
CS 439, Spring 2012

Lab Assignment 1: Fork/exec
Due: Monday, Jan 30, 5:59PM
Lab Assignment 2a and 2b: Signal handling, Unix Shell
Due: Monday, Feb. 6, 5:59PM

Introduction

The purpose of this assignment is to become more familiar with the concepts of process control and sig-
nalling. You’ll do this by writing a simple Unix shell program that supports job control.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page or Piazza.

Note: This project will be graded on the UTCS public linux machines. Although you are welcome to do
testing and development on any platform you like, we can not assist you in setting up other environments,
and you must test and do final debugging on the UTCS public linux machines. The statement “It worked on
my machine” will not be considered in the grading process.

Hand Out Instructions

We provide a file shlab-handout.tar that contains a templatefor your program along with a number of useful
helper functions. Get it from the class web page. E.g.,

unix> wget http://www.cs.utexas.edu/users/dahlin/Clas ses/439/labs/shlab-handout.tar

Put the fileshlab-handout.tar to the protected directory (thelab directory) in which you plan to do
your work. Then do the following:

• Type the commandtar xvf shlab-handout.tar to expand the tarfile.

1

• Type the commandmake to compile and link some test routines.

• Type your team member names, ut eids at the top of the fileREADME.

Looking at thetsh.c (tiny shell) file, you will see that it contains a functional skeleton of asimple Unix
shell. To help you get started, we have already implemented the less interesting functions. Your assignment
is to complete the remaining empty functions listed below. As a sanity check for you, we’ve listed the
approximate number of lines of code for each of these functions in our reference solution (which includes
lots of comments).

• eval : Main routine that parses and interprets the command line. [70 lines]

• builtin cmd: Recognizes and interprets the built-in commands:quit , fg , bg , andjobs . [25
lines]

• do bgfg : Implements thebg andfg built-in commands. [50 lines]

• waitfg : Waits for a foreground job to complete. [20 lines]

• sigchld handler : Catches SIGCHILD signals. [80 lines]

• sigint handler : Catches SIGINT (ctrl-c) signals. [15 lines]

• sigtstp handler : Catches SIGTSTP (ctrl-z) signals. [15 lines]

Each time you modify yourtsh.c file, type make to recompile it. To run your shell, typetsh to the
command line:

unix> ./tsh
tsh> [type commands to your shell here]

General Overview of Unix Shells

A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell repeat-
edly prints a prompt, waits for acommand lineon stdin , and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimited by whitespace. The first word in the
command line is either the name of a built-in command or the pathname of an executable file. The remaining
words are command-line arguments. If the first word is a built-in command, the shell immediately executes
the command in the current process. Otherwise, the word is assumed to be the pathname of an executable
program. In this case, the shell forks a child process, then loads and runs the program in the context of the
child. The child processes created as a result of interpreting a single command line are known collectively
as ajob. In general, a job can consist of multiple child processes connected by Unix pipes.

If the command line ends with an ampersand ”&”, then the job runs in thebackground, which means that
the shell does not wait for the job to terminate before printing the prompt and awaiting the next command

2

line. Otherwise, the job runs in theforeground, which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any point in time, at most one job can be running in the
foreground. However, an arbitrary number of jobs can run in the background.

For example, typing the command line

tsh> jobs

causes the shell to execute the built-injobs command. Typing the command line

tsh> /bin/ls -l -d

runs thels program in the foreground. By convention, the shell ensuresthat when the program begins
executing its main routine

int main(int argc, char * argv[])

theargc andargv arguments have the following values:

• argc == 3 ,

• argv[0] == ‘‘/bin/ls’’ ,

• argv[1]== ‘‘-l’’ ,

• argv[2]== ‘‘-d’’ .

Alternatively, typing the command line

tsh> /bin/ls -l -d &

runs thels program in the background.

Unix shells support the notion ofjob control, which allows users to move jobs back and forth between back-
ground and foreground, and to change the process state (running, stopped, or terminated) of the processes
in a job. Typingctrl-c causes a SIGINT signal to be delivered to each process in the foreground job. The
default action for SIGINT is to terminate the process. Similarly, typingctrl-z causes a SIGTSTP signal
to be delivered to each process in the foreground job. The default action for SIGTSTP is to place a process
in the stopped state, where it remains until it is awakened bythe receipt of a SIGCONT signal. Unix shells
also provide various built-in commands that support job control. For example:

• jobs : List the running and stopped background jobs.

