CS 341 Homework 20
Unrestricted Grammars

1. Find grammars that generate the following languages:
(@ L={ww:w{a b}*}

yL={a% :n=0}

(©L={db*c:n=1}

(d) L ={w": wisthe social security number of aliving American citizen}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

2. Find agrammar that computes the function f(w) = ww, wherew O {a, b} *.
Solutions

1.(a L={ww:w0O{a b}*}

Thereisn't any way to generate the two w’ s in the correct order. Suppose we try. Then we could get aSa.
Suppose we want b next. Then we need Sato become bSab, since the new b hasto come after the athat’s
aready there. That could work. Now we have abSab. Let's say we want anext. Now Sab has to become aSaba.
The problem is that, as the length of the string grows, so does the number of rules we'll need to cope with all the
patterns we could have to replace. In afinite number of rules, we can’t deal with replacing S (which we need to
do to get the next character in the first occurrence of w), and adding a new character that is arbitrarily far away
fromS.

The other approach we could try would be havearule S — WW, and then let W generate astring of dsand b's.
But thiswon't work, since we have no way to control the expansion of the two W's so that they produce the same
thing.

So what we need to do is to generate ww" and then, carefully, reverse the order of the charactersin w®. What
we'll doisto start by erecting awall (#) at the right end of the string. Then we' Il generateww®. Then, ina
second phase, we'll take the charactersin the second w and, one at atime, starting with the leftmost, move it right
and then move it past thewall. At each step, we move each character up to the wall and then just over it, but we
don’t reverse characters once they get over thewall. Thefirst part of the grammar, which will generate wTw~,
looks like this:

S_.S# Thisinsertsthe wall at the right.

S - aSa

S, - bSb

ST T will mark the left edge of the portion that needs to be reversed.

At this point, we can generate strings such as abbbTbbba#. What we need to do now isto reverse the string of
asand b'sthat isbetween T and #. To do that, we let T spin off amarker Q, which we can pass rightward
through the string. Asit movesto theright, it will take thefirst aor b it finds with it. It does this by swapping the
character it is carrying (the one just to the right of it) with the next one to the right. It also movesitself one
square to theright. The four rules marked with * accomplish this. When Q’s character getsto the # (the rules
marked **), the a.or b will swap places with the # (thus hopping the fence) and the Q will go away. We can keep
doing thisuntil al the @ sand b’s are behind the fence and in the right order. Then the final T# will drop out.
Here are the rules for this phase:

Homework 20 Unrestricted Grammars 1

T-5TQ
Qaa - aQa
Qab - bQa
Qbb - bQb
Qba - aQb
Qa# _ #a **%

Qb# - #b **

T# - €

So with R as given above, thegrammar G=({S, S, #, T, Q, a b}, {a b}, R, S}

* %k ¥ X

b L={a® :n=0}

Theideahereisfirst to generate the first string, which isjust a. Then think about the next one. Y ou can derive it
by taking the previous one, and, for every a, writetwo a's. So we get aa. Now to get the third one, we do the
samething. Each of the two a s becomes two and we have four, and so forth. So we need arule to get us started
and to indicate the possibility of duplication. Then we need rules to actually do the duplication. To make
duplication happen, we need a symbol that gets generated by S indicating the option to repeat. We'll use P.
Since duplication can happen an arbitrary number of times, we need P to spin off as many individual duplication
commands aswe want. We'll use R for that. The one other thing we need isto make sure, if we start a
duplication step, that we finishit. In other words, suppose we currently have aaaa. If we start duplicating the a's,
we must duplicate all of them. Otherwise, we might end up with, for example, seven as. Sowe'll introduce a
left edge marker, #. Once we fire up a duplication (by creating an R), we'll only stop (i.e., get rid of R) when R
has made it all the way to the other end of the string (namely the left end since it starts at theright). So we get
the following rules:

S - #aP P lets us start up duplication processes as often as we like.

P-e When we' ve done as many as we want, we get rid of P.

