
CS 439: Systems II Mike Dahlin

 1 09/27/11

Lecture C5: Semaphores Shared objects, Monitors,
Condition Variables, and Bounded buffer

Review -- 1 min

• Hardware support for synchronization
• abstractions on top of hardware support (e.g., Lock)
• Shared objects

Outline - 1 min

Two kinds of synchronization
Monitor = lock + c.v. + shared state = shared object
Simple implementation
Best practices

Preview - 1 min

How to program with shared objects

Lecture - 32 min

1. Motivation
writing concurrent programs hard – coordinate updates to shared
memory

synchronization – coordinating multiple concurrent activities that are
using shared state

CS 439: Systems II Mike Dahlin

 2 09/27/11

Question: what are the right synchronization abstractions to make it
easy to build concurrent programs?

Answer will necessarily be a compromise :
• between making it easy to modify shared variables any time you

want and controlling when you can modify shared variables.
• between really flexible primitives that can be used in a lot of

different ways and simple primitives that can only be used one way
(but are more difficult to misuse)

Rules will seem a bit strange – why one definition and not another?
• no absolute answer
• history has shown that they are reasonably good – if you follow

these definitions, you will find writing correct code easier.
• for now just take them as a given; use it for a while; then, if you

can come up with something better, be my guest!

2. Shared object abstraction

[[PICTURE -- shared state, methods operating on shared state

-- example -- bounded buffer/producer consumer queue
-- methods: add(), remove()
-- state: linked list (or array or ...), fullCount, ...
-- Accessed by several threads --> must synchronize access]]

3. 2 “types” of synchronization
Convenient to break synchronization into two cases
(1) Mutual exclusion – only allow one thread to access a given set of

shared state at a time

E.g., bounded buffer

How do we do it?
Each shared object has lock and shared state variables
Public methods acquire the lock before reading/writing member
state variables

(2) Scheduling constraints – wait for some other thread to do
something

CS 439: Systems II Mike Dahlin

 3 09/27/11

E.g., bounded buffer....

General problem
e.g., wait for other thread to finish, wait for other thread to produce
work, wait for other thread to consume work, wait for other thread
to accept a connection, wait for other thread to get bytes off disk,
…

How do we do it?
Need new synchronization primitive "Wait until X"

4. Definition of Semaphores
like a generalized lock
first defined by Dijkstra in late 60’s
originally main synchronization primitive in Unix (now others
available)

semaphore – has a non-negative integer value and supports the
following two operations:
semaphore->P() – an atomic operation that waits for the semaphore to
become positive; then decrements it by 1
semaphore->V() – an atomic operation that increments the semaphore
by 1, waking up a waiting P if any

Like integers, except:
1) No negative values
2) Only operations are P() and V() – can’t read or write the value

(except to set it initially)
3) operations must be atomic – two P’s that occur together can’t

decrement the value below zero. Similarly, thread going to sleep in
P won’t miss wakeup from V, even if they both happen at about
the same time

binary semaphore – instead of an integer value, has a boolean value.
P waits until value is 1, then sets it to 0
V sets value to 1, waking up a waiting P if any

CS 439: Systems II Mike Dahlin

 4 09/27/11

5. Two uses of semaphores

5.1 mutual exclusion
When semaphores are used for mutual exclusion, the semaphore has
an initial value of 1, and P() is called before the critical section, and
V() is called after the critical section

semaphore = new Semaphore(1);
…
semaphore->P();
// critical section goes here
semaphore->V();

5.2 scheduling constraints

semaphores can be used to describe general scheduling constraints –
e.g. they provide a way to wait for something

usually in this case (but not always) the initial value for the semaphore
is 0

Example: Wait for another thread to get done processing a request

Admin - 3 min

CS 439: Systems II Mike Dahlin

 5 09/27/11

Lecture - 30 min

6. Producer-consumer with bounded buffer

6.1 problem definition
producer puts things into a shared buffer
consumer takes them out

need synchronization for coordinating producer and consumer

e.g. cpp | cc1 | cc2 | as
e.g., read/write network/disk (e.g., web server reads from disk, sends
to network while your web client reads from network and draws to
screen)

Don’t want producer and consumer to operate in lock-step, so put a
fixed sized buffer between them.
Synchronization – producer must wait if buffer is full; consumer must
wait if buffer is empty

e.g. coke machine
producer is delivery person
consumer is students and faculty

Notice: shared object (coke machine) separate from threads (delivery
person, students, faculty). Shared object coordinates activity of
threads.
Common confusion on project – try to do the synchronization within
the threads’ code. No, the synchronization happens within the shared
objects. “Let the shared objects do the work.”

