing machine M halts on the empty tape} recursive?"

L, =H= {s="M""w": Turing machine M halts oninput string w}
U T
(?My) L,= {s="M": Turing machine M halts on the empty tape}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows on an empty input tape:
1. Writew on the tape.
2. Operate asM would have.

If M, exists, then My = My(M(9)) decidesL;.
A Formal Reduction Proof
Prove that L, = {(M): Turing machine M halts on the empty tape} is not recursive.

Proof that L, is not recursive viaareduction from H = {{M, w): Turing machine M halts on input string w}, a non-recursive
language. Suppose that there existsa TM, M, that decides L,. Construct a machine to decide H as M;({M, w)) = M,(T({M, w))).
The 1 function creates from (M) and (w) a new machine M*. M* ignoresitsinput and runs M on w, halting exactly when M halts
onw.

e (M,w)dH= M hadtsonw = M* dways hats=¢ 00 L(M*) = (M*) O L, = M, accepts = M, accepts.

* (M,w)0H= M doesnot hatonw= ¢ 0L(M*) = (M*) OL,= M, reects= M, rejects.

Thus, if there is a machine M, that decides L,, we could use it to build a machine that decides H. Contradiction. 0L, is not
recursive.

Important Elementsin a Reduction Proof

» A clear declaration of the reduction “from” and “to” languages and what you' re trying to prove with the reduction.
e A description of how amachine is being constructed for the “from” language based on an assumed machine for the “to”
language and a recursive T function.

e A description of the T function’sinputs and outputs. If T isdoing anything nontrivial, it isagood ideato argue that it is
recursive.

» Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where
needed.

* Runthrough the logic that demonstrates how the “from” language is being decided by your reduction. Y ou must do both
accepting and rejecting cases.
» Declare that the reduction proves that your “to” language is not recursive.
The Most Common Mistake: Doing the Reduction Backwards

The right way to use reduction to show that L, is not recursive:

1. Giventhat L, isnot recursive, L,
2. Reducel;toL,,i.e. show how to solve L (the known one) in terms of L, (the unknown one) \/
Lo

Example: If there exists a machine M, that solves L ,, the problem of deciding whether a Turing machine halts on a blank tape,
then we could do H (deciding whether M halts on w) as follows:

1. Create M* from M such that M*, given a blank tape, first writes w on its tape, then simulates the behavior of M.

2. Return My("M*").

Doing it wrong by reducing L, (the unknown oneto L,): If there exists a machine M, that solves H, then we could build a
machine that solves L, as follows:
1. Return (Mi("M","")).

Lecture Notes 26 Undecidability 5

Why Backwards Doesn't Work

Suppose that we have proved that the following problem L, isunsolvable: Determine the number of days that have elapsed since
the beginning of the universe.

Now consider the following problem L,: Determine the number of days that had elapsed between the beginning of the universe
and the assassination of Abraham Lincoln.

Reduce LitoL,: L
L1 =L, + (now - 4/9/1865) \/
Lo
Reduce L,to L4: L,
L, =L, - (now - 4/9/1865) \/
La

Why Backwards Doesn't Work, Continued

L, = days since beginning of universe
L, = elapsed days between the beginning of the universe and the assassination of Abraham Lincoln.
L3 = days between the assassination of Abraham Lincoln and now.

Considering L ,: L,
Reduce L to L,: \l(
L1 =L, + (now - 4/9/1865) 2
Reduce LrtoLq: L,
L, =L - (now - 4/9/1865) \/
Ly
Considering L 3: L,
Reduce L to L3 \/
L, = oops L3
Reduce LiztoLq: L3
Ly;=L;-365- (nOW-4/9/1866) W
Ly

IsThere Any String on Which M Halts?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M,) L,= {s="M": there exists a string on which Turing machine M halts}

Let T be the function that, from "M" and "w", constructs "M*", which operates as follows:
1. M* examinesitsinput tape.
2. Ifitisequal tow, thenit simulates M.
3. If not, it loops.
Clearly the only input on which M* has a chance of halting isw, which it does iff M would halt on w.

If M, exists, then My = My(M(s)) decides L.

Lecture Notes 26 Undecidability 6

Does M Halt on All Inputs?

L, = {s="M" : Turing machine M halts on the empty tape}
U T
(?My) L,= {s="M": Turing machine M halts on all inputs}

Let T be the function that, from "M", constructs "M*", which operates as follows:
1. Erasetheinput tape.
2. Simulate M.