• bg <job> : Change a stopped background job to a running background job.

• fg <job> : Change a stopped or running background job to a running in the foreground.

• kill <job> : Terminate a job.

3

Lab 1: Fork/exec

In this phase of the project, you will learn about thefork andexec system calls that you will use in the
rest of the project.

Part 1-1: Reading

Read every word of sections 3 and 4 of chapter 8 of Bryant and O’Hallaron.

Read every word of this handout before you write any code.

Part 1-2: Fibonacci

Updatefib.c so that if invoked on the command line with some integer argumentn, it recursively com-
putes thenth Fibonacci number (n ≤ 13).

e.g.,

unix> fib 3
2
unix> fib 10
55

The trick is that each recursive call must be made by a new process, so you will call fork() and then have
the new child process calldoFib() .

The parent must wait for the child to complete and you need to figure out how to pass the result of the child’s
computation to its parent.

Part 1-3: Fork/Exec

The fork system call creates a child process that is nearly identical to the parent. The exec call replaces the
state of the currently running process with a new state to start running a new program in the current process.

Your job is to create a prototype for the shell you will be creating later. This prototype waits for a line of
input. If the line is “quit”, it exits. Otherwise, it parses the line and attempts to execute the program at the
path specified by the first word with the arguments specified bythe remaining words. It waits for that job to
finish. Then it waits for the next line of input.

• The prompt should be the string “psh> ”.

• The command line typed by the user should consist of anameand zero or more arguments, all sepa-
rated by one or more spaces. Ifname is a built-in command, thenpsh should handle it immediately
and wait for the next command line. Otherwise,psh should assume thatname is the path of an
executable file, which it loads and runs in the context of a child process (In this context, the termjob

4

refers to this child process). Your shell then waits for thatjob to finish. Then it waits for the next line
of input.

All commands and jobs are executed in the foreground. In thisphase you don’t have to worry about
background jobs. You also can assume that jobs execute untilthey exit; you don’t need to worry about
signal handling.

• Your shell should implement one built-in command:quit . If the user typesquit , your shell should
exit.

E.g.,

psh> /bin/ls -l -d

runs thels program in the foreground.

We have provided psh.c, which provides framework for your shell, and util.h/util.c which provides some
helper functions. Read these files.

Update the file psh.c by implementing the functionseval() , which themain() function calls to process
1 line of input, andbuiltin cmd() , which youreval() function should call to parse and process the
built-in quit command. (Later, you will extend the built-in command function to handle other built-in
commands.)

Lab 2a: Signal handling, Shell

Part 2a-1: Reading

Read every word of section 5 of chapter 8 of Bryant and O’Hallaron. Examine the code for theSignal()
function inutil.c .

Part 2a-2: Signal handling

Write a program inhandle.c that first uses thegetpid() system call to find its process ID, then prints
that ID, and finally loops continuously, printing “Still here\n” once every second. Set up a signal handler
so that if you hit̂ c (ctrl-c), the program prints “Nice try.\n” to the screen and continues to loop.

Note: The printf() function is technically unsafe to use in a signal handler. A safer way to print the
message is to call

ssize t bytes;
const int STDOUT = 1;
bytes = write(STDOUT, ‘‘Nice try. \ n’’, 10);
if(bytes != 10)

exit(-999);

5

Note: You should use thenanosleep() library call rather than thesleep() call so that you can main-
tain your 1-second interval between “Still here” messages no matter how quickly the user hitsˆ c.

You can terminate this program usingkill -9 . For example, if the process ID is 4321

unix> kill -9 4321

Part 2a-3: Signal sending

Update the program from Part 2-2 to catch theSIGUSR1signal, print “exiting”, and exit with status equal
to 1.

Now write a programmykill.c that takes a process ID as an argument and that sends theSIGUSR1
signal to the specified process ID.

e.g.,
unix> handle
4321
Still here
Still here
Still here
exiting
unix>

unix> mykill 4321
unix>

Part 2a-4: Signal mechanics

If you compile a C program with the -S flag, the compiler produces the assembly language corresponding
the the code it would generate for the program.

e.g.,

unix> gcc -S handle.c
unix> cat handle.S
...

Also, in the gdb debugger, you can see the assembly code for a function e.g.,

unix> gdb handle
(gdb) disassemble main
Dump of assembler code for function main:
0x0000000100000970 <main+0>: push %rbp
0x0000000100000971 <main+1>: mov %rsp,%rbp
0x0000000100000974 <main+4>: push %r12
0x0000000100000976 <main+6>: push %rbx
...