Solution uses semaphores for both mutex and scheduling

6.2 Correctness constraints for solution
Synchronization problems have semaphores represent 2 types of
constraint

CS 439: Systems II Mike Dahlin

 6 09/27/11

 mutual exclusions
 wait for some event

When you start working on a synchronization problem, first define
the mutual exclusion constraints, then ask “when does a thread
wait”, and create a separate synchronization variable representing
each constraint

QUESTION: what are the constraints for bounded buffer?
1) only one thread can manipulate buffer queue at a time
mutual exclusion
2) consumer must wait for producer to fill buffers if none full
scheduling constraint
3) producer must wait for consumer to empty buffers if all full
scheduling constraint

Use a separate semaphore for each constraint

Semaphore mutex;
Semaphore fullBuffers; // consumer’s constr
 // if 0 no coke
Semaphore emptyBuffers; // producer’s constr.
 // if 0, nowhere to put more coke

6.3 Solution
Class CokeMachine{

Semaphore new mutex(1);// no one using machine
Semaphore new fullBuffers(0); // initally no coke!
Semaphore new emptyBuffers(numBuffers);
 // initially # empty slots
 // semaphore used to count how many
 // resources there are

Produce(Coke *coke){
 emptyBuffers.P(); // check if there is space
 // for more coke
 mutex.P(); // make sure no one else
 // using machine

CS 439: Systems II Mike Dahlin

 7 09/27/11

 put 1 coke in machine

 mutex.V(); // OK for others to use

// machine
 fullBuffers.V(); // tell consumers there is
 // now a coke in machine
}

Coke *Consume(){
 fullBuffers.P(); // check if there’s a coke
 mutex.P(); // make sure no one else
 // using the machine
 coke = take a coke out
 mutex.V(); // next person’s turn
 emptyBuffers.V(); // tell producer we’re
 // ready for more
 return coke;
}
}

6.4 Questions
Why does producer P and V different semaphores than consumer?

Is order of Ps important?

Is order of V’s important?

What if we have 2 producers or 2 consumers? Do we need to change
anything?

CS 439: Systems II Mike Dahlin

 8 09/27/11

7. implementing semaphores
last time: implement locks by turning off interrupts (or test&set)

Question: how would you implement semaphores? (let's solve
problem with the “turning off interrupts” technique:

Here was lock code:
member variables:
 int value
 queue *queue;

Lock::Lock()
 value = FREE;
 queue = new Queue();

Lock::Acquire()
 disable interrupts
 if (value == BUSY)

put thread’s TCB on queue of threads
waiting for lock
switch

else
 value = BUSY
enable interrupts

Lock::Release()

disable interrupts
if anyone on wait queue{
 take a waiting thread’s TCB off queue
 put it on ready queue
else
 value = FREE;
enable interrupts

CS 439: Systems II Mike Dahlin

 9 09/27/11

Fill in the semaphore code:
Member variables:

Semaphore::Semaphore() // constructor

Semaphore::P()
//
// Thread that calls P() should wait for the
// semaphore to become positive and then
// decrement it by 1
//

Semaphore::V()
//
// A thread that calls V() should increment
// the semaphore by 1, waking up a thread
// waiting in P() if any
//

8. Problems with semaphores/Motivation for monitors

CS 439: Systems II Mike Dahlin

 10 09/27/11

Semaphores a huge step up – just think of trying to do bounded buffer
problem with just loads and stores
 (busy waiting?)

3 problems with semaphores
Problem 1 – semaphores are dual purpose – mutex, scheduling
constraints
 hard to read code
 hard to get code right (initial values; order of P() for different
semaphores, …)

Problem 2 -- Semaphores have “hidden” internal state
Problem 3 – careful interleaving of “synchronization” and “mutex”
semaphores

 waiting for a condition is independent of mutex locks (to examine
shared variables)
 either cleverly define condition to map exactly to semaphore
semantics (e.g., “12 buffers so initialize semaphore to 12” what if you
don’t know ahead of time how many buffers?) OR clever code
(interleaving mutex V() with check condition P()) OR both

idea of monitor – separate these concerns: use locks for mutex and
condition variables for scheduling constraints

philosophy – think about Join() example with producer/consumer. Just
one line of code to make it work with semaphores, but need to think a
bit to convince self it really works – relying on semaphore to do both
mutex (via atomicity) and condition. What happens when you change
the code later to, say, give different priorities to different consumers?

