Appendix A: Review of Mathematical Background

FROM
Automata, Computability and Complexity:

Theory and Applications

Elaine Rich

1 Logic, Sets, Relations, Functions, and Proof Techniques

Throughout this book, we rely on a collection of important mathematical concepts and notations. We summarize them here. For a deeper introduction to these ideas, see the references at the end of this chapter.

1.1 Logic

 XE "logic" We assume familiarity with the standard systems of both Boolean and quantified logic, so this section is just a review of the definitions and notations that we will use, along with some of the most useful inference rules.
1.1.1 Boolean (Propositional) Logic

 XE "logic:propositional" \t "See Boolean logic"

 XE "Boolean logic" \b

 XE "logic:Boolean" \t "See Boolean logic"

 XE "propositional logic" \t "See Boolean logic" A proposition is a statement that has a truth value. The language of well-formed formulas XE "wff:Boolean logic" (wffs) allows us to define propositions whose truth can be determined from the truth of other propositions. A wff is any string that is formed according to the following rules:

· A XE "propositional symbol"

 XE "propositional symbol" propositional symbol (e.g., P) is a wff. (Propositional symbols are also called variables, primarily because the term is shorter. We will generally find it convenient to do that, but this use of the term should not be confused with its use in the definition of first-order logic.)

· If P is a wff, then (P is a wff.

· If P and Q are wffs, then so are P (Q, P (Q, P (Q, and P (Q.
· If P is a wff, then (P) is a wff.

Other binary operators, such as XOR (exclusive or) and NAND (not and), can also be defined, but we will not need them.

The definitions of the operators are given by the following truth table, which shows how the truth value of a proposition can be computed from the truth values of its components: (Note that the symbol (means inclusive or.)

	P
	Q
	(P
	P (Q
	P (Q
	P (Q
	P (Q

	True
	True
	False
	True
	True
	True
	True

	True
	False
	False
	True
	False
	False
	False

	False
	True
	True
	True
	False
	True
	False

	False
	False
	True
	False
	False
	True
	True

We can divide the set of all Boolean wffs into three useful categories, as a function of when they are true:

· A Boolean wff is XE "validity:in Boolean logic" \b valid if and only if it is true for all assignments of truth values to the variables it contains. A valid wff is also called a XE "tautology:Boolean logic" tautology.

· A Boolean wff is XE "Boolean logic:satisfiability in" \b

 XE "satisfiability:in Boolean logic"

 XE "satisfiability:in Boolean logic" \t "See SAT" satisfiable if and only if it is true for at least one assignment of truth values to the variables it contains.

· A Boolean wff is XE "unsatisfiability:in Boolean logic" unsatisfiable if and only if it is false for all assignments of truth values to the variables it contains.

Example 1.1 Using a Truth Table

The wff P ((P is a tautology (i.e., it is valid). We can easily prove this by extending the truth table shown above and considering the only two possible cases (P is True or P is False):

	P
	(P
	P ((P

	True
	False
	True

	False
	True
	True

The wff P ((Q is satisfiable. It is True if either P is True or Q is False. It is not a tautology, however.

The wff P ((P is unsatisfiable. It is False both in case P is True and in case P is False.

We’ll say that two wffs P and Q are equivalent, which we will write as P (Q, iff they have the same truth values regardless of the truth values of the variables they contain. So, for example, (P (Q) (((P (Q).

In interpreting wffs, we assume that (has the highest precedence, followed by (, then (, then (, then (. So:

(P (Q (R) ((P ((Q (R))

Parentheses can be used to force different interpretations.

The following properties (defined in Section 1.4.3) of the Boolean operators follow from their definitions in the truth table given above:

· The operators (and (are commutative and associative.

· The operator (is commutative but not associative.

· The operators (and (are idempotent (e.g., (P (P) (P).

· The operators (and (distribute over each other:

· P ((Q (R) ((P (Q) ((P (R)

· P ((Q (R) ((P (Q) ((P (R)

· Absorption laws: XE "absorption laws"
· P ((P (Q) (P
· P ((P (Q) (P
· Double negation: ((P (P. XE "double negation"
· XE "de Morgan’s laws" \b de Morgan’s Laws:
· ((P (Q) (((P ((Q)

· ((P (Q) (((P ((Q)

We’ll say that a set A of wffs logically implies or XE "entailment" entails a conclusion Q iff, whenever all of the wffs in A are true, Q is also true.

An axiom is a wff that is asserted a priori to be true. Given a set of axioms, rules of inference can be applied to create new wffs, to which the inference rules can then be applied, and so forth. Any statement so derived is called a XE "theorem" theorem. Let A be a set of axioms plus zero or more theorems that have already been derived from those axioms. Then a proof is a finite sequence of applications of inference rules, starting from A.

A proof is a syntactic object. It is just a sequence of applications of rules. We would like, however, for proofs to tell us something about truth. They can do that if we design our inference rules appropriately. We’ll say that an inference rule is XE "soundness" sound iff, whenever it is applied to a set A of axioms, any conclusion that it produces is entailed by A (i.e., it must be true whenever A is). An entire proof is sound iff it consists of a sequence of inference steps each of which was constructed using a sound inference rule. A set of inference rules R is XE "completeness:inference rules" complete iff, given any set A of axioms, all statements that are entailed by A can be proved by applying the rules in R. If we can define a set of inference rules that is both sound and complete then the set of theorems that can be proved from A will exactly correspond to the set of statements that must be true whenever A is.

The truth table we presented above is the basis for the construction of sound and complete inference rules in Boolean logic. Some useful rules are:

· Modus ponens:
From the premises (P (Q) and P, conclude Q. XE "modus ponens" \b
· Modus tollens:
From the premises (P (Q) and (Q, conclude (P. XE "modus tollens" \b
· Or introduction:
From the premise P, conclude (P (Q). XE "or introduction"
· And introduction:
From the premises P and Q, conclude (P (Q). XE "and introduction"
· And elimination:
From the premise (P (Q), conclude P or conclude Q. XE "and elimination"
· Conjoining:
From the premises P and Q, conclude (P (Q). XE "conjoining"
Any two statements of the form P and (P form a XE "contradiction:in Boolean logic" contradiction.

1.1.2 First-Order Logic

 XE "logic:first-order" \t "See first-order logic"

 XE "logic:predicate" \t "See first-order logic"

 XE "FOPC" \t "See first-order logic"

 XE "first-order predicate calculus" \t "See first-order logic"

 XE "first-order predicate logic" \t "See first-order logic" The primitives in Boolean logic are predicates of no arguments (i. e., Boolean constants). It is useful to extend our logical system to allow predicates of one or more arguments and to allow the use of variables. So, for example, we might like to write P(China) or Q(x, y). XE "first-order logic" \b First-order logic, often called simply XE "FOL" \t "See first-order logic" FOL (or sometimes first-order predicate logic, first-order predicate calculus, or FOPC), allows us to do that.

We will use symbols that start with lower-case letters as variables and symbols that start with upper-case letters as constants, predicates, and functions.

An expression that describes an object is a term XE "term" . So a variable is a term and an n-ary function whose arguments are terms is also a term. Note that if n is 0, we have a constant.

 XE "wff:first-order logic" We define the language of well-formed formulas (wffs) in first-order logic to be the set of expressions that can be formed according to the following rules:

· If P is an n-ary predicate and each of the expressions x1, x2, … , xn is a term, then an expression of the form P(x1, x2, … , xn) is a wff. If any variable occurs in such a wff, then that variable is free (alternatively, it is not bound).

· If P is a wff, then (P is a wff.

· If P and Q are wffs, then so are P (Q, P (Q, P (Q, and P (Q.
· If P is a wff, then (P) is a wff.

· If P is a wff, then (x (P) and (x (P) are wffs. Any free instance of x in P is bound by the quantifier and is then no longer free. (is called the universal quantifier and (is called the existential quantifier. In the wff (x (P) or (x (P), we’ll call P the scope of the quantifier. It is important to note that when an existentially quantified variable y occurs inside the scope of a universally quantified variable x (as, for example, in statement 4 below), the meaning of the wff is that for every value of x there exists some value of y but it need not be the same value of y for every value of x. So, for example, the following wffs are not equivalent:

· (x ((y (Father-of(y, x))), and

· (y ((x (Father-of(y, x))).

For convenience, we will extend this syntax slightly. When no confusion will result, we will allow the following additional forms for wffs:

· (x < c (P(x)) is equivalent to (x (x < c (P(x)).

· (x (S (P(x)) is equivalent to (x (x (S (P(x)).

· (x, y, z (P(x, y, z)) is equivalent to (x ((y ((z (P(x, y, z)))).

· (x, y, z (S (P(x, y, z)) is equivalent to (x (S ((y (S ((z (S (P(x, y, z)))).

The logical framework that we have just defined is called first-order because it allows quantification over variables but not over predicates or functions. It is possible to define higher-order logics that do permit such quantification. For example, in a higher-order logic we might be able to say something like (P (P(John) (P(Carey)). In other words, anything that is true of John is also true of Carey. While it is sometimes useful to be able to make statements such as this, the computational and logical properties of higher-order systems make them very hard to use except in some restricted cases.

A wff with no free variables is called XE "sentence of first-order logic"

 XE "statement of first-order logic" a sentence or a statement. All of the following are sentences:

1. Bear(Smoky)

2. (x (Bear(x) (Animal(x))

3. (x (Animal(x) (Bear(x))

4. (x (Animal(x) ((y (Mother-of(y, x)))

5. (x ((Animal(x) ((Dead(x)) (Alive(x))

A ground instance XE "ground instance" \b is a sentence that contains no variables. All of the following are ground instances: Bear(Smoky), Animal(Smoky), and Mother-of(BigEyes, Smoky). In computational logic systems, it is common to store the ground instances in a different form than the one that is used for other sentences. They may be contained in a table or a database, for example.

Returning to sentences 1-5 above, 1, 2, and 4, and 5 are true in our everyday world (assuming the obvious referent for the constant Smoky and the obvious meanings of the predicates Bear, Animal, and Mother-of). On the other hand, 3 is not true.

As these examples show, determining whether or not a sentence is true requires appeal to the meanings of the constants, functions, and predicates that it contains. An XE "interpretation of a wff" interpretation for a sentence w is a pair (D, I). D is a universe of objects. I assigns meaning to the symbols of w: it assigns values, drawn from D, to the constants in w and it assigns functions and predicates (whose domains and ranges are subsets of D) to the function and predicate symbols of w. A XE "model of a wff" model of a sentence w is an interpretation that makes w true. For example, let w be the sentence, (x ((y (y < x)). The integers (along with the usual meaning of <) are a model of w since, for any integer, there exists some smaller integer. The positive integers, on the other hand, are an interpretation for w but not a model of it. The sentence w is false for the positive integers since there is no positive integer that is smaller than 1.

