
Name: uteid: 1

CS439H: Fall 2011 – Midterm 1

Instructions

• Stop writing when“time” is announced at the end of the exam. I will leave the room as soon as I’ve
given people a fair chance to bring me the exams. I will not accept exams once my foot crosses the
threshold.

• This midterm is closed book and notes.

• If a question is unclear, write down the point you find ambiguous, make a reasonable interpretation,
write down that interpretation, and proceed.

• For full credit, show your work and explain your reasoning and any important assumptions.

Write brief, precise, and legible answers. Rambling brain-dumps are unlikely to be effective.
Think before you start writing so that you can crisply describe a simple approach rather than
muddle your way through a complex description that “works around” each issue as you come to it.
Perhaps jot down an outline to organize your thoughts. And remember, a picture can be worth
1000 words.

• Write your name and uteid on every page of this exam.

Name: uteid: 2

1. (8) Suppose you had a choice between two file systems. System 1’s vendor guarantees it will be 99%
reliable and 100% available. System 2’s vendor guarantees it will be 100% reliable and 99% available.
Which would you pick?

2. (16) Virtualization uses a hypervisor running in privileged mode to create a virtual machine that runs
in unprivileged mode. Then, unmodified guest operating systems can run in the virtual machine. The
hypervisor can provide the illusion that each guest operating system is running on its own machine in
privileged mode.

Early versions of the x86 architecture (pre-2006) were not completely virtualizable – these system could
not guarantee to run unmodified guest operating systems properly. One problem was the popf “pop
flags” instruction. When popf was run in privileged mode, it could change both the ALU flags (e.g.,
ZF) and the systems flags (e.g., IF, which controls interrupt delivery), and when popf was run in
unprivileged mode, it could change just the ALU flags.

Why do instructions like popf prevent transparent virtualization of the (old) x86 architecture?

How would you change the x86 hardware to fix this problem?

3. (4) List the four necessary conditions for deadlock.

Name: uteid: 3

4. (16) For each of the data structures listed in the table below, indicate (by checking the box in the
appropriate column) whether the memory identified is stored in per-thread areas of memory (i.e., it
refers to per-thread state) or if it is stored in areas of memory that can be shared by many threads
(i.e., it refers to potentially shared state).

int max = 42;

char message [] = "Hello world";

int

main(int argc , char **argv)

{

char *msg = message;

sthread_t *t = (sthread_t *) malloc(sizeof(sthread_t));

sthread_init(t, go , msg);

t = (sthread_t *) malloc(sizeof(sthread_t));

sthread_init(t, foo , NULL);

}

void

go(char *toPrint)

{

int OK = 1;

static int done = 0;

if(strlen(toPrint) > max){

OK = 0;

}

done = 1;

}

void

foo(void *notUsed){

// Code omitted

...

}

Private, per-thread state Shared/sharable state
heap � �
stack � �
message � �
msg � �
toPrint � �
argc � �
OK � �
max � �
t � �
go � �
done � �

Name: uteid: 4

5. (8) Consider a virtual memory system with 42-bit physical addresses and 6 control bits per page. How
large does the page size have to be to allow each page table entry to fit in a 4-byte word?

6. (8) Consider a virtual memory system with 48-bit virtual addresses, 44-bit physical addresses, 16KB
pages, and 7 control bits per word. Assuming a multi-level page table arrangement, how many levels
of page tables should this system use?

7. (8) The Bryant and O’Halloran book says that it is safe to do conservative mark and sweep garbage
collection in a C program. This is not quite true. Write a short ’C’ program (detailed pseudocode is
fine) that can dereference a pointer that could point to garbage collected memory after a mark and
sweep pass.

The key thing here is to do some pointer arithmatic such that allocated memory has no pointer pointing
into it, but you can construct such a pointer.

char *hidden = malloc (100 * sizeof(char));

sprintf(hidden , "Hidden .");

hidden = hidden /2;

...

// mark and sweep happens

...

hidden = hidden * 2;

printf(hidden);

Name: uteid: 5

8. (32) Implement a priority condition variable. A priority condition variable (PCV) has 3 public methods:

void PCV::wait(Lock *lock , int priority);

void PCV:: signal(Lock *lock);

void PCV:: broadcast(Lock *lock , int priority);

These methods are similar to those of a standard condition variable. The one difference is that a PCV
enforces both priority and ordering.

In particular, signal(Lock *lock) causes the currently waiting thread with the highest priority to
return from wait(); if multiple threads with the same priority are waiting, then the one that is waiting
the longest should return before any that have been waiting a shorter amount of time.

Similarly, broadcast(Lock *lock, int priority) causes all currently waiting threads whose priority
equals or exceeds priority to return from wait().

For full credit, you must follow the thread coding standards discussed in class.

class PCV Member variables

type name initial value (if any)

Name: uteid: 6

PCV::wait(Lock *lock, int priority){

// Wait should atomically release the callerLock

// and start waiting until signalled. And it should

// reacquire the lock before returning.

//

// NOTE: Since we (a) want to follow the Standards and

// (b) don ’t want to risk deadlock , we break wait()

// into two pieces

doWait(callerLock , priority);

lock ->acquire ();

}

void

PCV:: doWait(Lock *lock , int priority)\{

myLock.acquire ();

lock ->release ();

WaitRecord *wr = new WaitRecord(priority);

waiting.insertSortedByPriorityAndInsertOrder(wr);

while (!wr.okToGo){

cv.wait(& myLock);

}

free(wr);

myLock.release ();

}
PCV::signal(Lock *lock){

myLock.acquire ();

waiting.markFirstOkToGo ();

cv.broadcast (& myLock);

myLock.release ();

}
PCV::broadcast(Lock *lock, int priority){

myLock.acquire ();

waiting.markPriorityOkToGo(priority);

cv.broadcast (& myLock);

myLock.release ();

}

Note:

WaitRecord has 4 fields: priority (initialized) and okToGo (initially false), and next/prev

Here are the helper functions (it was OK to include much less detail than this.)

SortedList :: insertSortedByPriorityAndInsertOrder(WaitRecord *e)

{

WaitRecord *cur = head;

while(cur && cur ->next && cur ->next >= e->priority){

cur = cur ->next;

}

e->next = cur ->next;

e->prev = cur;

if(cur ->next){

Name: uteid: 7

e->next ->prev = e;

}

if(cur != head){

e->prev ->next = e;

}

else{

head = e;

}

}

// Note: also need to remove first from

// list to avoid remarking it

SortedList :: markFirstOKToGo ()

{

WaitRecord *cur = head;

if(cur){

cur ->OKToGo = true;

head = cur ->next;

if(head){

head ->prev = NULL;

}

}

return;

}

SortedList :: markFirstOKToGo(int pri)

{

while(head && head ->priority >= pri){

markFirstOKToGo ();

}

return;

}

Name: uteid: 8

This page intentionally left almost blank

This page intentionally left almost blank