P- RP R will actually do a duplication by moving leftward, duplicating every ait sees.

aR - Raa Actually duplicates one a, and moves R one square to the left so it moves on to the next a
#R - # Get rid of R onceit's made it all the way to the | eft

#o € Get of # at the end

So with R as given above, thegrammar G=({S, P, R, #, a, b}, {a, b}, R, S}

(L={db*c™:n=1}

Thisoneisvery similar to a'b"c". The only differenceisthat we will churn out b'sin pairs and c'sin triples each
time we expand S. So we get:

S - aBSccc

S - aBccc

Ba - aB

Bc - bbc

Bb - bbb

So with R as given above, thegrammar G= ({S, B, a, b, ¢}, {a b, c}, R, S}

(d) L ={w": wisthe social security number of aliving American citizen}

Thisoneisregular. Thereisafinite number of such social security numbers. So we need one rule for each
number. Eachruleisof theform S — <valid number>. So with that collection of rules as R, the grammar G =
({s,0,1,2,3/4,56,7,89},{0,1,2,3,4,56,7,8 9,R, S}

(e) L ={wc"d": w O{a, b}* and m = the number of a'sinw and n equals the number of b'sin w}

Theidea here isto generate a c every time we generate an a and to generate ad every time we generate ab. Welll
do this by generating the nonterminals C and D, which we will use to generate ¢'s and d's once everything isin
theright place. Once we've finished generating all the ds and b's we want, the next thing we need to do isto get

Homework 20 Unrestricted Grammars 2

al the D'sto the far right of the string, all the C's next, and then have the a's and b's |eft alone at the left. We
guarantee that everything must line up that way by making sure that C can't become ¢ and D can't become d
unlessthings areright. To do this, we requirethat D can only become d if it'sall the way to theright (i.e, it's
followed by #) or it'sgot ad toitsright. Similarly with C. We can do thiswith the following rules;

S S#
S - aSC
S, - bS,D
S - ¢€
DC - CD
D# - d
Dd - dd
C#-c
Cd - cd
Cc - cc
o€

So with R as given above, thegrammar G=({S, S, C, D, #,a,b,c,d},{a b,c, d},R, S}

2. We need to find agrammar that computes the function f(w) = ww. So we'll get inputs such as SabaS. Think of
the grammar we'll build as a procedure, which will work as described below. At any given time, the string that
has just been derived will be composed of the following regions:

<the part of w that S <the part of w that T (inserted when the <the part of the W (also
has already been has not yet been first character moves second w that has
inserted
copied> copied, which may into the copy region) been copied so far, when T
have within it a which may have is)
character (preceded by #) within it a character
that is currently being (preceded by %) that
copied by being moved iscurrently being
through the region> moved through the
region>

Most of the rules come in pairs, one dealing with an a, the other with b.

SS - ¢ Handles the empty string.

Sa - aSta Move S past the first ato indicate that it has already been copied. Then start copying it by
introducing a new a, preceded by the special marker #, which well use to push the new ato the
right end of the string.

Sb - bSHb Same for copying b.

#aa - afta Move the awe're copying past the next character if it'san a.

#ab - b#a Move the awe're copying past the next character if it'sab.

#ba - &b Same two rules for pushing b.

#bb - b#b "

#aS - #aTW Weve gotten to the end of w. Thisisthefirst character to be copied, so theinitial Sis at the end
of w. We need to create a boundary between w and the copied w. T will be that boundary. We
also need to create a boundary for the end of the copied w. W will be that boundary. T and W
are adjacent at this point because we haven't copied any charactersinto the copy region yet.

#0S - #aTW Sameif we get to the end of w pushing b.

#al - T%a Jump the awe're copying into the copy region (i.e., to theright of T). Get rid of #, since we're
donewith it. Introduce %, which we'll use to push the copied a through the copy region.

#OT - T%b Sameif we're pushing b.

Homework 20 Unrestricted Grammars 3

%aa — a%a

%ab - b%a
%ba - a%b
%bb - b%b
%aW - aw
%bW - bw
ST - ¢

Push ato the right through the copied region in exactly the same way we pushed it through w,
except we're using % rather than # as the pusher. Thisrule pushesapast a

Pushes a past b.

Same two rules for pushing b.

We've pushed an a all the way to the right boundary, so get rid of %, the pusher.

Same for a pushed b.

All the characters from w have been copied, so they're al to the left of S, which causes Sto be
adjacent to the middle marker T. We can now get rid of our special walls. Herewe get rid of S
and T.

Gid rid of W. Notethat if we do this before we should, there's no way to get rid of %, so any
derivation path that doesthiswill fail to produce astringin {a, b}*.

So with R as given above, the grammar G = ({S, T, W, #, %,a, b}, {a, b}, R, S}

Homework 20

Unrestricted Grammars 4