 XE "validity:in first-order logic"

 XE "tautology:first-order logic" A sentence w is valid iff it is true in all interpretations. In other words, w is valid iff it is true regardless of what the constant, function, and predicate symbols “mean”. XE "satisfiability:in first-order logic" A sentence w is satisfiable iff there exists some interpretation in which w is true. A sentence is XE "unsatisfiability:in first-order logic" unsatisfiable iff it is not satisfiable (in other words, there exists no interpretation in which it is true). Any sentence w is valid iff (w is unsatisfiable.

Example 1.2 Valid, Satisfiable, and Unsatisfiable Wffs

Let w1 be the wff:

(x ((P(x) (Q(Smoky)) (P(x))

The wff w1 is valid because it is true regardless of what the predicates P and Q are or what object Smoky refers to. It is also satisfiable since it is true in at least one interpretation.

Let w2 be the wff:

(((x (P(x) (((P(x)))

The wff w2 is not valid. It is also unsatisfiable since it is false in all interpretations, which follows from the fact that (w2 is valid.

Finally, let w3 be the wff:

(x (P(x, x))

The wff w3 is not valid but it is satisfiable. Suppose that the universe is the integers and P is the predicate LessThanOrEqualTo. Then P is true for all values of x. But, again with the integers as the universe, suppose that P is the predicate LessThan. Now P is false for all values of x. Finally, let the universe be the set of all people and let P be the predicate HasConfidenceInTheAbilityOf. Now P is true of some values of x (i.e., of those people who have self confidence) and false of others.

A set A of axioms logically implies or XE "entailment" \b entails a conclusion c iff, in every interpretation in which A is true (i.e., in every model of A), and for all assignments of values to the free variables of c, c must be true.

As in Boolean logic, a proof in first-order logic starts with a set A of axioms and theorems that have already been proved from those axioms. Rules of inference are then applied, creating new statements. Any statement derived in this way is called a XE "theorem" theorem. A proof is a finite sequence of applications of inference rules, starting from the axioms and given theorems.

As in Boolean logic, we will say that an inference rule is XE "soundness" sound iff, whenever it is applied to a set A of statements (axioms and given theorems), any conclusion that it produces is entailed by A (i.e., it must be true whenever A is). A set of inference rules R is XE "completeness:inference rules" complete iff, given any set A of statements, all statements that are entailed by A can be proved by applying the rules in R. As in Boolean logic, we seek a set of inference rules that is both sound and complete.

Resolution XE "resolution" is a single inference rule that is used as the basis for many automatic theorem proving and reasoning programs. It is sound and refutation-complete. By the latter we mean that if (ST is inconsistent with the axioms and if both ST and(ST have been converted to a restricted syntax called clause form XE "clause form" , resolution will find the inconsistency and thus prove ST. B Error! Bookmark not defined..

For Boolean logic, truth tables provide a basis for defining a set of sound and complete inference rules. It is less obvious that such a set exists for first-order logic. But it does, as was first shown by Kurt Gödel in his Completeness Theorem [Gödel 1929]. XE "Gödel, Kurt"

 XE "Completeness Theorem" \b More specifically, Gödel showed that there exists some set of inference rules R such that, given any set of axioms A and a sentence c, there is a proof of c, starting with A and applying the rules in R, iff c is entailed by A. Note that all that we are claiming here is that, if there is a proof, there is a procedure for finding it. We are not claiming that there exists a procedure that decides whether or not a proof exists. In fact, as we show in Section Error! Reference source not found., for first-order logic no such decision procedure can exist.

All of the inference rules that we have and will present are sound. The individual inference rules that we have so far considered are not, however, complete. For example, modus ponens XE "modus ponens" is incomplete. But a complete procedure can be constructed by including all of the rules we listed above for Boolean logic, plus new ones, including, among others:

· Quantifier exchange: XE "quantifier exchange"
· From ((x (P), conclude (x ((P).

· From (x ((P), conclude ((x (P).

· From ((x (P), conclude (x ((P).

· From (x ((P), conclude ((x (P) .

· Universal instantiation XE "universal instantiation" :
For any constant C, from (x (P(x)), conclude P(C).

· Existential generalization XE "existential generalization" :
For any constant C, from P(C) conclude (x (P(x)).

Example 1.3 A Simple Proof

Assume the following three axioms:

[1]
(x (P(x) (Q(x) (R(x))

[2]
P(X1)

[3]
Q(X1)

We prove R(X1) as follows:

[4]
P(X1) (Q(X1) (R(X1)

universal instantiation, [1]

[5]
P(X1) (Q(X1)

and introduction, [2], [3]

[6]
R(X1)

modus ponens, [5], [4]

A first-order theory is a set of axioms and the set of all theorems that can be proved, using a set of sound and complete inference rules, from those axioms. A theory is logically XE "completeness" complete iff, for every sentence P, either P or (P is a theorem. A theory is XE "consistency" consistent iff there is no sentence P such that both P and (P are theorems. If, on the other hand, there is such a sentence, then the theory contains a XE "contradiction:in first-order logic" contradiction and is XE "inconsistency" inconsistent.

We are often interested in the relationship between a theory and some set of facts that are true in some view we may have of the world (for example the facts of arithmetic or the facts a robot needs in order to move around). Let W be a world plus an interpretation (that maps logical objects to objects in the world). Now we can say that a theory is XE "soundness" sound with respect to W iff every theorem (in the theory) corresponds to a fact that is true (in W). We say that a theory is XE "completeness" complete with respect to W iff every fact that is true (in W) corresponds to a theorem (in the theory). We will assume that any first-order logic statement in the language of W is either true or false in the world that W describes. So, if a theory is complete with respect to W it must be the case that, for any sentence P, either P corresponds to a sentence that is true in W, in which case it is a theorem, or P corresponds to a sentence that is false in W, in which case (P is a theorem. So any theory that is complete with respect to an interpretation and a set of facts is also logically complete.

By the way, while the language of first-order logic has the property that every statement is either true or false in any world, not all languages share that property. For example, English doesn’t. Consider the English sentence, “The king of France has red hair.” Is it true or false (in the world as we know it, given the standard meanings of the words)? The answer is neither. It carries the (false) presupposition that there is a king of France and then makes a claim about that individual. This problem disappears, however, when we convert the English sentence into a related sentence in first order logic. We might try:

· (x (King-of(x, France) (Haircolor-of(x, Red)): This sentence is false in the world.

· (x (King-of(x, France) (Haircolor-of(x, Red)): This sentence is true in the world (trivially, since there are no values of x for which King-of(x, France) is true).

There are interesting first-order theories that are both consistent and complete with respect to particular interpretations of interest. One example is Presburger arithmetic XE "Presburger arithmetic" , in which the universe is the natural numbers and there is a single function, plus, whose properties are axiomatized. There are other theories that are incomplete because we have not yet added enough axioms. But it might be possible, eventually, to find a set of axioms that does the job.

However, many interesting and powerful theories are not both consistent and complete and they will never become so. For example, Gödel XE "Gödel, Kurt"

 XE "Incompleteness Theorem" \b ’s Incompleteness Theorem [Gödel 1931] (, one of the most important results in modern mathematics, shows that any theory that is derived from a decidable (a notion that we explain in Chapter Error! Reference source not found.) set of axioms and that characterizes the standard behavior of the constants 0 and 1, plus the functions plus and times on the natural numbers, cannot be both consistent and complete. In other words, if any such theory is consistent (and it is generally assumed that the standard theory of arithmetic is), then there must be some statements that are true (in arithmetic) but not provable (in the theory). While it is of course possible to add new axioms and thus make more statements provable, there will always remain some true but unprovable statements unless either the set of axioms becomes inconsistent or it becomes infinite and undecidable. In the latter case, the fact that a proof exists is not very useful since it has become impossible to tell whether or not a statement is an axiom and thus can be used in a proof.

Do not be confused by the fact that there exists both a Completeness Theorem XE "Completeness Theorem" and an Incompleteness Theorem. The terminology is unfortunate since it is based on two different notions of completeness. The Completeness Theorem states a fact about the framework of first-order logic itself. It says that there exists a set of inference rules (and, in fact, more than one such set happens to exist) such that, given any set A of axioms, the theorems that are provable from A are exactly the set of sentences that are entailed by A. The Incompleteness Theorem states a fact about theories that can be built within any logical framework. It says that there exist theories (the standard one about arithmetic with plus and times being one example) that, assuming consistency, are incomplete in the sense that there are sentences that are true in the world but that are not theorems. Such theories are also logically incomplete: There exist sentences P such that neither P nor (P is a theorem.

1.2 Sets

Most of the structures that we will consider are based on the fundamental notion of a set.
1.2.1 What is a Set?

A set XE "set" is simply a collection of objects. The objects (which we call the elements or members of the set) can be anything: numbers, people, strings, fruits, whatever. For example, all of the following are sets:

· S1 = {13, 11, 8, 23}

· S2 = {8, 23, 11, 13}

· S3 = {8, 8, 23, 23, 11, 11, 13, 13}

· S4 = {apple, pear, banana, grape}

· S5 = {January, February, March, April, May, June, July, August, September, October, November, December}

· S6 = {x : x (S5 and x has 31 days}

· S7 = {January, March, May, July, August, October, December}

· ℕ = the nonnegative integers (also called the natural numbers XE "natural number")

· S8 = {i : (x (ℕ (i = 2x)}

· S9 = {0, 2, 4, 6, 8, …}

· S10 = the even natural numbers

· S11 = the syntactically valid C programs

· S12 = {x : x (S11 and x never gets into an infinite loop}

· S13 = {finite length strings of a’s and b’s}

· Z = the integers (… -3, -2, -1, 0, 1, 2, 3, …)

In the definitions of S6, S8, and S12, we have used the colon notation. Read it as "such that". So, for example, read the definition of S6 as, “the set of all values x such that x is an element of S5 and x has 31 days”. We've used the standard symbol (for "element of". We will also use (for "not an element of". So, for example, 17 (S1 is true.

Remember that a set is simply a collection of elements. So if two sets contain precisely the same elements (regardless of the way we actually defined the sets), then they are identical. Thus S6 and S7 are the same set, as are S8, S9, and S10.