Clearly M* either halts on all inputs or on none, since it ignores its input.
If M, exists, then M = My(M(s)) decides L.
Rice's Theorem
Theorem: No nontrivial property of the recursively enumerable languages is decidable.

Alternate statement: Let P: 2 _ {true, false} be anontrivial property of the recursively enumerable languages. The language
{*M”: P(L(M)) = True} isnot recursive.

By "nontrivial" we mean a property that is not simply true for all languages or false for all languages.

Examples:

e L contains only even length strings.

* L contains an odd number of strings.

e L containsal stringsthat start with"a".
« Lisinfinite.

e Lisregular.

Note:
Rice's theorem applies to languages, not machines. So, for example, the following properties of machines are decidable;
e M contains an even number of states
e M hasan odd number of symbalsin its tape al phabet
Of course, we need away to define alanguage. Well use machines to do that, but the properties we'll deal with are properties of
L(M), not of M itself.

Proof of Rice's Theorem

Proof: Let P be any nontrivial property of the RE languages.
L, =H= {s="M""w": Turing machine M halts oninput string w}

U T
(MMy) L,= {s="M": P(L(M)) = true}

Either P(O) = trueor P(0) = false. Assume it isfalse (amatching proof existsif it istrue). Since P isnontrivial, there is some
language Ly such that P(Lp) istrue. Let Mp be some Turing machine that semidecides Lp.

Let T construct "M*", which operates as follows:

1. Copy itsinput y to another track for later.

2. Writew onitsinput tape and execute M on w.

3. If M halts, put y back on the tape and execute Mp.
4. If Mp haltsony, accept.

Claim: If M, exists, then M; = M,(M(s)) decides L.

Lecture Notes 26 Undecidability 7

Why?

Two cases to consider:
o "M""W'[OH= M haltsonw = M* will halt on all strings that are accepted by Mp = L(M*) = L(Mp) = Lp = P(L(M*)) =
P(Lp) = true = M, decides P, so M, accepts "M*" = M, accepts.

e "M""W'[OH= M doesn't halt on w = M* will halt on nothing = L(M*) =0 = P(L(M*)) = P(0) = fdse= M, decides
P, so M, rgjects "M*" = M, rejects.

Using Rice’'s Theorem

Theorem: No nontrivial property of the recursively enumerable languages is decidable.
To use Rice's Theorem to show that alanguage L is not recursive we must:
» Specify alanguage property, P(L)
e Show that the domain of Pisthe set of recursively enumerable languages.
» Show that Pisnontrivial:

» Pistrue of at least one language

» Pisfaseof at least one language

Using Rice's Theorem: An Example

L ={s="M": there exists a string on which Turing machine M halts}.
={s="M":L(M)z 0O}

e Specify alanguage property, P(L):
P(L) = Trueiff L#£ O

e Show that the domain of Pisthe set of recursively enumerable languages.
The domain of P isthe set of languages semidecided by some TM. Thisis exactly the set of RE languages.

e Show that Pisnontrivial:
Pistrue of at least one language: P({€}) = True
Pisfalse of at least one language: P(00) = False

Inappropriate Uses of Rice's Theorem

Example 1.
L ={s="M": M writes a1 within three moves} .

» Specify alanguage property, P(L)
P(M?) = True if M writes a1 within three moves,
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of P isthe set of all TMs, not their languages

Example 2:
L ={s="M1""M2";: L(M1) =L(M2)}.

» Specify alanguage property. P(L)
P(M1?, M2?) = Trueif L(M1) = L(M2)
False otherwise

e Show that the domain of Pisthe set of recursively enumerable languages.
??? The domain of PisRE x RE

Lecture Notes 26 Undecidability 8

Given aTuring MachineM, isL(M) Regular (or Context Free or Recursive)?
Is this problem decidable?

No, by Rice’'s Theorem, since being regular (or context free or recursive) is a nontrivial property of the recursively enumerable
languages.

We can also show this directly (viathe same technique we used to prove the more general claim contained in Rice’s Theorem):

Given aTuring MachineM, isL (M) Regular (or Context Free or Recursive)?
L;=H={s="M""w": Turing machine M halts on input string w}

U1
(My) L,= {s="M": L(M) isregular}

Let T be the function that, from "M" and "w", constructs "M*", whose own input is a string
t = "M*" "W*"
M*("M." "w:") operates as follows:
1. Copy itsinput to another track for later.
2. Writew onitsinput tape and execute M on w.
3. If M hdlts, invoke U on "M." "w.".
4. If U halts, halt and accept.
If M, exists, then =My(M*(s)) decides L, (H).

