
E�cient Implementation of the MPI-IO System for Distributed Memory

Multiprocessors

Maciej Brodowicz

University of Houston

Houston, TX, 77204

maciek@hpc.uh.edu

Expected graduation date: Spring 1998

My research concentrates on e�cient implementation of parallel �le systems. Its main focus are MPI-IO systems for
distributed memorymultiprocessors. The target platform for the developed code is the NEC Cenju-3 supercomputer,
however the sources are directly portable to any homogeneous MPP running the Mach 3.0 microkernel. An important
feature of my implementation is that I/O nodes of the underlying architecture need only the ability to transfer blocks
of data between local disk and memory plus few standard �le operations (open, close, unlink, sync). Thus, the
developed MPI-IO system is designed to run not only on machines supporting standard UNIX �le system, but also
on ones equipped with less sophisticated interfaces (e.g. memory mapped �les).
Unlike many common MPI-IO implementations providing only library support for MPI-IO functionality ([Thakur

et al.], [Fineberg et al.]), this implementation consists of two components: library and server. The library (compliant
with MPI-IO draft version 0.5 [MPI-IO]1) is linked to the client application. It provides wrappers for MPI-IO
functions and performs the �rst stage of request processing before submitting them to the server. This minimizes
the load on the server (as the requests, which can be completely satis�ed within library are never passed on to the
server). Tra�c reduction can also be achieved; a single remote procedure call to the server can in e�ect carry multiple
data requests (especially if fragmented MPI datatypes are used). The servers' task is to relay �le blocks from the
remote to the requesting nodes and to keep track of them in a coherent manner. The blocks are cached exclusively at
the server tasks, which simpli�es consistency algorithms (no caching at the clients). Servers also coordinate accesses
to the parallel �les, so that, for example, deletion of a �le requested by one of the applications is delayed until there
are no accessors for that �le, hence minimizing possible damage.
The current version of the MPI-IO library supports the full set of data transfer functions (including accesses

with explicit, individual and shared pointers as well as their non-blocking counterparts). The library also includes
environment initialization and termination calls, as well as �le open, close, delete, control, sync and seek

operations. Asynchronous request processing is achieved with set of test, wait and request free functions using
native MPI-IO representations. The library takes advantage of �le hints (�le info), which are used to de�ne custom
striping of �le data across the disks. They also inform the system about anticipated access patterns.
The servers implement the parallel �le system. In order to maximize the performance, a number of improvements

(some suggested by theoretical research papers) was incorporated to the code:

Alternative access modes. Traditionally, coherency algorithms designate a single �le block as the minimal
consistency unit. While our server can operate in block-based access (multiple readers, single writer mode), we also
investigate direct update propagation. In this mode, small amounts of data to be read or written are sent directly
from (to) the block owner to (from) the requester, conserving the network bandwidth. Moreover, if all applications
accessing the �le conform to that mode, the target data blocks in most cases may be found in the server's cache,
saving additional message latency to forward the request to the current block owner.

1The reason for not choosing the I/O chapter of the MPI-2 [Message-Passing Interface Forum] is that there exist no freely available
implementations of that standard. Certain general features of MPI-2 are required to implement some functionality of MPI-IO, e.g.
non-blocking requests.



2 � Maciej Brodowicz

For writes, an additional write bu�ering mode may be enabled, which explicitly trades atomicity control for
improved write performance. The server accumulates data in especially marked, dynamically adjustable cache areas,
without redistributing them to the block owning nodes. Since only minimal presorting is applied to keep track of
data inserted to the write bu�er, writes are performed almost with full memory bandwidth until the bu�er becomes
full. This event, or explicit request triggers the data propagation to the owning nodes, allowing for e�cient use of
the network bandwidth.
All above mentioned modes operate under the same, uni�ed coherency scheme.

Cooperative caching. The server incorporates support for the idea �rst presented in [Dahlin et al.], which
imposes collective management of all distributed caches in the system. The e�ects of discarding a block from cache
are minimal, if we know that its copy is still cached elsewhere. At the same time ejection of singlet blocks is delayed
as much as possible. Our server implements a distributed cooperative directory, which at the same time plays a
role similar to hash queues in UNIX �le systems (e�cient block addressing). The replacement scheme is N-chance
forwarding, which performed best in simulations mentioned in the original paper.

Low-level block presorting. Ordering blocks before performing a low level disk access is one of crucial ideas
of David Kotz's disk-directed I/O. Currently, we entertain the idea of applying it automatically, without need for
explicit synchronization of collective accesses to the disk. The server maintains two queues for urgent accesses and
prefetch requests; all block accesses are sorted according to the block number. Of course, a starvation avoidance
mechanism for out-of-order requests is provided. The requests are extracted from the queues by a single-threaded
block I/O manager, with priority given to the urgent queue.

Tuned message passing. The e�ciency of message passing in parallel I/O context has received much attention
([Chen et al.], [Cypher et al.], [Foster et al.]). This related work, however, is not always directly applicable to general
parallel �le servers due to overly restrictive assumptions (e.g. explicit synchronicity) or neglection of secondary
e�ects (e.g. the universal assumption of linear dependence between message latency vs. message size). Our current
experiments help to estimate message sizes and request merging factors for optimal performance.

REFERENCES

Chen, Y., Winslett, M., Seamons, K. E., Kuo, S., Cho, Y., and Subramaniam, M. 1996. Scalable message passing in Panda. In
Proceedings of the Fourth Workshop on Input/Output in Parallel and Distributed Systems. ACM Press, 109{121.

Cypher, R., Ho, A., Konstantinidou, S., and Messina, P. 1996. A quantitative study of parallel scienti�c applications with explicit
communication. Journal of Supercomputing 10, 1 (March), 5{24.

Dahlin, M. D., Wang, R. Y., Anderson, T. E., and Patterson, D. A. 1994. Cooperative caching: using remote client memory to
improve �le system performance. Proceedings of the First Symposium on Operating Systems Design and Implementation.

Fineberg, S. A., Wong, P., Nitzberg, B., and Kuszmaul, C. 1996. PMPIO| a portable implementation of MPI-IO. In Proceedings

of the Sixth Symposium on the Frontiers of Massively Parallel Computation. IEEE Computer Society Press, 188{195.

Foster, I., Kohr, Jr., D., Krishnaiyer, R., and Mogill, J. 1997. Remote I/O: Fast access to distant storage. In Proceedings of the

Fifth Workshop on Input/Output in Parallel and Distributed Systems. ACM Press, San Jose, CA, 14{25.

Message-Passing Interface Forum. 1997. MPI-2.0: Extensions to the Message-Passing Interface. MPI Forum, Chapter 9.

MPI-IO 1996. MPI-IO: a parallel �le I/O interface for MPI. The MPI-IO Committee. Version 0.5. Available at
http://lovelace.nas.nasa.gov/MPI-IO/mpi-io-report.0.5.ps.

Thakur, R., Lusk, E., and Gropp, W. 1997. User's guide for ROMIO, a high-performance, portable MPI-IO implementation. Tech.
Rep. ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne National Laboratory. October.


