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General Intuition I 

• We have: a discriminatively 
trained classification model for 
category A. 

• We need: a classifier for a new 
category B. 

• Can we use it to make learning 
a model for category B easier? 

– Less examples? 

– Better accuracy? 

 



General Intuition II 

Tabula Rasa: Model Transfer for Object Category Detection, Aytar & Zisserman 
Motorbike images courtesy of the Caltech Vision Group, collated by Svetlana Lazebnik 



Background I 

• Good:  

– There has been considerable progress recently in 
object category detection. 

– Successful tools are readily available. 

•  Bad:  

– current methods require training the detector 
from scratch. 

– Training from scratch is very costly in terms of 
sample size required. 

– Not scalable in multi-category settings. 



Background II 

• Possible solution: 

–Represent categories by their attributes, 
and re-use attributes. 

–Attributes are learned from multiple 
classes, so training data is abundant. 

–Attributes learned can be used even for 
categories that didn’t “participate” in the 
learning, as long as they share the attribute. 

 



Background III 

Wheel Detector 

Use for detection of objects with 
“wheel” attributes 



(This idea should sound familiar…) 
“Sharing visual features for multiclass and multiview 
object detection”, Torralba et al., 2007 

– Training multiple category classifiers at the same time with 
lower sample and runtime complexity using shared features. 

– Uses a variation on boosting and shared regression stumps. 



Torralba et al. – cont. I 

Number of 
required 
features 

Effect on 
learning 

12 different categories 12 views of same category 



Torralba et al. – cont. II 

• There is a difference in motivations here. 

• Torralba et al. are mostly concerned with 
scalability. 

– Reduce the cost of training multiple detectors. 

– Use shared features when learning full sets of 
distinctive features per category is infeasible. 

• Knowledge transfer is more concerned with 
sample complexity.  

– Use preexisting related classifiers when new 
examples are hard to come by. 



• Unfortunately, this approach proves inferior in 
practice to discriminative training (true for both 
detection and classification). (true to when the paper was 

published…) 

 

 

(Back to our paper…) 

Wheel Detector 



Background IV 

• An alternative approach: 

– Benefit from previously-learned category 
detectors. 

– Previously learned categories should be similar. 

• We need a way to transfer information from 
one classifier to the next. 



Aytar & Zisserman I 
• Consider the SVM discriminative training 

framework for HOG template models of Dalal 
& Triggs & Felzenszwalb et al. 

• Observation: learned template records the 
spatial layout of positive and negative 
orientations. 

• Classes that are geometrically similar will give 
rise to similar templates. 



Aytar & Zisserman II 

• Apply transfer learning from one detector to 
another. 

• To do this, the previously learned template is 
used as a regularizer in the cost function of 
the new classifier. 

• This enables learning with a reduced number 
of examples. 

 



Some (a few) Words on Regularization 
• From a Bayesian standpoint, it’s similar to 

introducing a prior. 

• Often used to prevent overfitting or solve ill posed 
problems. 

• A good example for regularization:  ridge regression 
a𝑟𝑔𝑚𝑖𝑛𝛽{ 𝑌 − 𝑋𝛽

2+ Γ𝛽 2} 

 

Images taken from Andrew Rosenberg’s slides, ML course, CUNY 



Model Transfer Support Vector 
Machines 

• We wish to detect a target object category. 

• We already have a well trained detector for a 
different source category. 

• Three strategies to transfer knowledge from 
the source detector to the target detector: 

– Adaptive SVMs 

– Projective Model Transfer SVMs 

– Deformable Adaptive SVMs 



Adaptive SVMs I 

• Learn from the source model 𝑤𝑠 by 
regularizing the distance between the learned 
model 𝑤 and 𝑤𝑠. 

• 𝑥𝑖  are the training examples, 𝑦𝑖 ∈ {−1,1} are 
the labels, and the loss function is the hinge 
loss: 
𝑙 𝑥𝑖 , 𝑦𝑖; 𝑤, 𝑏 = max(0, 1 − 𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ) 



Adaptive SVMs II 

• But now, our goal is to optimize:  

𝐿𝐴 = min
𝑤,𝑏
{ 𝑤 − Γ𝑤𝑠 2 + 𝐶  𝑙(𝑥𝑖 , 𝑦𝑖; 𝑤, 𝑏)

𝑁
𝑖 } 

 
• Γ controls the amount of transfer 

regularization, 𝐶 controls the weight of the 
loss function and 𝑁 is the number of samples. 

• Reminder: in regular SVMs we want to optimize: 

𝐿𝐴 = min
𝑤,𝑏
{ 𝑤 2 + 𝐶 𝑙(𝑥𝑖 , 𝑦𝑖; 𝑤, 𝑏)}

𝑁

𝑖

 



An Illustration 

minimize… 



Adaptive SVMs III 
• We note that if 𝑤𝑠 is normalized to 1 then: 

 

 𝑤 2 - “normal” SVM margin.  

 (−2Γ 𝑤 𝑐𝑜𝑠𝜃) - the transfer. 

 

• We wish to minimize 𝜃, the angle between 𝑤𝑠 
and 𝑤. 
 

• However, −2Γ 𝑤 𝑐𝑜𝑠𝜃 also encourages 𝑤 to 
be larger, so Γ controls a tradeoff between 
margin maximization and knowledge transfer. 