Why?
If M does not halt on w, then M* accepts O (which isregular).
If M does halt on w, then M* accepts H (which is not regular).

Undecidable Problems About Unrestricted Grammars
* Givenagrammar G and astring w, isw 0 L(G)?
e Givenagrammar G, ise O L(G)?
* Giventwo grammars G; and G,, isL(G,) = L(Gy)?
e Givenagrammar G, isL(G) =07?

Given aGrammar G and a Stringw, Isw OL(G)?

L, =H= {s="M""w": Turing machine M halts on input string w}
U T
(?M>) L,= {s="G""wW":wOL(G)}

Let T be the construction that builds a grammar G for the language L that is semidecided by M. Thus
w O L(G) iff M(w) halts.

Then T("M" "w") ="G" "w"

If M, exists, then M = My(M(s)) decides L.

Lecture Notes 26 Undecidability 9

Undecidable Problems About Context-Free Grammars
» Given acontext-free grammar G, isL(G) = Z*?
» Given two context-free grammars G, and G, isL(G,) = L(G)?
» Given two context-free grammars G; and G,, isL(Gy) n L(Gp) =07
e |Iscontext-free grammar, G ambiguous?

* Given two pushdown automata M; and M, do they accept precisely the same language?
e Given apushdown automaton M, find an equivalent pushdown automaton with as few states as possible.

Given Two Context-Free Grammars G; and G,, ISL(G;) =L(Gy)?
L= {s="G"aCFGGandL(G)=Zx*}
U T
(2M)) L,= {s="G;""G,": G, and G, are CFGsand L(G,) = L(G,)}
Let T append the description of a context free grammar Gs- that generates 2*.
Then, 1("G") ="G" "Gs"

If M, exists, then My = M,y(M(s)) decides L.

Non-RE Languages

There are an uncountable number of non-RE languages, but only a countably infinite number of TM’s (hence RE languages).
0 The class of non-RE languages is much bigger than that of RE languages!

Intuition: Non-RE languages usually involve either infinite search or knowing a TM will infinite loop to accept a string.

{{M): M isaTM that does not halt on the empty tape}
{{(M): MisaTM and L(M) = 2*}
{{M): M isaTM and there does not exist a string on which M halts}

Proving Languages are not RE
Diagonalization
Complement RE, not recursive
Reduction from a non-RE language
Rice's theorem for non-RE languages (not covered)

Diagonalization
L={(M): M isaTM and M({M)) does not halt} is not RE
Suppose L isRE. ThereisaTM M* that semidecidesL. Is(M*)inL?
o Ifitis, then M*((M*)) halts (by the definition of M* as a semideciding machine for L)
e But, by thedefinition of L, if (M*) O L, then M*((M*)) does not halt.
Contradiction. So L isnot RE.
(Thisisavery “bare-bones’ diagonalization proof.)

Diagonalization can only be easily applied to afew non-RE languages.

Lecture Notes 26 Undecidability

Complement of an RE, but not Recursive L anguage

Example: H = {(M, w): M does not accept w}
Consider H = {(M, w): M isaTM that accepts w}:

» HisRE—itissemidecided by U, the Universal Turing Machine.

» Hisnot recursive—it is equivalent to the halting problem, which is undecidable.
From the theorem, H is not RE.

Reductions and RE L anguages

Theorem: If thereisareductionfromL;toL,andL,isRE, thenL;isRE.

X
My xOL?
_ M
y= M 5 |halt, halt,_
T _[(X)r Yy O L2' > >

Theorem: If thereisareductionfromL,toL,and L, isnot RE, then L, isnot RE.
Reduction from a known non-RE L anguage

Using a reduction from a non-RE language:

L, =H ={(M, w): Turing machine M does not halt on input string w}
Ut
(?My) L, ={(M): there does not exist a string on which Turing machine M halts}

Let T be the function that, from (M) and (w), constructs (M*}, which operates as follows:

1. Erasetheinput tape (M* ignoresitsinput).

2. Writew on thetape

3. RunMonw.

M, w)

M, V¥
M*
. MY M, halty | halt,

M*
e o VIS “ee 2

M, w) DE = M does not halt on w = M* does not halt on any input = M* halts on nothing = M accepts (halts).
(M, w) O H = M hatsonw = M* halts on everything = M, loops.