CS 439: Systems II Mike Dahlin

 11 09/27/11

9. Monitor definition
monitor – a lock and zero or more condition variables for managing
concurrent access to shared data

monitor = shared object -- I'll use these terms interchangeably

NOTE: Historically monitors were first a programming language
construct, where the monitor lock is automatically acquired on calling
any procedure in a C++ class. (Java does something like this – you
can specify that certain routines are synchronized) Book tends to
describe it this way.

But you don’t need this – monitors are also a set of programming
conventions that you should follow when doing thread programming
in C or C++ or Javacript or … (or Modula c.f. Birrell): explicit calls to
locks and condition variables

I will teach the “manual” version of monitors (and require that you do
things manually on the projects) because I want to make sure it is
clear what is going on and why.

9.1 Lock
The lock provides mutual exclusion to the shared data

Lock::Acquire() -- wait until lock is free, then grab it
Lock::Release() – unlock; wake up anyone waiting in Acquire

Rules for using a lock
• Always acquire before accessing shared data structure
• Always release after finishing with shared data
• Lock is initially free

CS 439: Systems II Mike Dahlin

 12 09/27/11

Simple example: a synchronized list

class Queue{
 public:
 add(Item *item);
 Item *remove();
private:
 Lock mutex;
 List list;
}

Queue::add(Item *item){
 mutex.Acquire(); // lock before using shared data
 list.add(item); // ok to access shared data
 mutex.Release() // unlock after done w. shared data
}

Item *Queue::remove(){
 Item *ret;

 lock.Acquire(); // lock before using shared data
 if (list.notEmpty()) { // something on queue remove it
 ret = list.remove();
 }
 else{
 ret = NULL;
 }
 lock.Release(); // unlock after done
 return ret;
}

QUESTION: Why "ret"?

Aside:
If you have exceptions (as in Java), another variation is:
Foo(){
 try{
 lock.lock();

CS 439: Systems II Mike Dahlin

 13 09/27/11

 …
 return item;
 }
 finally{
 lock.unlock();
 }

9.2 Condition variables
How do we change Queue::remove() to wait until something is on the
queue? How do we change Queue::add() to bound number of items in
queue (e.g., wait until there is room?)

Logically, want to transition to waiting state inside of critical section,
but if hold lock when transition to waiting, other threads won’t be able
to get in to add things to queue, to reenable the waiting thread

(Recall that for semaphores, we had essentially this problem and we
solved it by cleverly doing our "accounting" for synchronization
before we grabbed the lock for mutex. This type of subtle reasoning in
programs worries me.)

Key idea with condition variables: make it possible to transition to
waiting inside critical section, by atomically releasing lock at same
time we transition to waiting

Condition variable: a queue of threads waiting for something inside
a critical section

3 operations
Wait() – release lock; transition to waiting; reaquire lock

♦ releasing lock and transition to waiting are atomic
Signal() – wake up a waiter, if any
Broadcast() – wake up all waiters

RULE: must hold lock when doing condition variable operations

CS 439: Systems II Mike Dahlin

 14 09/27/11

In lecture, I’ll follow convention: require lock as parameter to
condition variable operations. Get in the habit; other systems don’t
always require this

Some will tell you you can do signal outside of lock. IGNORE
THEM. This is only a (small) performance optimization, and it is
likely to lead you to write incorrect code.

A synchronized queue with condition variables
class Queue{
 ...
 static const int MAX;
 private:
 Lock mutex;
 Cond moreStuff;
 Cond moreRoom;
 List list;
}

Queue::add(Item *item){
 mutex.Acquire();
 while(list.count == Queue::MAX){
 moreRoom.wait(&mutex);
 }
 list.insert(item);
 assert(list.count <= Queue::MAX);
 moreStuff.signal(&mutex);
 mutex.Release();
}

Queue::remove(){
 mutex.Acquire();
 while (list.count == 0){
 moreStuff.wait(&lock); // release lock; go to sleep; require
 }
 ret = list.remove();
 assert(ret != NULL);
 moreRoom.signal(&mutex);
 mutex.Release();
 return ret;

CS 439: Systems II Mike Dahlin

 15 09/27/11

}

9.3 Mesa/Hansen v. Hoare monitors
Need to be careful about precise defn of signal and wait

Mesa/Hansen-style: (most real operating systems)
 Signaler keeps lock, processor
 Waiter simply put on ready queue, with no special priority.
 (In other words, waiter may have to wait to re-acquire lock)

Hoare-style: (most textbooks)
 Signaler gives up lock and CPU to waiter; waiter runs immediately
 Waiter gives up lock, processor back to signaler, when it exits
critical section or if it waits again

Code above for synchronized queuing happens to work with either
style, but for many programs it matters which you are using.