In gdb, you can put a breakpoint for a function

6

(gdb) break main
Breakpoint 1 at 0x10000097b: file handle.c, line 30.
(gdb)

and you canstep to the next C/C++ instruction orstepi to the next assembly instruction

(gdb) run
Starting program: /Users/dahlin/Classes/439/labs/shla b/src/handle

Breakpoint 1, main (argc=1, argv=0x7fff5fbff6e0) at handl e.c:30
30 int pid = getpid();
(gdb) step
31 printf("%d \ n", pid);
(gdb) stepi
0x0000000100000989 31 printf("%d \ n", pid);
(gdb) stepi
0x000000010000098b 31 printf("%d \ n", pid);
(gdb)

Finally, you can tell GDB to pass a particular signal to your program

(gdb) handle SIGUSR1 pass
Signal Stop Print Pass to program Description
SIGUSR1 Yes Yes Yes User defined signal 1
(gdb) handle SIGUSR1 nostop
Signal Stop Print Pass to program Description
SIGUSR1 No Yes Yes User defined signal 1
(gdb)

In the file README, answer the following questions

1. What is the last assembly language instruction executed by the signal handler function that you write?

2. After the instruction just identified executes, what is the next assembly language instruction executed?

3. When the signal handler finishes running, it must restore all of the registers from the interrupted thread
to exactly their values before the signal occurred. How is this done?

Lab 2b: Shell

In this phase of the project, you will implement your simple shell, tsh .

Your tsh shell should have the following features:

• The prompt should be the string “tsh> ”.

7

• The command line typed by the user should consist of anameand zero or more arguments, all sepa-
rated by one or more spaces. Ifname is a built-in command, thentsh should handle it immediately
and wait for the next command line. Otherwise,tsh should assume thatname is the path of an
executable file, which it loads and runs in the context of an initial child process (In this context, the
term job refers to this initial child process).

• tsh need not support pipes (|) or I/O redirection (< and>).

• Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current fore-
ground job, as well as any descendents of that job (e.g., any child processes that it forked). If there is
no foreground job, then the signal should have no effect.

• If the command line ends with an ampersand&, then tsh should run the job in the background.
Otherwise, it should run the job in the foreground.

• Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive integer
assigned bytsh . JIDs should be denoted on the command line by the prefix ’%’. For example, “%5”
denotes JID 5, and “5” denotes PID 5. (We have provided you with all of the routinesyou need for
manipulating the job list.)

• tsh should support the following built-in commands:

– Thequit command terminates the shell.

– The jobs command lists all background jobs.

– Thebg <job> command restarts<job> by sending it a SIGCONT signal, and then runs it in
the background. The<job> argument can be either a PID or a JID.

– Thefg <job> command restarts<job> by sending it a SIGCONT signal, and then runs it in
the foreground. The<job> argument can be either a PID or a JID.

• tsh should reap all of its zombie children. If any job terminatesbecause it receives a signal that
it didn’t catch, thentsh should recognize this event and print a message with the job’s PID and a
description of the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executabletshref is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell shouldbehave.Your tsh shell should emit output
that is identical to the reference solution(except for PIDs, of course, which change from run to run).

Shell driver. Thesdriver.pl program executes a shell as a child process, sends it commands and signals
as directed by atrace file, and captures and displays the output from the shell.

Use the -h argument to find out the usage ofsdriver.pl :

unix> ./sdriver.pl -h

8

Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>
Options:

-h Print this message
-v Be more verbose
-t <trace> Trace file
-s <shell> Shell program to test
-a <args> Shell arguments
-g Generate output for autograder

We have also provided 16 trace files (trace {01-16 }.txt) that you will use in conjunction with the shell
driver to test the correctness of your shell. The lower-numbered trace files do very simple tests, and the
higher-numbered tests do more complicated tests.

You can run the shell driver on your shell using trace filetrace01.txt (for instance) by typing:

unix> ./sdriver.pl -t trace01.txt -s ./tsh -a "-p"

(the-a "-p" argument tells your shell not to emit a prompt), or

unix> make test01

Similarly, to compare your result with the reference shell,you can run the trace driver on the reference shell
by typing:

unix> ./sdriver.pl -t trace01.txt -s ./tshref -a "-p"

or

unix> make rtest01

For your reference,tshref.out gives the output of the reference solution on all races. Thismight be
more convenient for you than manually running the shell driver on all trace files.

