
Weaving Formal Methods into the
Undergraduate Computer Science Curriculum

(Extended Abstract)

Jeannette M. Wing

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA USA
wing@cs.cmu.edu

WWW home page: http://www.cs.cmu.edu/~wing/

Abstract. We can integrate formal methods into an existing under-
graduate curriculum by focusing on teaching their common conceptual
elements and by using state of the art formal methods tools. Common
elements include state machines, invariants, abstraction mappings, com-
position, induction, speci�cation, and veri�cation. Tools include model
checkers and speci�cation checkers. By introducing and regularly revisit-
ing the concepts throughout the entire curriculum and by using the tools
for homework assignments and class projects, we may be able to attain
the ideal goal of having computer scientists use formal methods without
their even realizing it.

1 Philosophy

Rather than treat formalmethods solely as a separate subject to study, we should
weave their use into the existing infrastructure of an undergraduate computer
science curriculum. In so doing, we would be teaching formal methods alongside
other mathematical, scienti�c, and engineering methods already taught. Formal
methods would simply be additional weapons in a computer scientist's arsenal
of ways to think when attacking and solving problems.

My ideal is to get to the point where computer scientists use formal methods
without even thinking about it. Just as we use simple mathematics in our daily
life, computer scientists would use formal methods routinely.

By formal methods I mean the speci�cation and veri�cation of hardware and
software systems. Some methods will be accessible to undergraduates|these are
the ones I hope computer scientists will use without realizing it. Some methods
are more advanced, requiring either more mathematical sophistication or domain
knowledge|those can be taught in upper-level electives, in graduate courses, or
through independent undergraduate research projects. In this paper I focus on
the former.

Dating back to the Dijkstra-Gries predicate transformer approach of program
development [Gr81], we already have a long history of inculcating undergraduates



with notions of program speci�cation and veri�cation. While there are varying
degrees of success in teaching programming using this approach, the method is
not used by programmers in practice. Moreover, specifying and verifying small,
simple programs does not address the problems of scale and complexity faced
by software engineers in industry. What should we do di�erently or why should
we be more optimistic now?

First, we should focus on teaching the common elements of all (or most)
methods, rather than on the speci�c notation or stylistic requirements of the
method itself. Students writing large programs are not easily going to be able
to do a stepwise re�nement of design to code following the Dijkstra-Gries ap-
proach, but they can certainly learn and apply the notions of program speci-
�cation, loop invariants, and termination functions. Programming-in-the-small
and programming-in-the-large are inherently creative problem solving activities.
Thinking in terms of formal methods concepts, e.g., invariants, forces the de-
signer to take a more abstract perspective of a system than that taken with an
algorithmic or operational approach. This more abstract thinking invariably pro-
vides the designer with new insights and a deeper understanding of the system's
desired behavior.

Second, tools are essential. Without su�cient tool support, a method will
not scale to practice. Model checking [CGP99] is a successful formal method
because it addresses scale in two ways: it is applicable to a narrow problem do-
main (control aspects of hardware and protocols) and we do not have to specify
the whole system before we can do some interesting veri�cation. Furthermore,
without appropriate tool support, typical computer science students have no in-
centive to use them. While mathematics students may be happy to do pencil and
paper proofs, computer science students grow up using compilers, interpreters,
operating systems, databases, graphical user interfaces, editors, electronic mail
systems, spreadsheets, document preparation packages, web browsers, search en-
gines, and so on. Formal methods tools have to be packaged in a way to �t into
the way computer scientists work on a daily basis.

What follows is �rst, a list of the common elements and tools which we
can teach to undergraduates, and second, speci�c suggestions on where to teach
them with respect to existing courses found in a typical undergraduate computer
science curriculum.

2 What We Can Teach

2.1 Common Elements

Below is a list of the elements that transcend the speci�c syntax and semantics
of most formal methods. A �rm understanding of these concepts goes a long way.

{ State machines. The notion of a state machine as a tuple of a set of states,
a set of initial states, and a transition relation between states; variations
include accepting states, nondeterministic transition relations, �nite state
machines, labelled states, and labelled transitions. The notion of a state as a

2



mapping from variables to values; enrichments include using typed variables
and values, and modeling both the environment and store as needed for
imperative programming languages. The notion of executions as sequences
of interleaved states and transitions; various projections on executions, for
example, on just states, transitions, objects, or processes (these projections
are often termed traces or histories). The notion of behavior and observable

behavior of a state machine as a set of executions (or traces or histories).

{ Invariants. The notion of state invariants; variations include abstract and
representation type invariants in the context of abstract data types. The
notion of loop invariants for statement-level reasoning.

{ Abstraction mappings. The notion of abstraction functions for reasoning
about abstract data types. The more general notion of simulation relations,
for example, in relating states (or transitions or executions) of one machine
to those of another.