Since a set is defined only by what elements it contains, the order in which we list its elements does not matter. Thus S1 and S2 are the same set. Also note that a given element is either in a set or it isn’t. Duplicates do not matter. So sets S1, S2, and S3 are equal.

One useful technique for describing a set S that is a subset of an existing set D is to define a function (we’ll define formally what we mean by a function in Section 1.4) that can be used to determine whether or not a given element is in S. Such a function is called a characteristic function XE "characteristic function" \b . Formally, a function f with domain D is a characteristic function for a set S iff f(x) = True if x is an element of S and False otherwise. For example, we used this technique to define set S6.

We can use programs to define sets. There are two ways to use a program to define a set S:

· Write a program that generates the elements of S. We call the output of such a program an enumeration XE "enumeration" of S.

· Write a program that decides S by implementing the characteristic function of S. Such a program returns True if run on some element that is in S and False if run on an element that is not in S.

It seems natural to ask, given some set S, “What is the size of S?” or “How many elements does S contain?” We will use the term cardinality XE "cardinality:of a set" \b to describe the way we answer such questions. So we’ll reply that the cardinality of S, written |S|, is n, for some appropriate value of n. For example, |{2, 7, 11}| = 3. In simple cases, determining the cardinality of a set is straightforward. In other cases, it is more complicated. For our purposes, however, we can get by with three different kinds of answers:

· a natural number (if S is finite),

· “countably infinite” (if S has the same number of elements as there are integers), or

· “uncountably infinite” (if S has more elements than there are integers).

We will formalize these ideas in Section Error! Reference source not found..

The smallest set is the unique set that contains no elements. It is called the XE "empty set" empty set, and is written (or {}. The cardinality of the empty set, written |(|, is 0.

When we are working with sets, it is very important to keep in mind the difference between a set and the elements of a set. Given a set that contains more than one element, this distinction is usually obvious. It's clear that {1, 2} is distinct from either the number 1 or the number 2. It sometimes becomes a bit less obvious, though, with XE "singleton set" singleton sets (sets that contain only a single element). But it is equally true for them. So, for example, {1} is distinct from the number 1. As another example, consider {(}. This is a set that contains one element. That element is in turn a set that contains no elements (i.e., the empty set). {{1, 2, 3}} is also a set that contains one element.

1.2.2 Relating Sets to Each Other

We say that A is a subset XE "subset" \b of B (which we write as A (B) iff every element of A is also an element of B. Formally, A (B iff (x (A (x (B).

The symbol we use for subset (() looks somewhat like (. This is no accident. If A (B, then there is a sense in which the set A is "less than or equal to" the set B, since all the elements of A must be in B, but there may be elements of B that are not in A.

Given this definition, notice that every set is a subset of itself. This fact turns out to offer a useful way to prove that two sets A and B are equal: First prove that A is a subset of B. Then prove that B is a subset of A. We'll have more to say about this later in Section 1.6.7.

We say that A is proper subset of B (written A (B) iff A (B and A (B. The following Venn diagram XE "Venn diagram" illustrates the proper subset relationship between A and B:

 B A
Notice that the empty set is a subset of every set (since, trivially, every element of (, all none of them, is also an element of every other set). And the empty set is a proper subset of every set other than itself.

It is useful to define some basic operations that can be performed on sets:

The union XE "set:union"

 XE "union:of sets" of two sets A and B (written A (B) contains all elements that are contained in A or B (or both). Formally, A (B = {x: (x (A) ((x (B)}. We can easily visualize union using a Venn diagram. The union of sets A and B is the entire hatched area:

A
 B
The intersection XE "set:intersection"

 XE "intersection:of sets" of two sets A and B (written A (B) contains all elements that are contained in both A and B. Formally, A (B = {x: (x (A) ((x (B)}. In the Venn diagram shown above, the intersection of A and B is the double hatched area in the middle.

The difference XE "set:difference"

 XE "difference of sets" of two sets A and B (written A - B or A/B) contains all elements that are contained in A but not in B. Formally, A/B = {x: (x (A) ((x (B)}. In both of the following Venn diagrams, the hatched region represents A/B.

A
 B

 A B

The complement XE "set:complement"

 XE "complement of sets" of a set A with respect to a specific universe U (written as (A) contains exactly those elements of U that are not contained in A (i.e., (A = U - A). Formally, (A = {x: (x (U) ((x (A)}. For example, if U is the set of residents of Austin and A is the set of Austin residents who like barbeque, then (A is the set of Austin residents who don't like barbeque. The complement of A is shown as the hatched region of the following Venn diagram:

A

Two sets are disjoint iff they have no elements in common (i.e., their intersection is empty). Formally, A and B are disjoint iff A (B = (. In the following Venn diagram, A and B are disjoint:

A
 B
Given a set A, we can consider the set of all subsets of A. We call this set the power set XE "power set" \b of A, and we write it P(A) XE "P(A) .." \t "See power set" . For example, let A = {1, 2, 3}. Then:

P(A) = {(, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The power set of A is interesting because, if we're working with the elements of A, we may well care about all the ways in which we can combine those elements.

Now for one final property of sets. Again consider the set A above. But this time, rather than looking for all possible subsets, let's just look for a single way to carve A up into subsets such that each element of A is in precisely one subset. For example, we might choose any of the following sets of subsets:

{{1}, {2, 3}}
or
{{1, 3}, {2}}
or
{{1, 2, 3}}

We call any such set of subsets a partition XE "partition of a set" \b

 XE "set:partition" of A. Partitions are very useful. For example, suppose we have a set S of students in a school. We need for every student to be assigned to precisely one lunch period. Thus we must construct a partition of S: a set of subsets, one for each lunch period, such that each student is in precisely one subset. More formally, we say that ((P(A) is a partition of a set A iff:

· no element of (is empty,

· all pairs of elements of (are disjoint (alternatively, each element of A is in at most one element of (), and

· the union of all the elements of (equals A (alternatively, each element of A is in some element of (and no element not in A is in any element of ().

This notion of partitioning a set is fundamental to programming. Every time we analyze the set of possible inputs to a program and consider the various cases that must be dealt with, we are forming a partition of the set of inputs: each input must fall through precisely one path in your program. So it should come as no surprise that, as we build formal models of computational devices, we will rely heavily on the idea of a partition of a set of inputs as an analytical technique.

1.3 Relations

 XE "relation" In the last section, we introduced some simple relations that can hold between sets (subset and proper subset) and we defined some operations (functions) on sets (union, intersection, difference, and complement). But we haven't yet defined formally what we mean by a relation or a function. Let's do that now. (By the way, the reason we introduced relations and functions on sets in the last section is that we're going to use sets as the basis for our formal definitions of relations and functions and we will need the simple operations we just described as part of our definitions.)

1.3.1 What is a Relation?

An ordered pair XE "ordered pair" is a sequence of two objects. Given any two objects, x and y, there are two ordered pairs that can be formed. We write them as (x, y) and (y, x). As the name implies, in an ordered pair (as opposed to in a set), order matters (unless x and y happen to be equal).

The Cartesian product XE "Cartesian product" of two sets A and B (written A (B) is the set of all ordered pairs (a, b) such that a (A and b (B. For example, let A be a set of people: {Dave, Sara, Billy} and let B be a set of desserts: {cake, pie, ice cream}. Then:

 A (B = {
(Dave, cake), (Dave, pie), (Dave, ice cream),

(Sara, cake), (Sara, pie), (Sara, ice cream),

(Billy, cake), (Billy, pie), (Billy, ice cream)}

As you can see from this example, the Cartesian product of two sets contains elements that represent all the ways of pairing some element from the first set with some element from the second. Note that A (B is not the same as B (A. In our example:

 B (A = {
(cake, Dave), (pie, Dave), (ice cream, Dave),

(cake, Sara), (pie, Sara), (ice cream, Sara),

(cake, Billy), (pie, Billy), (ice cream, Billy)}

If A and B are finite, then the cardinality of their Cartesian product is given by:

|A (B| = |A|(|B|

A binary relation XE "binary relation"

 XE "relation:binary" over two sets A and B is a subset of A (B. For example, let’s consider the problem of choosing dessert. We could define a relation that tells us, for each person, what desserts he or she likes. We might write the Dessert relation, for example as:

Dessert = {(Dave, cake), (Dave, ice cream), (Sara, pie), (Sara, ice cream)}

In other words, Dave likes cake and ice cream, Sara likes pie and ice cream, and Billy seems not to like sinful treats.

Not all relations are binary. We define an n-ary relation XE "n-ary relation" over sets A1, A2, … An to be a subset of A1 (A2 (… (An. The n sets may be different, or they may be the same. For example, let A be a set of people:

A = {Dave, Sara, Billy, Beth, Mark, Cathy, Pete}

Now suppose that Sara and Dave are the parents of Billy, Beth and Mark are the parents of Cathy, and Billy and Cathy are the parents of Pete. Then we could define a 3-ary (or ternary) relation Child-of, where the first element of each 3-tuple is the mother, the second is the father, and the third is the child. So we would have the following subset of A (A (A:

{(Sara, Dave, Billy), (Beth, Mark, Cathy), (Cathy, Billy, Pete)}

Notice a couple of important properties of relations as we have defined them. First, a relation may be equal to the empty set. For example, if Dave, Sue, and Billy all hate dessert, then the Dessert relation would be {} or (.

Second, there are no constraints on how many times a particular element may occur in a relation. In the Dessert example, Dave occurs twice, Sue occurs twice, Billy doesn't occur at all, cake occurs once, pie occurs once, and ice cream occurs twice. Given an n-ary relation R, we’ll use the notation R(x1, …, xn-1) for the set that contains those elements with the property that (x1, …, xn-1, xn) (R. So, for example Dessert(Dave) = {cake, ice cream}.

An n-ary relation R is a subset of the cross product of n sets. The sets may all be different, or some of them may be the same. In the specific case in which all the sets are the same, we will say that R is a relation on the set A.

Binary relations are particularly useful and are often written in the form x1 R x2. Common binary relations include = (equality, defined on many domains), < (defined on numbers and some other domains), and ((also defined on numbers and some other domains). For example, the relation < on the integers contains an infinite number of elements drawn from the Cartesian product of the set of integers with itself. For instance, 2 < 7.

The inverse XE "inverse of a relation" of a binary relation R, written R-1, is simply the set of ordered pairs in R with the elements of each pair reversed. Formally, if R (A (B, then R-1 (B (A = {(b, a): (a, b) (R}. If a relation is a way of associating with each element of A with a corresponding element of B, then think of its inverse as a way of associating with elements of B their corresponding elements in A. Every relation has an inverse. For example, the inverse of < (in the usual sense, defined on numbers) is (.