If M, exists, then M;({M, w)) = M,(M({M, w))) and M; semidecidesL,. Contradiction. L;isnot RE. [0 L,isnot RE.
Lecture Notes 26 Undecidability

Language
Summary

IN

Semidecidable
Enumerable
Unrestricted grammar

Recursively
Enumerable

Decision procedure Recursive
Lexicicographically enumerable

Complement isrecursively enumer.

CF grammar Context Free
PDA

Closure

Regular expression
FSM
Closure

Lecture Notes 26 Undecidability

ouT

Diagonalization
Reduction

Pumping
Closure

Pumping
Closure

12

Introduction to Complexity Theory

Read K & S Chapter 6.
Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problemis
“easy” or “hard”. Complexity theory triesto answer this question.
Recall that a computational problem can be recast as a language recognition problem.
Some “easy” problems:

» Pattern matching

* Parsing

= Database operations (select, join, etc.)

= Sorting
Some “hard” problems:

» Traveling salesman problem

» Boolean satisfiability

» Knapsack problem

= Optimal flight scheduling
“Hard” problems usually involve the examination of alarge search space.

Big-O Notation

= Gives aquick-and-dirty measure of function size
» Used for time and space metrics

A function f(n) is O(g(n)) whenever there exists a constant ¢, such that [f(n)| < cljg(n)| for all n= 0.
(We are usually most interested in the “smallest” and “simplest” function, g.)
Examples:
2n® + 3n’lbg(n) + 75n° + 7n + 2000 is O(n%)
752" + 200n° + 10000 is O(2")
A function f(n) is polynomial if f(n) is O(p(n)) for some polynomial function p.

If afunctionI f(n) is not polynomial, it is considered to be exponential, whether or not it is O of some exponentia function
(e.g.n'®").

In the above two examples, the first is polynomial and the second is exponential.
Comparison of Time Complexities

Speed of various time complexities for different values of n, taken to be a measure of problemsize. (Assumes 1 step per
microsecond.)

f(n)\n 10 20 30 40 50 60
n .00001 sec. .00002 sec. .00003 sec. .00004 sec. .00005 sec. .00006 sec.
n° .0001 sec. .0004 sec. .0009 sec. .0016 sec. .0025 sec. .0036 sec.
n° .001 sec. .008 sec. .027 sec. .064 sec. .125 sec. .216 sec.
n° .1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2min. 13.0 min.
2" .001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 yr. 366 cent.
3" .059 sec. 58 min. 6.5 yr. 3855 cent. 2x10° cent. 1.3x10" cent.

Faster computers don't really help. Even taking into account Moore's Law, algorithms with exponential time complexity are
considered intractable. [Polynomial time complexities are strongly desired.

Lecture Notes 27 Complexity Theory 1

Polynomial Land

If f1(n) and f,(n) are polynomials, then so are;
= fi(n) +f2(n)
= fi(n) Oa(n)
= fu(fa(n)

This means that we can sequence and compose polynomial -time al gorithms with the resulting algorithms remaining polynomial -
time.
Computational Model

For formally describing the time (and space) complexities of algorithms, we will use our old friend, the deciding TM (decision
procedure).

There are two parts:
»= The problem to be solved must be translated into an equivalent language recognition problem.
= A TM to solve the language recognition problem takes an encoded instance of the problem (of size n symbols) as input
and decides the instance in at most Ty (n) steps.

We will classify the time complexity of an algorithm (TM) to solve it by its big-O bound on Ty(n).
We are most interested in polynomial time complexity algorithms for various types of problems.
Encoding a Problem

Traveling Salesman Problem: Given aset of cities and the distances between them, what is the minimum distance tour a
salesman can make that coversall cities and returns him to his starting city?

Stated as a decision question over graphs: Given agraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B? (Here aminimization problem was turned into a bound problem.)

A possible encoding the problem:

Give |V| as an integer.

Give B asan integer.

Enumerate al (v4, v,, d) asalist of triplets of integers (this gives both E and d).
All integers are expressed as Boolean numbers.

Separate these entries with commas.

Note that the sizes of most “reasonable” problem encodings are polynomially related.
What about Turing M achine Extensions?
Most TM extensions are can be simulated by a standard TM in atime polynomially related to the time of the extended machine.

» k-tape TM can be simulated in O(T?(n))
» Random Access Machine can be simulated in O(T3(n))

(Real programming languages can be polynomially related to the RAM.)
BUT... The nondeterminism TM extension is different.