Projective Model Transfer SVMs I 
• Rather than transfer by maximizing 𝑤 𝑐𝑜𝑠𝜃, 

we can instead minimize the projection of 𝑤 
onto the separating hyperplane orthogonal to 
𝑤𝑠. 

• This directly translates to optimizing: 

 

 

 

• Where 𝑃 is the projection matrix: 



Yet another illustration 



Projective Model Transfer SVMs II 

• We note that 𝑃𝑤 2 is the squared norm of 
the projection of 𝑤 onto the source 
hyperplane: 

• 𝑤𝑇𝑤𝑠 ≥ 0 constraints 𝑤 to the positive 
halfspace defined by 𝑤𝑠. 

• Here too Γ controls the transfer. As Γ → 0, the 
PMT-SVM reduces to a classic SVM 
optimization problem. 



Deformable Adaptive SVMs I 
• Regularization shouldn’t be “equally forced”. 

• Imagine we have a deformable source 
template – small local deformations are 
allowed to better fit the source to the target. 

• For instance, when transferring from a 
motorbike wheel to a bicycle wheel: 

 

 

 

• We need more flexible regularization… 



Deformable Adaptive SVMs II 
• Local deformations are described as a flow of 

weight vectors from one cell to another, 
governed by the following flow definition: 

 

 

• 𝜏 represents the flow transformation, 𝑤𝑗
𝑠 is 

the 𝑗𝑡ℎ cell in the source template, and 𝑓𝑖𝑗  

denotes the amount of transfer from the 𝑗𝑡ℎ 
cell in the source to the 𝑖𝑡ℎ cell in the target. 

 

 

 



Deformable Adaptive SVMs III 

𝑊𝑗 
𝑊𝑖  

𝑓𝑖𝑗 



Deformable Adaptive SVMs IV 
• Now, the Deformable-Adaptive-SVM is simply 

a generalization of the adaptive SVM we’ve 
seen before, with 𝑤𝑠 replaced with its 
deformable version 𝜏(𝑤𝑠): 

 

 

 

 

 (𝜆 is the weight of the deformation, 𝑑𝑖𝑗 is the 

 distance between cells 𝑖, 𝑗 and 𝑑 is the penalty 
 for overflow) 



Deformable Adaptive SVMs V 

• 𝜆 in effect controls the extent of deformability.  

• High 𝜆 values make the model more rigid (you 
pay more for the deformations you make), 
pushing the solution closer to that of the 
simple adaptive SVM.  

• Low 𝜆 values allow for a more flexible source 
template with less regularization. 

• (Amazingly enough, the term 𝑤 − Γ𝜏(𝑤𝑠 2 
is still convex.)   



Experiments I.I 
• In general, transfer learning can offer three 

major benefits: 

– Higher starting point 

– Higher slope (we learn faster) 

– Higher asymptote (learning converges into a 
better classifier) 

 



Experiments I.II 
• Two types of transfer experiments: 

– Specialization (we know how to recognize 
quadrupeds, now we want to recognize horses) 

 

 

 
 

– Interclass transfer (we know how to recognize 
horses, now we want to recognize donkeys) 



Experiments II – Interclass 

• Baseline detectors are the SVM classifiers 
trained directly without any transfer learning. 

• Two scenarios studied:  

– transferring from motorbikes to bicycles 

– transferring from cows to horses 

• Two variants discussed: 

– One shot learning – we can only choose one (!) 
example from the target class, and study our 
starting point. 

– Multiple shot learning   



Experiments III – One Shot Learning 

Top 15 

Low 15 

(middle) 

(Looks good, but a bit unfair, especially when using lower-grade 
examples from the target category…) 



Experiments IV – Multiple Shot 

(We note that by ~10 examples, basic SVM has caught up with us…) 



Experiments V – Multiple Shot 



Experiments VI - Specialization 
• “Quadruped” detector trained with instances of 

cows, sheep and horses. 

• Then specialization for cows and horses was 
attempted via transfer. 

 

(Once again we note that by ~15-20 examples, basic SVM has 
caught up with us…) 



Discussion 
• Pros: 

– An interesting and fairly straightforward expansion 
of the basic category detection scheme. 

– Provides a far better starting point for classifying 
new categories. 

– A different perspective on multi-category settings. 

• Cons: 

– “Closeness” between classes is very poorly defined. 

– One-shot experiments not particularly convincing. 

– Advantage degrades the more samples you have. 

– PMT-SVM doesn’t scale very well… 



Something Related (But Different) 

“Hedging Your Bets: Optimizing Accuracy Specificity 
Trade-Offs in Large Scale Visual Recognition”, Deng et 
al., 2012 

– Object categories form a semantic hierarchy. 

– Make more reliable predictions about less specific 
classification when faced with uncertainty. 

 

 

 

(“If you liked Aytar & Zisserman, you might also enjoy this paper”) 



Deng et al. – cont. I 
• Given a hierarchy graph, a label is correct 

either if it’s the right leaf, or any of its 
ancestors. 

• In this setting, maximizing accuracy alone 
cannot work. 

• Instead – maximize information gain while 
maintaining an error rate ≥ a required 
threshold. 

• Done via a generalization of the Lagrange 
multipliers method, with regular SVM one-vs-
all classifiers for posterior probabilities on the 
leaves. 



Deng et al. – cont. II 
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