If we have two or more binary relations, we may be able combine them via an operation we'll call composition. For example, if we knew the number of fat grams in a serving of each kind of dessert, we could ask for the number of fat grams in a particular person's dessert choices. To compute this, we first use the Dessert relation to find all the desserts each person likes. Next we get the bad news from the Fatgrams relation, which probably looks something like this:

{(cake, 25), (pie, 15), (ice cream, 20)}

Finally, we see that the composed relation that relates people to fat grams is {(Dave, 25), (Dave, 20), (Sue, 15), (Sue, 20)}. Of course, this only worked because when we applied the first relation, we got back desserts, and our second relation has desserts as its first component. We couldn't have composed Dessert with Less than, for example.

Formally, we say that the composition XE "composition of relations" of two relations R1 (A (B and R2 (B (C, written R2 (R1, is:

R2 (R1 = {(a, c) : (b ((a, b) (R1 (((b, c) (R2)}

Note that this definition tells us that, to compute R2 (R1, we first apply R1, then R2. In other words we go right to left. Some definitions go the other way. Obviously we can define it either way, but it is important to be consistent. Using the notation we have just defined, we can represent the people to fat grams composition described above as Fatgrams (Dessert.

1.3.2 Representing Binary Relations

Binary relations are particularly important. If we're going to work with them, and, in particular, if we are going to compute with them, we need some way to represent them. We have several choices. To represent some binary relation R, we could:

1) List the elements of R. For example, consider the Mother-of relation in a family in which Doreen is the mother of Ann, Ann is the mother of Catherine, and Catherine is the mother of Allison. Then we can write:

Mother-of = {(Doreen, Ann), (Ann, Catherine), (Catherine, Allison)}.

Clearly, this approach only works for finite relations.

2) Encode R as a computational procedure. As with any set, there are at least two ways in which a computational procedure can define R. It may:

a) enumerate the elements of R, or

b) implement the characteristic function for R by returning True when given a pair that is in R and False when given anything else.

3) Encode R as an adjacency matrix. Assuming a finite relation R (A (B, we can build an adjacency matrix XE "adjacency matrix" to represent R as follows:

a) Construct a Boolean matrix M (i.e., a matrix all of whose values are True or False) with |A| rows and |B| columns.

b) Label each row for one element of A and each column for one element of B.

c) For each element (p, q) of R, set M[p, q] to True. Set all other elements of M to False.

If we let 1 represent True and blank represent False, the following adjacency matrix represents the relation Mother-of defined above:

	
	Doreen
	Ann
	Catherine
	Allison

	Doreen
	
	1
	
	

	Ann
	
	
	1
	

	Catherine
	
	
	
	1

	Allison
	
	
	
	

4) Encode R as a directed graph. If R is a relation on the set A, we can build a directed graph to represent R as follows:

a) Construct a set of vertices (often called nodes), one for each element of A that appears in any element of R.

b) For each ordered pair in R, draw an edge from the first element of the pair to the second.

The following directed graph represents our example relation Mother-of defined above:

Doreen

Ann

Catherine

 Allison

If there are two elements x and y, and both (x, y) and (y, x) are in R, we will usually draw the graph as:

x

y

The directed graph technique can also be used if R is a relation over two different sets A and B. But, in this case, we must construct vertices for elements of A and for elements of B. So, for example, we could represent the Fatgrams relations as:

streudel

pie

cake

ice cream

15

20

25

1.3.3 Properties of Binary Relations on Sets

Many useful binary relations have some kind of structure. For example, it might be the case that every element of the underlying set is related to itself. Or it might happen that if x is related to y, then y must necessarily be related to x. There's one special kind of relation, called an equivalence relation that is particularly useful. But before we can define it, we need first to define each of the individual properties that equivalence relations possess.

A relation R (A (A is reflexive XE "reflexive property of relations" iff, (x (A ((x, x) (R). For example, consider the relation Address defined as “lives at same address as”. We will make the simplifying assumption that everyone has only one address. Address is a relation over a set of people. Clearly every person lives at the same address as him or herself, so Address is reflexive. So is the (relation on the integers. For every integer x, x (x. But the < relation is not reflexive: in fact, for no integer x, is x < x. Both the directed graph and the matrix representations make it easy to tell if a relation is reflexive. In the graph representation, every vertex will have, at a minimum, an edge looping back to itself. In the adjacency matrix representation, there will be ones all along the major diagonal, and possibly elsewhere as well:

	1
	
	

	
	1
	

	
	
	1

A relation R (A (A is symmetric XE "symmetric property of relations" iff (x, y ((x, y) (R ((y, x) (R). The Address relation we described above is symmetric. If Joanna lives with Ann, then Ann lives with Joanna. The (relation is not symmetric (since, for example, 2 (3, but it is not true that 3 (2). The graph representation of a symmetric relation has the property that, between any two vertices, either there is an arrow going in both directions or there is no arrow going in either direction. So we get graphs with components that look like this:

If we choose the matrix representation, we will end up with a symmetric matrix XE "symmetric matrix" (i.e., if you flip it on its major diagonal, you'll get the same matrix back again). In other words, if we have a matrix with 1's as shown in the following matrix, then there must also be 1's in all the squares marked with an *:

	
	*
	*
	
	

	1
	
	
	
	1

	1
	
	
	
	

	
	
	
	
	

	
	*
	
	
	

A relation R (A (A is antisymmetric XE "antisymmetry" iff (x, y (((x, y) (R (x (y) ((y, x) (R). The Mother-of relation we described above is antisymmetric: if Ann is the mother of Catherine, then one thing we know for sure is that Catherine is not also the mother of Ann. Our Address relation is clearly not antisymmetric. There are, however, relations that are neither symmetric nor antisymmetric. For example, the Likes relation on the set of people: If Joe likes Bob, then it is possible that Bob likes Joe, but it is also possible that he doesn’t. Note that antisymmetric is not the same as not symmetric. The relation (is both symmetric and antisymmetric.

A relation R (A (A is transitive XE "transitivity" iff (x, y, z (((x, y) (R ((y, z) (R) ((x, z) (R). A simple example of a transitive relation is <. Address is another one: if Bill lives with Stacy and Stacy lives with Lee, then Bill lives with Lee. Mother-of is not transitive. But if we change it slightly to Ancestor-of, then we get a transitive relation. If Doreen is an ancestor of Ann and Ann is an ancestor of Catherine, then Doreen is an ancestor of Catherine.

The three properties of reflexivity, symmetry, and transitivity are almost logically independent of each other. We can find simple, potentially useful relations that possess seven of the eight possible combinations of these properties. We show them in the following table (which we’ll extend to include antisymmetry in Exercise 1.Error! Reference source not found.):

	Properties
	Domain
	Example

	None
	People
	Mother-of

	Just reflexive
	People who can see
	Would-recognize-picture-of

	Just symmetric
	People
	Has-ever-been-married-to

	Just transitive
	People
	Ancestor-of

	Just reflexive and symmetric
	People
	Hangs-out-with (assuming we can say one hangs out with oneself)

	Just reflexive and transitive
	Numbers
	(

	Just symmetric and transitive
	Anything
	(

	All three
	Numbers
	=

	 (
	People
	Address

To see why we can't find a nontrivial (i.e., () example of a relation that is symmetric and transitive but not reflexive, consider a simple relation R on {1, 2, 3, 4}. As soon as R contains a single element that relates two unequal objects (e.g., (1, 2)), it must, for symmetry, contain the matching element (2, 1). So now we have R(= {(1, 2), (2, 1)}. To make R(transitive, we must add (1, 1) and (2, 2). Call the resulting relation R((. Then R((would be reflexive, except that neither 3 nor 4 is related to itself. In fact, they are related to nothing. We cannot find an example of a relation R that is symmetric and transitive but not reflexive if we insist that all elements of the domain be related under R to something.

1.3.4 Equivalence Relations

Although all but one of the combinations we just described are possible, one combination is of such great importance that we give it a special name. Given a domain A, a relation R (A (A is an equivalence relation XE "equivalence relation" iff it is reflexive, symmetric and transitive. Equality (for numbers, strings, or whatever) is an equivalence relation (no coincidence, given the name). So is our Address (lives at same address) relation.

Equality is a very special sort of equivalence relation because it relates an object only to itself. It doesn't help us much to carve up a large set into useful subsets. But other equivalence relations may serve as very useful ways to carve up a set. To see why, consider a set A, with five elements, which we can draw as a set of vertices as follows:

 1

 2

3

4

5

Now let’s build an equivalence relation R on A. The first thing we have to do is to relate each vertex to itself, in order to make the relation reflexive. So we've now got:

 1

 2

3

4

5

Now let's add one additional element, (1, 2), to R. As soon as we do that, we must also add (2, 1), since R must be symmetric. So now we've got:

 1

 2

3

4

5

Suppose we now add (2, 3). We must also add (3, 2) to maintain symmetry. In addition, because we have (1, 2) and (2, 3), we must create (1, 3) for transitivity. And then we need (3, 1) to restore symmetry. That gives us

 1

 2

3

4

5

Notice what happened here. As soon as we related 3 to 2, we were also forced to relate 3 to 1. If we hadn't, we would no longer have had an equivalence relation. See what happens now if you add (3, 4) to R.

What we've seen in this example is that an equivalence relation R on a set S carves S up into a set of clusters or islands, which we'll call equivalence classes XE "equivalence classes" . This set of equivalence classes has the following key property:

(s, t (S ((s (classi ((s, t) (R) (t (classi)

In other words, all elements of S that are related under R are in the same equivalence class. To describe equivalence classes, we'll use the notation [x] to mean the equivalence class to which x belongs. Or we may just write [description], where description is some clear property shared by all the members of the class. Notice that in general there may be lots of different ways to describe the same equivalence class. In our example, for instance, [1], [2], and [3] are different names for the same equivalence class, which includes the elements 1, 2, and 3. In this example, there are two other equivalence classes as well: [4] and [5].

Recall that (is a XE "partition of a set" partition of a set A iff (a) no element of (is empty; (b) all members of (are disjoint; and (c) the union of all the elements of (equals A. If R is an equivalence relation on a nonempty set A, then the set of equivalence classes of R constitutes a partition of A. In other words, if we want to take a set A and carve it up into a set of subsets, an equivalence relation is a good way to do it.

Example 1.4 Some Equivalence Relations

All of the following relations are equivalence relations:

· The Address relation carves up a set of people into subsets of people who live together.

