CS 341 Homework 14

Pushdown Automata and Context-Free Grammars

1. In class, we described an algorithm for constructing a PDA to accept a language L, given a context free grammar for L. Let L be the balanced brackets language defined by the grammar G = ({S, [,]}, {[,]}, R, S), where R =

S ((, S (SS, S ([S]

Apply the construction algorithm to this grammar to derive a PDA that accepts L. Trace the operation of the PDA you have constructed on the input string [[][]].

2. Consider the following PDA M:

(//

a//

 a//a b/a/

 (a) What is L(M)?

 (b) Give a deterministic PDA that accepts L(M) (not L(M)$).

3. Write a context-free grammar for L(M), where M is

(//

(//

(//

(//

 a//a b/a/

 b//b

 c/b/

 (/b/

4. Consider the language L = {bam1bam2b…bamn : n (2, m1, …, mn (0, and mi (mj for some i, j}

 (a) Give a nondeterministic PDA that accepts L.

 (b) Write a context-free grammar that generates L.

 (c) Prove that L is not regular.

Solutions

1. This is a very simple mechanical process that you should have no difficulty carrying out, and getting the following PDA, M = ({p, q}, {[,]}, {S, [,]}, (, p, {q}), where

(=
{((p, (, (), (q, S)),

 ((q, (, S), (q, ()), ((q, (, S), (q, SS)), ((q, (, S), (q, [S])),

 ((q, [, [), (q, ()), ((q,],]), (q, ())}

2. (a) L(M) = {anbna : n (0}

 (b)

 a//a

 a//aa

 b/a/

a//

 b//

a//

b/a/

3. Don't even try to use the grammar construction algorithm. Just observe that L = {anbnbmcp : m (p and n and p (0}, or, alternatively {anbmcp : m (n + p and n and p (0}. It can be generated by the following rules:

S (S1S2

S1 (aS1b

/* S1 generates the anbn part. */

S1 ((

S2 (bS2

/* S2 generates the bmcp part. */

S2 (bS2c

S2 ((
4. (a)

 a,b//
a//a
 a/a/

 (/a/

 1
b,(//
 2
b//
 3
b//
 4
(/a/ 6

 b//

 a//
 b//

5 b//

 7

 a,b//

 a,b//

We use state 2 to skip over an arbitrary number of bai groups that aren't involved in the required mismatch.

We use state 3 to count the first group of a's we care about.

We use state 4 to count the second group and make sure it's not equal to the first.

We use state 5 to skip over an arbitrary number of bai groups in between the two we care about.

We use state 6 to clear the stack in the case that the second group had fewer a's than the first group did.

We use state 7 to skip over any remaining bai groups that aren't involved in the required mismatch.

 (b)
S (A'bLA'

/* L will take care of two groups where the first group has more a's */

S (A'bRA'

/* R will take care of two groups where the second group has more a's */

L (ab | aL | aLa

R (ba | Ra | aRa

A' (bAA' | (

A (aA | (
 (c)
Let L1 = ba*ba*, which is obviously regular.

If L is regular then

L2 = L (L1 is regular.

L2 = banbam, n (m

(L2 (L1 must also be regular.

But (L2 (L1 = banbam, n = m, which can easily be shown, using the pumping theorem, not to be regular.

Homework 14
 Pushdown Automata and Context-Free Grammars

 1