The neat thing about the trace files is that they generate the same output you would have gotten had you run
your shell interactively (except for an initial comment that identifies the trace). For example:

bass> make test15
./sdriver.pl -t trace15.txt -s ./tsh -a "-p"
#
trace15.txt - Putting it all together
#
tsh> ./bogus
./bogus: Command not found.
tsh> ./myspin 10
Job (9721) terminated by signal 2
tsh> ./myspin 3 &
[1] (9723) ./myspin 3 &
tsh> ./myspin 4 &

9

[2] (9725) ./myspin 4 &
tsh> jobs
[1] (9723) Running ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> fg %1
Job [1] (9723) stopped by signal 20
tsh> jobs
[1] (9723) Stopped ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> bg %3
%3: No such job
tsh> bg %1
[1] (9723) ./myspin 3 &
tsh> jobs
[1] (9723) Running ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> fg %1
tsh> quit
bass>

Your solution shell will be tested for correctness on a Linuxmachine, using the same shell driver and trace
files that were included in your lab directory. Your shell should produceidentical output on these traces as
the reference shell, with only two exceptions:

• The PIDs can (and will) be different.

• The output of the/bin/ps commands intrace11.txt , trace12.txt , andtrace13.txt
will be different from run to run. However, the running states of anymysplit processes in the
output of the/bin/ps command should be identical.

Hints

General hints

• Thewaitpid , kill , fork , execve , setpgid , andsigprocmask functions will come in very
handy. The WUNTRACED and WNOHANG options towaitpid will also be useful.

• Programs such asmore , less , vi , andemacs do strange things with the terminal settings. Don’t
run these programs from your shell. Stick with simple text-based programs such as/bin/ls ,
/bin/ps , and/bin/echo .

Hints for part 2b

• Use the trace files to guide the development of your shell. Starting with trace01.txt , make
sure that your shell produces theidentical output as the reference shell. Then move on to trace file
trace02.txt , and so on.

10

• When you implement your signal handlers, be sure to sendSIGINT andSIGTSTPsignals to the en-
tire foreground process group, using “-pid ” instead of “pid ” in the argument to thekill function.
Thesdriver.pl program tests for this error.

• One of the tricky parts of the assignment is deciding on the allocation of work between thewaitfg
andsigchld handler functions. We recommend the following approach:

– In waitfg , use a busy loop around thesleep function.

– In sigchld handler , use exactly one call towaitpid .

While other solutions are possible, such as callingwaitpid in bothwaitfg andsigchld handler ,
these can be very confusing. It is simpler to do all reaping inthe handler.

Note that you probably can do something simpler for the prototype psh you build in part 1. Then, be
ready to change how this works when you get to part 3.

• In eval , the parent must usesigprocmask to block SIGCHLDsignals before it forks the child,
and then unblock these signals, again usingsigprocmask after it adds the child to the job list by
calling addjob . Since children inherit theblocked vectors of their parents, the child must be sure
to then unblockSIGCHLDsignals before it execs the new program.

The parent needs to block theSIGCHLDsignals in this way in order to avoid the race condition where
the child is reaped bysigchld handler (and thus removed from the job list)beforethe parent
callsaddjob .

• When you run your shell from the standard Unix shell, your shell is running in the foreground process
group. If your shell then creates a child process, by defaultthat child will also be a member of the
foreground process group. Since typingctrl-c sends a SIGINT to every process in the foreground
group, typingctrl-c will send a SIGINT to your shell, as well as to every process that your shell
created, which obviously isn’t correct.

Here is the workaround: After thefork , but before theexecve , the child process should call
setpgid(0, 0) , which puts the child in a new process group whose group ID is identical to the
child’s PID. This ensures that there will be only one process, your shell, in the foreground process
group. When you typectrl-c , the shell should catch the resulting SIGINT and then forward it
to the appropriate foreground job (or more precisely, the process group that contains the foreground
job).

Hand In Instructions

• Make sure you have included your names and UT-EIDs in the README.

• Create a tar file handin.tar that contains all of your source files, the README, and your Makefile.

• Use the turnin utility to submit your work

E.g., for lab 1:

11

unix> turnin -submit [TA] handin-439-shlab-1 handin.tar

for lab 2:

unix> turnin -submit [TA] handin-439-shlab-2 handin.tar

• The makefile automates the handin process

unix> make handin-1

etc.

Good luck!

12