· Let A be the set of all strings of letters. Let Samelength (A (A relate strings whose lengths are the same. Samelength is an equivalence relation that carves up the universe of all strings into a collection of subsets, one for each natural number (i.e., strings of length 0, strings of length 1, etc.).

· Let Z be the set of integers. Let (3 (Z (Z relate integers that are equivalent XE "modular arithmetic"

 XE "modulo equivalence"

 XE "equivalence modulo n" modulo 3. In other words, they have the same remainder when divided by 3. (3 is an equivalence relation with XE "(n ….. three equivalence classes, [0], [1], and [2]. [0] includes 0, 3, 6, etc. [1] includes 1, 4, 7, etc. And [2] includes 2, 5, 8, etc. We will use the notation (n for positive integer values of n to mean equivalent modulo n.

· Let CP be the set of C programs, each of which accepts an input of variable length. We'll call the length of any specific input n. Let Samecomplexity (CP (CP relate two programs iff their running-time complexity is the same. More, precisely, let Runningtime(c, n) be the maximum time required for program c to run on an input of length n. Then (c1, c2) (Samecomplexity iff there exist natural numbers m1, m2, k such that:

(n>k (Runningtime(c1, n) (m1(Runningtime(c2, n) (Runningtime(c2, n) (m2(Runningtime(c1, n))

Samecomplexity is an equivalence relation. We will have a lot more to say about it in Part V.

Not every relation that connects “similar” things is an equivalence relation. For example, define Similarcost(x, y) to hold if the price of x is within $1 of the price of y. Suppose X1 costs $10, X2 costs $10.50, and X3 costs $11.25. Then Similarcost(X1, X2) and Similarcost(X2, X3), but not Similarcost(X1, X3). Similarcost is not transitive, although it is reflexive and symmetric. So Similarcost is not an equivalence relation.

1.3.5 Orderings

Important as equivalence relations are, they're not the only special kind of relation worth mentioning. Let's consider two more.

A partial order XE "partial order" is a relation that is reflexive, antisymmetric, and transitive. Let R be a partial order defined on a set A. Then the pair (A, R) is a XE "partially ordered set" partially ordered set. If we write out any partial order as a graph, we'll see a structure like the ones in the following examples. Notice that, to make the graph relatively easy to read, we'll adopt the convention that we don't write in the links that are required by reflexivity and transitivity. But, of course, they are there in the relations themselves.

Example 1.5 Subset-of is a Partial Order

Consider the relation XE "subset" Subset-of, defined on the set of all sets. Subset-of is a partial order, since it is reflexive (every set is a subset of itself), transitive (if A (B and B (C, then A (C) and antisymmetric (if A (B and A (B, then it must not be true that B (A). A small piece of Subset-of can be drawn as:

The set of all sets

Z (the integers)

P (the set of people on earth)

Odd numbers

Even numbers

Prime numbers excluding 2

 {3, 5}

 {2, 4, 8}

{1}
{3}

{5}

{2}
 {4}

((the empty set)

Read an arrow from x to y as meaning that (x, y) is an element of Subset-of. So, in this example, {3} is a subset of {3, 5}. Note that in a partial order, it is often the case that there are some elements (such as {3, 5} and {2}) that are not related to each other at all (since neither is a subset of the other). Remember in reading this picture that we have omitted the reflexive and symmetric arrows. So, for example, every string is a substring of itself.

Example 1.6 Proper-subset-of is not a Partial Order

Now consider the relation XE "proper subset" Proper-subset-of. It is not a partial order because it is not reflexive. For example {1} ({1}.

In many kinds of applications, it is useful to organize the objects we are dealing with by defining a partial order that corresponds to the notion of one object being more or less general than another. Such a relation may be called a XE "subsumption" \b subsumption relation.

Example 1.7 Concepts Form a Subsumption Relation

Consider a set of concepts, each of which corresponds to some significant set of entities in the world. Some concepts are more general than others. We’ll say that a concept x is subsumed by a concept y (written x (y) iff every instance of x is also an instance of y. Alternatively, y is at least as general as x. A small piece of this subsumption relation for some concepts that might be used to model the meanings of common English words is:

Thing

Animal

Machine

Mammal

Pet

Vehicle

Cat

 Pet Cat

Concept subsumption XE "concept subsumption" is a partial order. It is very similar to the Subset-of relation except that it is defined only on the specific subsets that have been defined as concepts.

Subsumption relations are useful because they tell us when we have new information. If we already know that some object X1 is a cat, we learn nothing new when told that it is an animal.

Example 1.8 Logical Statements Form a Subsumption Lattice

A first-order logic sentence P is subsumed by another sentence Q (written P (Q) iff, whenever Q is true P must be true, regardless of the values assigned to the variables, functions, and predicates of P and Q. For example: (x (P(x)) subsumes P(X1), since, regardless of what the predicate P is and what axioms we have about it, and regardless of what object X1 represents, if (x (P(x)) is true, then P(X1) must be true. Why is this a useful notion? Suppose we're building a theorem-proving or reasoning program. If we already know (x P(x), and we are then told P(X1), we can throw away this new fact. It doesn't add to our knowledge (except perhaps to focus our attention on the object X1) since it is subsumed by something we already knew. A small piece of the subsumption relation on sentences is shown in the following graph:

 False

(x (P(x))

 (x (R(x) (S(x))

 (x (R(x) (T(x))

P(X1)
 P(X2)

P(X2) (Q(X2)

 (x (R(x))

 True
The subsumption relation on sentences is a partial order.
The symbol (is often used to denote a partial order. Let (be an arbitrary partial order defined on some domain A. Any element x of A such that (y (A ((y (x) ((y = x)) is a XE "minimal element" minimal element of A with respect to (. In other words, x is a minimal element if there are no other elements less than or equal to it. Similarly, any element x of A such that (y (A (x (y (y = x) is a XE "maximal element" maximal element of A with respect to (. There may be more than one minimal (or maximal) element in a partially ordered set. For example, the partially ordered set of concepts in Example 1.7 has two minimal elements, Pet Cat and Vehicle. If there is a unique minimal element it is called the least element. If there is a unique maximal element it is called the greatest element. The set of logical sentences ordered by subsumption has a greatest element, False, which subsumes everything. It makes the strongest, and in fact, unsatisfiable claim. There is also a least element, True, which makes the weakest possible claim, and is subsumed by all other sentences.

A total order XE "total order" \b R (A (A is a partial order that has the additional property that (x, y (A ((x, y) (R ((y, x) (R). In other words, every pair of elements must be related to each other one way or another. The classic example of a total order is ((or (, if you prefer) on the integers. The (relation is a total order and, given any two integers x and y, either x (y or y (x. If we draw any total order as a graph, we'll get something that looks like this (again without the reflexive and transitive links shown):

6

5

4

3

This is only a tiny piece of the graph, of course. It continues infinitely in both directions. But notice that, unlike our earlier examples of partial orders, there is no splitting in this graph. For every pair of elements, one is above and one is below. If R is a total order defined on a set A, then the pair (A, R) is a XE "totally ordered set" totally ordered set. Of course, not all partial orders are also total. For example, the Subset-of relation we described in Example 1.5 is not a total order.

Given a partially ordered set (A, R), an XE "infinite descending chain" infinite descending chain is a totally ordered, with respect to R, subset B of A that has no minimal element. If (A, R) contains no infinite descending chains then it is called a well-founded set XE "well-founded set" \b . An equivalent definition is the following: A partially ordered set (A, R) is a well-founded set iff every subset of A has at least one minimal element with respect to R. If (A, R) is a well-founded set and R is a total order, then (A, R) is called a XE "well-ordered set" \b well-ordered set. Every well-ordered set has a least element. For example, consider the sets ℕ (the natural numbers) and Z (the integers). The totally ordered set (ℕ, () is well-founded and well-ordered. Its least element is 0. The totally ordered set (Z, () is neither well-founded nor well-ordered, since it contains an infinite number of infinite descending chains, such as 3, 2, 1, 0, -1, -2, ….

Reviewing some of our examples:

	(A, R)
	Well-founded?
	Well-ordered?

	The set of sets with respect to the subset-of relation
	Yes
	No

	The set of concepts with respect to subsumption
	Yes
	No

	The set of first-order sentences with respect to subsumption
	Yes
	No

	The set of natural numbers under (.
	Yes
	Yes

	The set of integers under (
	No
	No

Well-founded and well-ordered sets are important. Well-ordered sets provide the basis for proofs by induction (as we’ll see in Section 1.6.6). Well-founded sets (that are often also well-ordered) provide the basis for proofs that loops and recursively defined functions halt (as we’ll see in Section Error! Reference source not found.).

1.4 Functions

Relations are very general. They allow an object to be related to any number of other objects at the same time (as they are, for example, in our Dessert relation). Sometimes we want a more restricted notion, in which each object is related to a unique other object. For example, (at least in an ideal world without criminals or incompetent bureaucrats) each American resident is related to a unique social security number. To capture this idea we need functions.

1.4.1 What is a Function?

We begin with the common definition of a function: A function XE "function" f from a set A to a set B is a binary relation that is a subset of A (B, with the additional property that:

(x (A ((((x, y) (f ((x, z) (f) (y = z) ((y (B ((x, y) (f)).

In other words, each element of A is related to exactly one element of B.

The Dessert relation we defined earlier is not a function since Dave and Sara each occur twice. We haven't restricted each person to precisely one dessert. A simple relation that is a function is the successor function succ XE "successor function" defined on the integers:

succ(n) = n + 1

Of course, we cannot write out all the elements of succ (since there are an infinite number of them), but succ includes:

{…, (-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2), (2, 3)…}

It is useful to define some additional terms to make it easy to talk about functions. We start by writing:

f : A (B,

which means that f is a function from the set A to the set B. We call A the XE "domain of a function" domain of f and B the codomain XE "codomain of a function" or range XE "range of a function" of f. We may also say that f is a function from A to B. Using this notation, we can write function definitions that have two parts, the first of which specifies the domain and range and the second of which defines the way in which the elements of the range are related to the elements of the domain. So, for example, we define the successor function on the integers (denoted as Z) by writing:

succ: Z (Z

succ(n) = n + 1

If x (A, then we write:

f(x),

which we read as "f of x" to indicate the element of B to which x is related. We call this element the image of x under f or the value of f for x. Note that, given the definition of a function, there must be exactly one such element. We will also call x the argument of f. For example we have that:

succ(1) = 2, succ (2) = 3, ...