{ Composition. The notion of composition as a way to build larger machines
(systems). Basic functional composition as in sequential composition of state-
ments and nested and recursive procedure calls. The use of interfaces to com-
pose modules, as already manifest in programming languages like Java and
ML. Process composition for concurrent and distributed systems. Problems
due to interference when composing concurrent processes.

{ Induction. The basic notions of mathematical and complete (strong) induc-
tion. Structural induction for reasoning abstract data types. Computational
induction for reasoning more generally about state machines.

{ Speci�cation. The notion of writing a formal description of what the sys-
tem is supposed to do, not how; i.e., the di�erence between a speci�cation
and code. The notion of a type as a \weak" (in terms of expressibility),
but extremely powerful (in terms of practicality) speci�cation. Going fur-
ther, pre-conditions and post-conditions and other predicates (e.g., Larch's
modi�es clause [GH93]). Going even further, the use of rely and guarantee
predicates for reasoning about concurrent programs.

{ Veri�cation. The notions of correctness and termination of a program, and
more generally, notions of safety and liveness properties of concurrent and
distributed systems. Proof techniques for showing a system satis�es its spec-
i�cation. Termination functions and well-founded orderings for proofs of ter-
mination.

There are clearly mathematical prerequisites or corequisites for understand-
ing these concepts. They are (1) discrete mathematics, minimally, algebraic
structures and their properties; and (2) mathematical logic, minimally, �rst-
order predicate logic, and proof techniques.

2.2 Tools

There are two classes of tools that we can use at the undergraduate level: model
checkers and speci�cation checkers.

3



There is no excuse not to be using model checkers in our undergraduate
courses today. With a veri�cation tool, we can more easily teach that veri�ca-
tion complements the testing and simulation activities of practicing hardware
and software engineers. Model checkers verify temporal properties of �nite state
machines. They are fast, completely automatic, and relatively easy to learn.
There are industrial-strength, commercial model checkers available on the mar-
ket. If the trend of using them in the hardware industry continues, then it be-
hooves us as educators to ensure that our students are well-versed in the state
of the art veri�cation technology.

Speci�cation checkers are less common and are still making their transition
from research environments to industry. One promising kind of speci�cation
checker is exempli�ed by LCLint [EGHT94] and ESC/Java [CSRC00], which
both support incremental speci�cations: as we add more to a speci�cation, the
tool can check more of the code. LCLint does much of the traditional lint checks
of C programs, including unused declarations, type inconsistencies, and use-
before-de�ntion; additional source code annotations, in the form of pre-/post-
conditions, modi�es clauses, and representation invariants, enable more powerful
checks such as determining violations of information hiding, memory manage-
ment errors, and dangerous data sharing or unexpected aliasing. ESC/Java (Ex-
tended Static Checking [DLNS98] for Java) also relies on annotated source code
and can catch many common programmingmistakes such as array index bounds
errors, null dereference errors, type-cast errors, and deadlocks and race condi-
tions in multi-threaded programs. The checker uses an automatic theorem prover
to reason about the semantics of conditional statements, loops, procedure and
method calls, exceptions, and mutex locks.

As an aside, I leave for the more advanced student, the upper-level elective
courses, and the undergraduate researcher two other classes of formal methods
tools: design checkers such as Nitpick [JD96] and Alcoa [Ja00], which are still
in the research incubator; and theorem provers, which still require sophisticated
users. Design checkers have much promise in their use in upper-level software
engineering courses, but need more time to mature. Theorem provers require
more expertise than we can expect our students to acquire in one semester, all
the while learning other course material.

3 Speci�c Undergraduate Courses

Introduction to Programming. Here we can teach the concepts of speci�ca-
tion and veri�cation but likely only informally and at a high-level. Still, accli-
mating students to the di�erence between a speci�cation and code and to the
idea of veri�cation in addition to testing is a good �rst step. Students should get
in the habit of writing informal speci�cations, loop invariants, and termination
arguments in their comments.

Data Structures and Algorithms. This course lends itself naturally to
introducing and exercising notions of abstraction, representation invariants, in-
ductive proofs, and state machines.

4



Programming Principles. This is the traditional course that many schools
use to teach the concepts of program speci�cation and veri�cation. It may make
sense to revisit this course if some of the material is distributed across the oth-
ers. At Carnegie Mellon we use this course to teach the functional programming
language paradigm (we use ML) with a heavy emphasis on types (as weak speci-
cations), modules (interfaces versus implementation; composition and abstrac-
tion techniques), and the course mantra \code with proof in mind" (recursive
programs lend themselves to inductive proofs).

Programming Languages. This course provides the opportunity to revisit
more formally the concepts perhaps learned only informally during the students'
�rst year. For example, we can give semantics for imperative and object-oriented
programming languages in terms of state machines. We can use logic program-
ming languages to illustrate advantages and disadvantages of using executable
speci�cations, i.e., where speci�cations are code and vice versa.