A nondeterministic TM can be simulated by a standard TM in O(2"™) for some polynomial p(n).
Some faster simulation method might be possible, but we don’'t know it.

Recall that a nondeterministic TM can use a“guess and test” approach, which is computationally efficient at the expense of
many paralléel instances.

Lecture Notes 27 Complexity Theory 2

TheClassP
P ={ L : thereisapolynomial-time deterministic TM, M that decidesL }

Roughly speaking, P isthe class of problems that can be solved by deterministic algorithmsin atime that is polynomially related
to the size of the respective problem instance.

The way the problem is encoded or the computational abilities of the machine carrying out the algorithm are not very important.
Example: Given an integer n, isthere a positive integer m, such that n = 4m?
Problemsin P are considered tractable or “easy”.
The Class NP
NP ={ L: thereisapolynomial time nondeterministic TM, M that decidesL }

Roughly speaking, NP is the class of problems that can be solved by nondeterministic algorithmsin atime that is polynomially
related to the size of the respective problem instance.

Many problemsin NP are considered “intractable” or “hard”.
Examples:

» Traveling salesman problem: Givenagraph G = (V, E), apositive distance function for each edge d: E— N+, and a
bound B, isthere acircuit that coversal V where sd(e) < B?

= Subgraph isomor phism problem: Given two graphs G; and G,, does G, contain a subgraph isomorphic to G,?

The Relationship of P and NP

Recursive

NP

WEe're considering only solvable (decidable) problems.
Clearly PO NP.

Pisclosed under complement.

NP probably isn’t closed under complement. Why?

Whether P = NP is considered computer science' s greatest unsolved problem.

Lecture Notes 27 Complexity Theory 3

Why NP isso Interesting

= Todate, nearly all decidable problems with polynomial bounds on the size of the solution arein this class.
» Most NP problems have simple nondeterministic solutions.
» Thehardest problemsin NP have exponential deterministic time complexities.
» Nondeterminism doesn’t influence decidability, so maybe it shouldn’t have a big impact on complexity.
= Showing that P = NP would dramatically change the computational power of our algorithms.

Stephen Cook’s Contribution (1971)
» Emphasized the importance of polynomial time reducibility.
= Pointed out the importance of NP.

» Showed that the Boolean Satisfiability (SAT) problem has the property that every other NP problem can be
polynomially reduced to it. Thus, SAT can be considered the hardest problem in NP.

» Suggested that other NP problems may also be among the “hardest problemsin NP”.
This“hardest problemsin NP” classis called the class of “NP-complete” problems.

Further, if any of these NP-complete problems can be solved in deterministic polynomial time, they all can and, by implication,
P=NP.

Nearly all of complexity theory relies on the assumption that P # NP.
Polynomial Time Reducibility

A language L, is polynomial time reducibleto L, if there is a polynomial-time recursive function t such that Ox O L, iff t(x) O
L,.

If L, ispolynomial time reducibleto L,, we say L, reducesto L, (“polynomial time” is assumed) and we writeitasL; [L.
Lemma: If Ly 0L, then (L, O P) = (L, O P). And conversaly, (L, OP) = (L, OP).

Lemma: If Ly 0LyandL, O0Lszthenl, OLs.

L, and L, are polynomially equivalent whenever both L; (0 L, and L, O L;.

Polynomially equivalent languages form an equivalence class. The partitions of this equivalence class are related by the partial
order [.

Pisthe“least” element in this partial order.

What isthe “maximal” element in the partial order?

Lecture Notes 27 Complexity Theory 4

The Class NP-Complete
A language L isNP-complete if L [0 NP and for all other languagesL’ O NP, L’ O L.
NP-Complete problems are the “hardest” problemsin NP.
Lemma: If L;and L, belongto NP, L, is NP-complete and L, (I L,, then L, is NP-complete.
Thusto prove alanguage L, is NP-complete, you must do the following:
1. Show that L, O NP.
Select a known NP-complete language L ;.

2
3. Construct areduction T from L, to L.
4. Show that T is polynomial-time function.

My

w (W)
—1» T —> M
» n

How do we get started? |sthere alanguage that is NP-complete?
Boolean Satisfiability (SAT)

Given a set of Boolean variables U = {uy, U,, ..., Uy} and a Boolean expression in conjunctive normal form (conjunctions of
clauses—disjunctions of variables or their negatives), is there atruth assignment to U that makes the Boolean expression true
(satisfies the expression)?