Thus 2 is the image (or the value) of the argument 1 under succ.

We will also use the notation f(x) to refer to the function f (as opposed to f’s value at a specific point x) whenever we need a way to refer to f’s argument. So, for example, we’ll write, as we did above, succ(n) = n + 1.

The function succ is a unary function XE "unary function" . It maps from a single element (a number) to another element. We are also interested in functions that map from ordered pairs of elements to a value. We call such functions binary functions XE "binary function" . For example, integer addition is a binary function:

+: (Z (Z) (Z
Thus + includes elements such as ((2, 3), 5), since 2 + 3 is 5. We could also write:

+((2, 3)) = 5

We have used double parentheses here because we are using the outer set to indicate function application (as we did above without confusion for succ) and the inner set to define the ordered pair to which the function is being applied. But this is confusing. So, generally, when the domain of a function is the Cartesian product of two or more sets, as it is here, we drop the inner set of parentheses and simply write:

+(2, 3) = 5.

The XE "prefix notation" prefix notation that we have used so far, in which we write the name of the function first, followed by its arguments, can be used for functions of any number of arguments. For the specific, common case of binary functions, it is often convenient to use an alternative: XE "infix notation" infix notation in which the function name (often called the operator) is written between its two arguments.

2 + 3 = 5

So far, we have considered unary functions and binary functions. But just as we could define n-ary relations for arbitrary values of n, we can define n-ary functions. For any positive integer n, an n-ary function XE "n-ary function" f is a function that is defined as:

f : (S1 (S2 … (Sn) (R
For example, let Z be the set of integers. Then:

quadraticequation : (Z (Z (Z) (F
is a function whose domain is an ordered triple of integers and whose range is a set of expressions. The definition of quadraticequation is:

quadraticequation(a, b, c) = ax2 + bx + c
What we did here is typical of function definition. First we specify the domain and the range of the function. Then we define how the function is to compute its value (an element of the range) given its arguments (an element of the domain).

Whenever the domain of a function f is an ordered n-tuple of elements drawn from a single set S, we may (loosely) say that the domain of f is S. In this case, we may also say that f is a function of n arguments. So, for example, we may talk about the binary function + on the domain ℕ (when, properly, its domain is ℕ (ℕ).

Recall that in the last section we said that we could compose binary relations to derive new relations. Clearly, since functions are just special kinds of binary relations, if we can compose binary relations we can certainly compose binary functions. Because a function returns a unique value for each argument, it generally makes a lot more sense to compose functions than it does relations, and you'll see that although we rarely compose relations that aren't functions, we compose functions all the time. So, following our definition above for relations, we define the composition XE "composition of functions" of two functions f (A (B and g (B (C, written g (f, as:

g (f = {(a, c) : (b ((a, b) (f and (b, c) (g)}.

Notice that the composition of two functions must necessarily also be a function. We mentioned above that there is sometimes confusion about the order in which relations (and now functions) should be applied when they are composed. To avoid this problem, we will introduce a new notation g(f(x)). We use the parentheses here to indicate function application, just as we did above. So g (f(x) = g(f(x)). This notation is clear. Apply g to the result of first applying f to x. This notation reads right to left as does our definition of the (notation.

1.4.2 Properties of Functions

Some functions possess properties that may make them particularly useful for certain tasks.

The definition that we gave for a function at the beginning of this section required that, for f : A (B to be a function, it must be defined for every element of A (i.e., every element of A must be related to some element of B). This is the standard mathematical definition of a function. But, as we pursue the idea of “computable functions” (i.e., functions that can be implemented on some reasonable computing platform), we'll see that there are functions whose domains cannot be effectively defined. For example, consider a function steps whose input is a Java program and whose result is the number of steps that are executed by the program on the input 0. This function is undefined for programs that do not halt on the input 0. As we’ll see in Chapter Error! Reference source not found., there can exist no program that can check a Java program and determine whether or not it will halt on the input 0. So there is no program that can look at a possible input to steps and determine whether that input is in steps’s domain. In Chapter Error! Reference source not found., we will consider two approaches to fixing this problem. One is to extend the range of steps, for example by adding a special value, Error, that can be the result of applying steps to a program that doesn’t halt on input 0. The difficulty with this approach is that steps becomes uncomputable since there exists no algorithm that can know when to return Error. Our alternative is to expand the domain of steps, for example to the set of all Java programs. Then we must acknowledge that if steps is applied to certain elements of its domain (i. e., programs that don’t halt), its value will be undefined.

In order to be able to talk about functions like steps, we’ll introduce two new terms. We’ll say that f : A (B is a XE "total function" total function on A iff it is a function that is defined on all elements of A (i.e., it is a function in the standard mathematical sense). We’ll say that f : A (B is a partial function XE "partial function" on A iff f is a subset of A (B and every element of A is related to no more than one element of B. In Chapter Error! Reference source not found. we will return to a discussion of partial functions. Until then, when we say that f is a function, we will mean that it is a total function.

A function f : A (B is one-to-one XE "one-to-one function" iff no two elements of A map to the same element of B. Succ is one-to-one. For example, the only number to which we can apply succ and derive 2 is 1. Quadraticequation is also one-to-one. But + isn't. For example, both +(2, 3) and +(4, 1) equal 5.

A function f : A (B is onto XE "onto function" iff every element of B is the value of some element of A. Another way to think of this is that a function is onto iff all of the elements of B are "covered" by the function. As we defined it above, succ is onto. But let's define a different function succ' on ℕ (the natural numbers) (rather than the integers). So we define

succ' : ℕ (ℕ
Succ' is not onto because there is no natural number i such that succ'(i) = 0.

The easiest way to envision the differences between an arbitrary relation, a function, a one-to-one function and an onto function is to make two columns (the first for the domain and the second for the range) and think about the kind of matching problems you probably had on tests in elementary school.

Consider the following five matching problems (numbered 1 – 5) and look at ways of relating the elements of the first column (the domain) to the elements of the second column (the range):

 1

 2

 3

 4

 5

 6

A
X

A
X

A
X

A
X

A
X

A X
B
Y

B
Y

B
Y

B
Y

B
Y

B Y
C
Z

C
Z

C
Z

C
Z

C
Z

C Z

Q

D
Example 1 describes a relation that is not a (total) function because C is an element of its domain that is not related to any element of its range. Example 2 describes a relation that is not a function because there are three values associated with A. The third example is a function since, for each object in the first column, there is a single value in the second column. But this function is neither one-to-one (because X is derived from both A and B) nor onto (because Z is not the image of anything). The fourth example is a function that is one-to-one (because no element of the second column is related to more than one element of the first column). But it still isn’t onto because Z has been skipped: nothing in the first column derives it. The fifth example is a function that is onto (since every element of column two has an arrow coming into it), but it isn’t one-to-one, since Z is derived from both C and D. The sixth and final example is a function that is both one-to-one and onto. By the way, see if you can modify either example 4 or example 5 to make them both one-to-one and onto. You’re not allowed to change the number of elements in either column, just the arrows. You’ll notice that you can’t do it. In order for a function to be both one-to-one and onto, there must be equal numbers of elements in the domain and the range.

The inverse XE "inverse of a function" of a binary function f is the relation that contains exactly the ordered pairs in f with the elements of each pair reversed. We’ll write the inverse of f as f -1. Formally, if f (A (B, then f -1 (B (A = {(b, a): (a, b) (f}. Since every function is a relation, every function has a relational inverse, but that relational inverse may or may not also be a function. For example, look again at example 2 of the matching problems above. Although it is a function, its inverse is not. Given the argument X, should we return the value A or B? Now consider example 3. Its inverse is also not a function, since there is no value to be returned for the argument Z. Example 4 has the same problem example 2 does. Now look at example 5. Its inverse is a function. Whenever a function is both one-to-one and onto, its inverse will also be a function and that function will be both one-to-one and onto. Such functions are called bijections XE "bijection" . Bijections are useful because they enable us to move back and forth between two sets without loss of information. Look again at example 5. We can think of ourselves as operating in the {A, B, C} universe or in the {X, Y, Z} universe interchangeably since we have a well defined way to move from one to the other. And if we move from column one to column two and then back, we'll be exactly where we started.

It is sometimes useful to talk about functions that map one object to another but, in so doing, do not fundamentally change the way that the objects behave with respect to some structure (i.e., some set of functions that we care about). A homomorphism XE "homomorphism" is a function that maps the elements of its domain to the elements of its range is such a way that some structure of the original set is preserved. So, considering just binary functions, if f is a homomorphism and # is a function in the structure that we are considering, then it must be case that (x, y (f(x) # f(y) = f(x # y)). The structure of unary and higher order functions must also be preserved in a similar way.

Given a particular function f, whether or not it is a homomorphism depends on the structure that we are considering. So, for example, consider the integers, along with one function, addition. Then the function f(x) = 2x is a homomorphism because 2x + 2y = 2(x + y). But, if the structure we are working with also contains a second function, multiplication, then f is no longer a homomorphism because, unless x or y is 0, 2x (2y (2(x (y).

If a homomorphism f is also a bijection then it is called an isomorphism XE "isomorphism" . If two objects are isomorphic to each other, then they are indistinguishable with respect to the defining structure. For example, consider the set of undirected graphs, along with all of the standard graph operations that determine size and paths. If G is an arbitrary graph, let f(G) be exactly G except that the symbol # is appended to the name of every vertex. This function f is an isomorphism and the following two graphs are isomorphic:

1
2

1#
2#

 3 4

 3# 4#

When the intersection of the domain and the range of a function f is not empty, it is sometimes useful to find elements of the domain that are unchanged by the application of f. A fixed point of a function f is an element x of f’s domain with the property that f(x) = x. XE "fixed point" For example, 1 and 2 are fixed points of the factorial function since 1! = 1 and 2! = 2. The factorial function has no other fixed points.

1.4.3 Properties of Binary Functions

Any relation that uniquely maps from each element of its domain to some element of its range is a function. The two sets involved can be anything and the mapping can be arbitrary. However, most of the functions we actually care about behave in some sort of regular fashion. It is useful to articulate a set of properties that many of the functions that we'll study have. When these properties are true of a function, or a set of functions, they give us techniques for proving additional properties of the objects involved. In the following definitions, we'll consider an arbitrary binary function # defined over a set A. As examples, we'll consider functions whose actual domains are ordered pairs of sets, integers, strings, and Boolean expressions.

A binary function # is commutative XE "commutativity" iff (x, y (A (x # y = y # x).