With Hoare-style, can change “while” in RemoveFromQueue to “if”
because the waiter only gets woken up if item on the list.
With Mesa-style, waiter may need to wait again after being woken up
b/c some other thread may have acquired the lock and removed the
item before the original waiting thread gets to the front of the ready
queue.

This means that as a general principle, you always need to check the
condition after the wait, with mesa-style monitors (e.g., use a “while”
instead of an “if”)

Answer: Hansen
Why (simple): That's what systems have
Why (deeper): That's what is better/right (IMHO)
(1) That's what systems have
(2) more modular -- safety property is local
(3) more flexible

CS 439: Systems II Mike Dahlin

 16 09/27/11

 code written to work under Hansen works under Hoare, but not
vice versa
(4) spurious wakeups
 real implementations (e.g.,, Java, Posix) say that "cond::wait()"
can return if (a) cond::signal() is called, (b) cond::broadcast() is
called, or (c) other, implementation-specific situations

Always use while(...){cv.wait(*lock);}

Admin – 3 min

Lecture

10. Programming strategy:
(See “Programming with threads” handout for more details)

Goal: Systematic (“cookbook”) way to write easy to read and
understand and correct multi-threaded programs

10.1 General approach

1. Decompose problem into objects

object oriented style of programming – encapsulate shared state
and synchronization variables inside of objects

Note:
(1) Shared objects are separate from threads
(2) Shared object encapsulates code, synchronization variables, and

state variables

CS 439: Systems II Mike Dahlin

 17 09/27/11

Warning: most examples in the book are lazy and talk about “thread
1’s code” and “thread 2’s code”, etc. This is b/c most of the “classic”
problems were studied before OO programming was widespread, and
the textbooks have not caught up

Hint: don’t manipulate synchronization variables or shared state
variables in the code associated with a thread, do it with the code
associated with a shared object.

Point of possible confusion – in Java, Thread is a class, so Threads are
objects. An object of a type that inherits from Thread or implements
runnable should never have a member variable that is a Lock or
Condition; it should never say synchronized{}. Why? A thread’s state
is by definition thread-local state.

Each thread tends to have a “main” loop that accesses shared objects
but the thread object does not include locks or condition variables in
its state, and the thread’s main loop code does not directly access
locks or cv’s.

Locks and CVs are encapsulated in the shared objects.

Why?

(1) Locks are for synchronizing across multiple threads. Doesn’t make
sense for one thread to “own” a lock!

(2) Encapsulation – details of synchronization are internal details of a
shared object. Caller should not know about these details.

“Let the shared objects do the work.”

1A. Identify units of concurrency. Make each a thread with a
 go() method. Write down the actions a thread takes at a high
 level.

1b. Identify shared chunks of state. Make each shared thing an object.
Identify the methods on those objects – the high-level actions made
by threads on these objects.

 1C. Write down the high-level main loop of each thread.

Advice: stay high level here. Don't worry about synchronization

CS 439: Systems II Mike Dahlin

 18 09/27/11

yet. Let the objects do the work for you.

Separate threads from objects. The code associated with a thread
should not access shared state directly (and so there should be no
access to locks/condition variables in the “main” procedure for the
thread.) Shared state and synchronization should be encapsulated in
shared objects.

Now, for each object:

2. Write down the synchronization constraints on the solution.
Identify the type of each constraint: mutual exclusion or scheduling

3. Create a lock or condition variable corresponding to each constraint

4. Write the methods, using locks and condition variables for
coordination

10.2 Coding standards/style
These are required standards in class. See the handout for details!

I taught m/t coding the standard way...
-- I explained locks give mutual exclusion...
-- I explained how condition variables work; how they are related to
the shared state; Hoare v. Hansen, ...