Compilers. Translators and interpreters, by de�nition, provide rich exam-
ples of abstraction mappings (de�ning or simulating one machine in terms of
another). Correctness preserving transformations require statements of invari-
ants (formal or not) and soundness arguments (formal or not). Target machines
(compiler back-ends) are just state machines. This course comes close to the
ideal, where students are using some elements of formal methods without real-
izing it.

Software Engineering. Students can complement the use of informalCASE
tools and semi-formal design methods such as UML with the use of formal ones,
e.g., model checkers and speci�cation checkers. Here would be the place to in-
troduce design checkers such as Nitpick and Alcoa.

Computer Architecture. Students can use model checkers such as SMV
to verify properties of simple circuits, simple processor designs, bus protocols,
and cache coherence protocols.

Operating Systems. Students can use model checkers to check safety prop-
erties, e.g., freedom from deadlock, of various mutual exclusion algorithms (e.g.,
Peterson's tie-breaker algorithm or Lamport's bakery algorithm), and with var-
ious synchronization primitives (e.g., semaphores, mutex locks, condition vari-
ables).

Networking. Students can use model checkers to check properties of simple
network protocols. (A Carnegie Mellon undergraduate did an honors thesis using
Nitpick to discover a aw in the Mobile IPv6 protocol [JNW00].)

Databases.We can use relational databases and other data models to discuss
all avors of invariants. Transactional systems require understanding executions,
observable behavior, consistency (correctness) constraints, and interference due
to concurrency.

User Interfaces. Modeling the user, environment, and system as a set of
interacting concurrent processes can provide the foundation for usage scenarios.
Using model checkers such as FDR makes sense here.

Undergraduate upper-level electives such as Arti�cial Intelligence and Graph-
ics presumably o�er other opportunities as well.

5



4 Future Work

All the real work is future work. The ideas sketched in this paper are just ideas of
what might be possible. We are faced with working out the details. The biggest
obstacle is getting \buy-in" from our colleagues: convincing co-instructors, cur-
ricula committees, and administrators that integrating formal methods unintru-
sively is a good thing to do.

Also, while philosophically in Section 1 we argued to emphasize concepts,
not notation, concrete notation is the conveyor of abstract ideas. To e�ectively
weave in the teaching of elemental concepts with existing courses means adapt-
ing notations and methods to the languages already in use. For example, using
ESC/Java makes sense to use in a data structures and algorithms course taught
in Java; but using Z tools for that same course may require too much additional
overhead.

The nitty-gritty hard future work is in thinking of the examples to use in
lectures, in designing appropriate homework and exam problems, and in making
learning these concepts and tools enjoyable.

We do not have to do everything, and we do not have to do everything all at
once. We can begin, for example, by discussing state machines in a programming
languages course, and by introducing model checkers in a homework assignment
or project of a computer architecture course. The main thing is to start doing
something!

Acknowledgments

This paper appears in the Proceedings of the 8th International Conference on

Algebraic Methodology and Software Technology, AMAST 2000, Iowa City, USA,
May 20-27, 2000, Lecture Notes in Computer Science 1816, Teodor Rus, edi-
tor, Springer-Verlag, pp. 2{7. It is an extended abstract of an invited talk for
Education Day.

References

[CGP99] Clarke, E.M., O. Grumberg, and D.A. Peled: Model Checking, MIT Press,
1999.

[CSRC00] Compaq Systems Research Center,
http://www.research.compaq.com/SRC/esc/Esc.html

[DLNS98] Detlefs, D., K. Rustan M. Leino, G. Nelson, and J.B. Saxe: Extended Static
Checking, Compaq SRC Research Report 159, 1998.

[EGHT94] Evans, D., J. Guttag, J.J. Horning, and Y.M. Tan: LCLint: A Tool for Using
Speci�ations to Check Code, SIGSOFT Symposium on the Foudations of Software

Engineering, December 1994.

[Gr81] Gries, D.: The Science of Programming, Springer-Verlag, 1981.

[GH93] Guttag, J.V. and J.J. Horning, editors: Larch: Languages and Tools for Formal
Speci�cation, Springer-Verlag, 1993.

6



[JD96] Jackson, D. and C. Damon: \Nitpick Reference Manual," Carnegie Mellon
University Technical Report CMU-CS-96-109, Computer Science Department, Pitts-
burgh, PA, January 1996.

[Ja00] Jackson, D.: \Alloy: A Lightweight Object Modelling Notation," MIT Technical
Report 797, February 2000.

[JNW00] Jackson, D., Y. Ng, and J.M. Wing: \A Nitpick Analysis of Mobile IPv6,"
to appear in Formal Aspects of Computing, accepted January 2000.

7