Examples:
i + j = j + i

integer addition

A (B = B (A

set intersection

P (Q (Q (P

Boolean and
A binary function # is associative XE "associativity" iff (x, y, z (A ((x # y) # z = x # (y # z)).

Examples:
(i + j) + k = i + (j + k)

integer addition

(A (B) (C = A ((B (C)

set intersection

(P (Q) (R (P ((Q (R)

Boolean and

(s || t) || w = s || (t || w)

string concatenation

A binary function # is idempotent XE "idempotence" iff (x (A (x # x = x).

Examples:
min(i, i) = i

integer minimum

A (A = A

set intersection

P (P (P

Boolean and
The distributivity XE "distributivity" property relates two binary functions: A function # distributes over another function % iff (x, y, z (A (x # (y % z) = (x # y) % (x # z)).

Examples:
i
[image: image1.wmf]*

(j + k) = (i
[image: image2.wmf]*

j) + (i
[image: image3.wmf]*

k)

integer multiplication over addition

A ((B (C) = (A (B) ((A (C)

set union over intersection

P ((Q (R) ((P (Q) ((P (Q)

Boolean and over or
Absorption laws XE "absorption laws" \b also relate two binary functions to each other: A function # absorbs another function % iff (x, y (A (x # (x % y) = x)).

Examples:
A ((A (B) = A

set intersection absorbs union

P ((P (Q) (P

Boolean or absorbs and

P ((P (Q) (P

Boolean and absorbs or
It is often the case that when a function is defined over some set A, there are special elements of A that have particular properties with respect to that function. In particular, it is worth defining what it means to be an identity and to be a zero:

An element a is an identity XE "identity element" for the function # iff (x (A ((x # a = x) ((a # x = x)).

Examples:
i
[image: image4.wmf]*

1 = i

1 is an identity for integer multiplication

i + 0 = i

0 is an identity for integer addition

A ((= A

(is an identity for set union

P (False (P

False is an identity for Boolean or

s || "" = s

"" is an identity for string concatenation

Sometimes it is useful to differentiate between a right identity XE "right identity" (one that satisfies the first requirement above) and a left identity XE "left identity" (one that satisfies the second requirement above). But for all the functions we'll be concerned with, if there is a left identity, it is also a right identity and vice versa, so we will talk simply about an identity.

An element a is a zero XE "zero of a function" for the function # iff (x (A ((x # a = a) ((a # x = a)).

Examples:
i
[image: image5.wmf]*

0 = 0

0 is a zero for integer multiplication.

A ((= (

(is a zero for set intersection.

P (False (False

False is a zero for Boolean and.

Just as with identities, it is sometimes useful to distinguish between left and right zeros, but we won't need to.

Although we're focusing here on binary functions, there's one important property that unary functions may have that is worth mentioning here:

A unary function $ is a self inverse XE "self inverse" iff (x ($($(x)) = x). In other words, if we compose the function with itself (apply it twice), we get back the original argument.

Examples:
-(-(i)) = i

Multiplying by -1 is a self inverse for integers.

1/(1/i) = i if i (0

Dividing into 1 is a self inverse for integers.

((A = A

Complement is a self inverse for sets.

(((P) = P

Negation is a self inverse for Booleans.

(sR)R = s

Reversal is a self inverse for strings.

1.4.4 Properties of Functions on Sets

The functions that we have defined on sets satisfy most of the properties that we have just considered. Further, as we saw above, some set functions have a zero or an identity. We'll summarize here (without proof) the most useful properties that hold for the functions we have defined on sets: XE "intersection:of sets"

 XE "union:of sets"

 XE "complement:of sets"
Commutativity

A (B = B (A

A (B = B (A
Associativity

(A (B) (C = A ((B (C)

(A (B) (C = A ((B (C)

Idempotency

A (A = A

A (A = A
Distributivity

A ((B (C) = (A (B) ((A (C)

A ((B (C) = (A (B) ((A (C)

Absorption

(A (B) (A = A

(A (B) (A = A
Identity

A ((= A
Zero

A ((= (
Self Inverse

((A = A
In addition, we will want to make use of the following theorems that can be proven to apply specifically to sets and their operations (as well as to Boolean expressions, with (substituted for (and (substituted ():

De Morgan’s laws XE "de Morgan’s laws"

((A (B) = (A ((B

((A (B) = (A ((B
1.5 Proof Techniques

In this section we summarize the most important proof techniques that we will use in the rest of this book.

1.5.1 Proof by Construction

 XE "construction proof" \t "See proof by construction" Suppose that we want to prove an assertion of the form (x (Q(x)) or (x ((y (P(x, y))). One way to prove such a claim is to show a (provably correct) algorithm that finds the value that we claim must exist. We call that technique XE "proof:by construction" \b proof by construction.

For example, we might wish to prove that every pair of integers has a greatest common divisor. We could prove that claim by exhibiting a correct greatest common divisor algorithm. In exhibiting such an algorithm, we show not only that the greatest common divisor exists (since the algorithm provably finds one for every input pair), we show something more: a method to determine the greatest common divisor for any pair of integers. While this is a stronger claim than the one we started with, it is often the case that such stronger claims are easier to prove.

1.5.2 Proof by Contradiction

 XE "contradiction proof" \t "See proof by contradiction"

 XE "proof:by contradiction" \b Suppose that we want to prove some assertion P. One approach is to assume, to the contrary, that (P were true. We then show, with that assumption, that we can derive a contradiction. The law of the excluded middle XE "law of the excluded middle" XE "excluded middle:law of" says that (P ((P). If we accept it, and we shall, then, since (P cannot be true, P must be.

Example 1.9 There is an Infinite Number of Primes

Consider the claim that there is an infinite number of prime numbers XE "prime number" . Following Euclid, we prove this claim by assuming, to the contrary, that the set P of prime numbers is finite. So there exists some value of n such that P = {p1, p2, p3, … pn}. Let:

q = (p1p2p3 … pn) + 1

Since q is greater than each pi, it is not on the list of primes. So it must be composite. In that case, it must have at least one prime factor, which must then be an element of P. Suppose that factor is pk, for some k (n. Then q must have at least one other factor, some integer i such that:

q
= ipk

(p1p2p3 … pn) + 1 = ipk

(p1p2p3 … pn) - ipk = -1

Now observe that pk divides both terms on the left since it is prime and so must be in the set {p1, p2, p3, … pn}. Factoring it out, we get:

pk(p1p2pk-1pk+1 … pn - i)
= -1

pk

= -1/(p1p2pk-1pk+1 … pn - i)

But, since (p1p2pk-1pk+1 … pn - i) is an integer, this means that |pk| < 1. But that cannot be true since pk is prime and thus greater than 1. So q is not composite. Since q is greater than 1 and not composite, it must be prime, contradicting the assumption that all primes are in the set {p1, p2, p3, … pn}.

(
Notice that this proof, in addition to being a proof by contradiction, is constructive. It exhibits a specific example that contradicts the initial assumption.

Example 1.10
[image: image6.wmf]2

 is Irrational

Consider the claim that
[image: image7.wmf]2

is irrational XE "irrational number" . We prove this claim by assuming, to the contrary, that
[image: image8.wmf]2

 is rational. In that case, it is the quotient of two integers, i and j. So we have:

[image: image9.wmf]2

 = i/j

If i and j have any common factors, then reduce them by those factors. Now we have:

[image: image10.wmf]2

 = k/n, where k and n have no common factors.

 2 = k2/n2

 2n2 = k2
Since 2 is a factor of k2, k2 must be even and so k is even. Since k is even, we can rewrite it as 2m for some integer m. Substituting 2m for k, we get:

 2n2 = (2m)2

 2n2 = 4m2

 n2 = 2m2
So n2 is even and thus n is even. But now both k and n are even and so have 2 as a common factor. But we had reduced them until they had no common factors. The assumption that
[image: image11.wmf]2

is rational has led to a contradiction. So
[image: image12.wmf]2

cannot be rational.

(
1.5.3 Proof by Counterexample

 XE "counterexample proof"

 XE "proof:by counterexample" Consider any claim of the form (x (P(x)). Such a claim is false iff (x ((P(x)). We can prove that it is false by finding such an x.

Example 1.11 Mersenne Primes

Let M be the set of numbers of the form
[image: image13.wmf]1

2

-

n

 for some positive integer n. M is also called the set of Mersenne numbers (XE "Mersenne number" . Now consider only those cases in which n is prime. (In fact, some authors restrict the term Mersenne number only to those cases.) Consider two statements:

1. If n is prime, then
[image: image14.wmf]1

2

-

n

 is prime.

2. If
[image: image15.wmf]1

2

-

n

 is prime, then n is prime.

Statement 2 is true (. But what about statement 1? Hundreds of years ago, some mathematicians believed that it was true, although they had no proof of it. Then, in 1536, Hudalricus Regius refuted the claim by showing a counterexample: 211-1 = 2047 is not prime. But that was not the end of false conjectures about these numbers. The elements of M that are also prime are called Mersenne primes (XE "Mersenne prime" , after the monk Marin Mersenne, who, in 1644, made the claim that numbers of the form
[image: image16.wmf]1

2

-

n

 are prime if n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, but are composite for all other positive integers n (257. Mersenne’s claim was shown to be false by counterexample, over two hundred years later, when it was discovered that 261-1 is also prime. Later discoveries showed other ways in which Mersenne was wrong. The correct list of values of n (257 such that
[image: image17.wmf]1

2

-

n

 is prime is 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

Example 1.12 All it Takes is One Counterexample

Consider the following claim:

Let A, B, and C be any sets. If A - C = A - B then B = C.

We show that this claim is false with a counterexample: Let A = (, B = {1}, and C = {2}. A - C = A - B = (. But B (C.

(
1.5.4 Proof by Case Enumeration

Consider a claim of the form (x (A (P(x)). Sometimes the most straightforward way to prove that P holds for all elements of A is to divide A into two or more subsets and then to prove P separately for each subset.

Example 1.13 The Postage Stamp Problem

Suppose that the postage required to mail a letter is always at least 6¢. Prove that it is possible to apply any required postage to a letter given only 2¢ and 7¢ stamps.

We prove this general claim by dividing it into two cases, based on the value of n, the required postage:

1. If n is even (and 6¢ or more), apply n/2 2¢ stamps.

2. If n is odd (and 6¢ or more), then n (7 and n-7 (0 and is even. 7¢ can be applied with one 7¢ stamp. Apply one 7¢ stamp and (n-7)/2 2¢ stamps.