Note: All Boolean expressions can be converted to conjunctive normal form.
Example: (x;00-X, Ox3) O (=x3 OX4 OXy)

Cook’s Theorem: SAT is NP-complete.
1. Clearly SAT O NP.
2. The proof constructs a complex Boolean expression that satisfied exactly when aNDTM accepts an input string X
where |w| = n. Becausethe NDTM isin NP, its running timeis O(p(n)). The number of variablesis polynomially
related to p(n).

SAT isNP-complete because SAT O NP and for all other languagesL’ O NP, L’ O SAT.

Reduction Roadmap

SAT

v

3SAT

o T
! Y

PARTITION HC CLIQUE

The early NP-complete reductions took this structure. Each phrase represents a problem. The arrow represents a reduction from
one problem to another.

Today, thousands of diverse problems have been shown to be NP-compl ete.

Let’s now look at these problems.

Lecture Notes 27 Complexity Theory 5

3SAT (3-satisfiability)
Boolean satisfiability where each clause has exactly 3 terms.
3DM (3-Dimensional Matching)

Consider aset M O X x Y x Z of digoint sets, X, Y, & Z, suchthat |X|=|Y|=[Z| = . Doesthere exist amatching, a subset
M’ M such that [M’| = qand M’ partitions X, Y, and Z?

Thisis ageneralization of the marriage problem, which has two sets men & women and a relation describing acceptable
marriages. |sthere apairing that marries everyone acceptably?

The marriage problem isin P, but this “3-sex version” of the problem is NP-complete.
PARTITION

Given aset A and a positive integer size, (@) 0 N*, for each element, a0 A. Isthere asubset A’ 0 A such that

2 sa=2 3a) ?
alA” alA-A’

VC (Vertex Cover)

Given agraph G = (V, E) and an integer K, such that 0 < K < |V|, isthere a vertex cover of sizeK or lessfor G, that is, a subset
V' OV suchthat [V'| < K and for each edge, (u, v) O E, at least one of uand v belongsto V'?

CLIQUE
Given agraph G = (V, E) and an integer J, such that
0 < J< V|, does G contain aclique of size Jor more, that isasubset V' 00V such that [V'| = Jand every two verticesin V' are
joined by an edgein E?

HC (Hamiltononian Circuit)

Given agraph G = (V, E), does there exist a Hamiltonian circuit, that is an ordering <v;, v», ..., v,> of al V such that
(vyvp vi) OEand (v, visg) O Eforali, 1<i<|V[?

Traveling Salesman Prob. is NP-complete

Given agraph G = (V, E), apositive distance function for each edge d: E - N+, and abound B, is there a circuit that coversall V
where sd(e) < B?

To prove alanguage TSP is NP-complete, you must do the following:
1. Show that TSP O NP.
2. Select aknown NP-complete language L ;.
3. Construct areduction t from L, to TSP.
4. Show that T is polynomial-time function.

TSP O NP: Guessaset of roads. Verify that the roads form atour that hits all cities. Answer “yes’ if the guessisatour and the
sum of the distancesis< B.

Reduction from HC: Answer the Hamiltonian circuit question on G = (V, E) by constructing a complete graph where “roads’
have distance 1 if the edgeisin E and 2 otherwise. Pose the TSP problem, isthere atour of length < |V|?

Lecture Notes 27 Complexity Theory 6

Notes on NP-complete Proofs
The more NP-complete problems are known, the easier it isto find a NP-complete problem to reduce from.
Most reductions are somewhat complex.
It is sufficient to show that arestricted version of the problem is NP-compl ete.
More Theory

NP has arich structure that includes more than just P and NP-complete. This structureis studied in later courses on the theory of
computation.

The set of recursive problems outside of NP (and including NP-complete) are called NP-hard. Thereisa proof techniqueto
show that such problems are at least as hard as NP-complete problems.

Space complexity addresses how much tape doesa TM usein deciding alanguage. Thereisarich set of theories surrounding
space complexity.

Recursive

2

Dealing with NP-completeness
You will likely run into NP-complete problemsin your career. For example, most optimization problems are NP-complete.

Some techniques for dealing with intractable problems:

= Recognize when there is atractable special case of the general problem.

= Use other techniques to limit the search space.

= For optimization problems, seek a near-optimal solution.
Thefield of linear optimization springs out of the latter approach. Some linear optimization solutions can be proven to be “near”
optimal.

A branch of complexity theory deals with solving problems within some error bound or probability.

For more: Read Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and David S.
Johnson, 1979.

Lecture Notes 27 Complexity Theory 7