(
1.5.5 Mathematical Induction

The principle of mathematical induction XE "induction"

 XE "mathematical induction" states:

If:
P(b) is true for some integer base case b, and

For all integers n ≥ b, P(n) (P(n+1)
Then:
For all integers n ≥ b, P(n)
A proof using mathematical induction, of an assertion P about some set of positive integers greater than or equal to some specific value b, has three parts:

1) A clear statement of the assertion P.

2) A proof that that P holds for some base case b, the smallest value with which we are concerned. Generally b = 0 or 1, but sometimes P may hold only once we get past some initial unusual cases,

3) A proof that, for all integers n ≥ b, if P(n) then it is also true that P(n+1). We’ll call the claim P(n) the induction hypothesis.
Example 1.14 The Sum of the First n Odd Positive Integers is n2
Consider the claim that that the sum of the first n odd positive integers is n2. We first check for plausibility:

(n = 1) 1 = 1 = 12

(n = 2) 1 + 3 = 4 = 22

(n = 3) 1 + 3 + 5 = 9 = 32

(n = 4) 1 + 3 + 5 + 7 = 16 = 42, and so forth.

The claim appears to be true, so we should prove it. Let Oddi = 2(i – 1) + 1 denote the ith odd positive integer. Then we can rewrite the claim as:

(n (1 [image: image18.wmf][image: image19.wmf]å

=

=

n

i

i

n

Odd

1

2

The proof of the claim is by induction on n:

· Base case: Take 1 as the base case. 1 = 12.

· Prove:
[image: image20.wmf]))

)

1

(

(

)

((

1

1

1

2

1

2

å

å

+

=

=

+

=

®

=

³

"

n

i

i

n

i

i

n

Odd

n

Odd

n

.

Observe that the sum of the first n + 1 odd integers is the sum of the first n of them plus the n+1st, so:

 [image: image21.wmf]å

+

=

1

1

n

i

i

Odd

= [image: image22.wmf]å

=

+

+

n

i

n

i

Odd

Odd

1

1

 = [image: image23.wmf]1

2

+

+

n

Odd

n

[image: image24.wmf]

Using the induction hypothesis

 = n2 + 2n + 1

Since [image: image25.wmf]1

+

n

Odd

 is 2(n + 1 – 1) + 1 = 2n + 1

 = (n + 1)2

(
Mathematical induction lets us prove properties of positive integers. But it also lets us prove properties of other things if the properties can be described in terms of integers. For example, we could talk about the cardinality of a finite set, or the length of a finite string.

Example 1.15 The Cardinality of the Power Set of a Finite Set

Let A be any finite set. We prove the following claim about the cardinality of the power set of A:

|P(A)| = 2|A|.

The proof is by induction on |A|, the cardinality of A.

· Base case: Take 0 as the base case. |A| = 0, A = (, and P(A) = {(}, whose cardinality is 1 = 20 = 2|A|.

· Prove: (n (0 ((|P(A)| = 2|A| for all sets A of cardinality n) ((|P(A)| = 2|A| for all sets A of cardinality n + 1)).

We do this as follows. Consider any value of n (0 any set A with n + 1 elements. Since n (0, A must have at least one element. Pick one and call it a. Now consider the set B that we get by removing a from A. |B| must be n. So, by the induction hypothesis, |P(B)| = 2|B|. Now return to P(A). It has two parts: those subsets of A that include a and those that don't. The second part is exactly P(B), so we know that it has 2|B| = 2n elements. The first part (all the subsets that include a) is exactly all the subsets that don't include a with a added in). Since there are 2n subsets that don't include a and there are the same number of them once we add a to each, we have that the total number of subsets of our original set A is 2n (for the ones that don't include a) plus another 2n (for the ones that do include a), for a total of 2(2n) = 2n+1, which is exactly 2|A|.

(
Mathematical induction can be used to prove properties of a linear sequence of objects by assigning to each object its index in the sequence.

Example 1.16 Generalized Modus Tolens

Recall the inference rule we call modus tollens: From (P (Q) and (Q, conclude (P. XE "modus tollens" We can use mathematical induction to prove a generalization of modus tollens to an arbitrary chain of implications. Suppose that we know, for any value of n (2, two things:

(i, where 1 (i < n, (Pi (Pi+1)
/* In a chain of n propositions, each implies the next.

(Pn

/* The last proposition is known to be false.

Then generalized modus tollens will let us conclude that all the preceding propositions are also false, and so, in particular, it must be the case that:

(P1
We can use induction to prove this rule. To make it easy to describe the rule as we work, we’ll introduce the notation P |- Q to mean that, from P, we can derive Q. Using this notation, we can state concisely the rule we are trying to prove:

(n(2 ((((i < n (Pi (Pi+1)) ((Pn) |- (P1)

The proof is by induction on n, the number of propositions.

· Base case: We take 1 as the base case. We have P1 (P2 and (P2. So, using modus tolens, we conclude (P1.

· Induction hypothesis: Assume that ((((i < n (Pi (Pi+1)) ((Pn) |- (P1). (The claim is true for n propositions.)

· Prove that if the claim is true for n propositions it must be true for n+1 of them:

((((i < n (Pi (Pi+1)) ((Pn) |- (P1) (((((i < n + 1 (Pi (Pi+1)) ((Pn+1) |- (P1)

((Pn (Pn+1) ((Pn+1) |- (Pn

modus tollens

(((i, where 1 (i < n (Pi (Pi+1)) ((Pn) |- (P1

induction hypothesis

(((i, where 1 (i < n (Pi (Pi+1)) ((Pn (Pn+1) ((Pn+1) |- (P1
chaining

(((i, where 1 (i < n + 1 (Pi (Pi+1)) ((Pn+1) |- (P1

simplification

(
Mathematical induction relies on the fact that any subset of the nonnegative integers forms a XE "well-ordered set" well-ordered set (as defined in Section 1.3.5) under the relation (. Once we have done an induction proof, we know that A(b) (where b is typically 0 or 1, but it could be some other starting value) is true and we know that (n (b (A(n) (A(n + 1)). Then we claim that (n (b (A(n)). Suppose that the principle of mathematical induction were not sound and there existed some set S of nonnegative integers (b for which A(n) is false. Then, since S is well-ordered, it has a least element, which we can call x. By definition of S, x must be equal to or greater than b. But it cannot actually be b because we proved A(b). So it must be greater than b. Now consider x - 1. Since x - 1 is less than x, it cannot be in S (since we chose x to be the smallest value in S). If x - 1 is not in S, then we know A(x - 1). But we proved that (n (0 (A(n) (A(n+1)), so A(x - 1) (A(x). But we assumed (A(x). So that assumption led us to a contradiction and thus must be false.

Sometimes the principle of mathematical induction is stated in a slightly different but formally equivalent way:

If:
A(b) is true for some integer value b, and

For all integers n ≥ b ((A(k) is true for all integers k where b (k (n) (A(n+1))
Then:
For all integers n ≥ b (A(x))
This form of mathematical induction is sometimes called strong induction XE "strong induction" . To use it, we prove that whenever A holds for all nonnegative integers starting with b, up to and including n, it must also hold for n + 1. We can use whichever form of the technique is easiest for a particular problem.

1.5.6 The Pigeonhole Principle

Suppose that we have n pigeons and k holes. Each pigeon must fly into a hole. If n > k, then there must be at least one hole that contains more than one pigeon. We call this obvious observation the pigeonhole principle XE "pigeonhole principle" \b . More formally, consider any function f: A (B. The pigeonhole principle says:

If |A| > |B| then f is not one-to-one.

The pigeonhole principle is a useful technique for proving relationships between sets. For example, suppose that set A is the set of all students who live in the dorm. Set B is the set of rooms in the dorm. The function f maps each student to a dorm room. So, if |A| > |B|, we can use the pigeonhole principle to show that some students have roommates. Another everyday use of the principle: If there are more than 366 people in a class, then at least two of them must share a birthday. The pigeonhole principle is also useful in proving less obvious claims.

Example 1.17 The Coins and Balance Problem

Consider the following problem: You have three coins. You know that two are of equal weight; the third is different. You do not know which coin is different and you do not know whether it is heavier or lighter than the other two. Your task is to identify the different coin and to say whether it is heavier or lighter than the others. The only tool you have is a balance, with two pans, onto which you may place one or more objects. The balance has three possible outputs: left pan heavier than right pan, right pan heavier than left pan, both pans the same weight. Show that you cannot solve this problem in a single weighing.

There are six possible situations: There are three coins, any one of which could be different, and the different coin can be either heavier or lighter. But a single weighing (no matter how you choose to place coins on pans) has only three possible outcomes. So there is at least one outcome that corresponds to at least two situations. Thus one weighing cannot be guaranteed to determine the situation uniquely.
1.5.7 Showing That Two Sets Are Equal

A great deal of what we do when we build a theory about some domain is to prove that various sets of objects in that domain are equal. For example, in our study of automata theory, we are going to want to prove assertions such as these:

· The set of strings defined by some regular expression (is identical to the set of strings defined by some second regular expression (.

· The set of strings that will be accepted by some given finite state machine M is the same as the set of strings that will be accepted by some new finite state machine M' that has fewer states than M has.

· The set of languages that can be defined using regular expressions is the same as the set of languages that can be accepted by a finite state machine.

· The set of problems that can be solved by a Turing Machine with a single tape is the same as the set of problems that can be solved by a Turing Machine with any finite number of tapes.

So we become very interested in the question, "How does one prove that two sets are identical"? There are lots of ways and many of them require special techniques that apply in specific domains. But it's worth mentioning two very general approaches here.

Sometimes we want to compare apples to apples. We may, for example, want to prove that two sets of strings are identical, even though they may have been derived differently. In this case, one approach is to use the set identity theorems that we enumerated in the last section. Suppose, for example, that we want to prove that:

 A ((B ((A (C))
= A
We can prove this as follows:

 A ((B ((A (C))
= (A (B) ((A ((A (C))
Distributivity

= (A (B) (((A (C) (A)
Commutativity

= (A (B) (A

Absorption

= A

Absorption

Sometimes, even when we're comparing apples to apples, the theorems we've listed aren't enough. In these cases, we need to use the definitions of the operators. Suppose, for example, that we want to prove that:

 A - B
= A ((B
We can prove this as follows (where U stands for the universe with respect to which we take complement):

 A - B
= {x : x (A and x (B}

= {x : x (A and (x (U and x (B)}

= {x : x (A and x (U - B}

= {x : x (A and x ((B}

= A ((B
_1174501581.unknown

_1180440494.unknown

_1198088501.unknown

_1180440410.unknown

_1165726813.unknown