Fall 2001 midterm:
• Every program with incorrect semantic behavior violated at least one

rule
• >90% of programs that violated at least one rule were “obviously”

semantically incorrect (that is, I could see the bug within seconds of
looking at the program; there may have been additional bugs…)

CS 439: Systems II Mike Dahlin

 19 09/27/11

o All that violate one rule are wrong – they are harder to read,
understand, maintain, …

o Since I’ve declared “violating rule is wrong”, huge reduction in
bugs in exams and projects

Passion for these rules goes deeper.
I learned m/t coding the standard way...

These two experiences + this is really important --> I am a zealot...

The rules: (See handout)

1. Always do things the same way

2. Always use monitors (condition variables + locks)

Almost always more clear than semaphores + “always do things the
same way”

3. Always hold lock when operating on a condition variable

 You signal on a condition variable because you just got done
manipulating shared state. You proceed when some condition about a
shared state becomes true. Condition variables are useless without
shared state and shared state is useless without holding a lock.

4. Always grab lock at beginning of procedure and release it right
 before return

• Simplifies reading your code (“always do things the same way”)

• If you find yourself wanting to release lock in middle of a procedure, 99% of time code

would be more clear if you split it into two procedures

5. Always use
while(predicateOnStateVariables(...) ==

true/false){
 condition->wait(&lock);

CS 439: Systems II Mike Dahlin

 20 09/27/11

 }
 not

if(...){…

 (Where PredicateOnStateVariables(...) looks at the
state variables of the current object to decide if it is OK to proceed.)

 While works any time if does, and it works in situations when
if doesn't. By rule 1, you should do things the same way every time.

 If breaks modularity

 When you always use while, you are given incredible freedom
about where you put the signal()’s. In fact, signal() becomes a hint --
you can add more signals to a correct program in arbitrary places and
it remains a correct program!
 Can determine correctness of signal calls and wait calls locally

6. (Almost) never sleep()

Never use sleep() to wait for another thread to do something. The
correct way to wait for a condition to become true is to wait() on a
condition variable.

sleep() is only appropriate when there is a particular real-world
moment in time when you want to perform some action. If you catch
yourself writing {\tt while(some condition)\{sleep();\}}, treat this is a
big red flag that you are probably making a mistake.

I'm sure there are valid exceptions to all of the above rules, but
they are few and far between. And the benefit you get by occasionally
breaking the rules is unlikely to make up for the cost in your effort,
extra debugging and maintenance cost, and loss of modularity.

CS 439: Systems II Mike Dahlin

 21 09/27/11

10.3 Java rules

In some years, we use Java for the project. Java is a modern language
with supports for threads from day 1. This is mostly good news. 2
issues:

(1) For production use: Support for some dangerous/undesirable
constructs/styles of programming

(2) For teaching: “too much” support for multi-threading someone can
write code that invokes synchronization with our without knowing
what’s going on

 Coding standards for this class
(J1) Do not use synchronized blocks within method

This is a specific incarnation of rule (4) above “Always grab locks at
beginning and release at the end”

The following is forbidden:
Foo(){
 …
 synchronized(this){
 …
 }
 …
}

Instead, move the synchronized block into its own method.

(J2) Cleanly separate Threads from shared objects

Classes that define Threads (e.g., that extend Thread or implement
Runnable) should include per-thread state. They should not include
shared state. They should not include locks or condition variables.

The model is threads operate on shared state (picture).

CS 439: Systems II Mike Dahlin

 22 09/27/11

(J3) For this class the synchronized keyword is forbidden. Instead,
explicitly allocate and invoke locks and condition variables.

The purpose of this rule is to make it easier to teach and learn how to
think about synchronization.

CS 439: Systems II Mike Dahlin

 23 09/27/11

Example (correct):

class Foo{
 SimpleLock lock;
 Condition c1;
 Condition c2;

 public Foo(){
 lock = new SimpleLock();
 c1 = lock.newCondition();
 c2 = lock.newCondition();
 …
 }

 public void doSomething(…){
 try{
 lock.lock();
 …
 while(…){
 c1.awaitUninterruptably();
 }
 …
 c2.signal();
 }
 finally{
 lock.unlock();
 }
 }
}

CS 439: Systems II Mike Dahlin

 24 09/27/11

Example (acceptable):
class Foo{
 SimpleLock lock;
 Condition c1;
 Condition c2;

 public Foo(){
 lock = new SimpleLock();
 c1 = lock.newCondition();
 c2 = lock.newCondition();
 …
 }

 public void doSomething(…){
 lock.lock();
 …
 while(…){
 c1.awaitUninterruptably();
 }
 …
 c2.signal();
 lock.unlock();
 }
}

CS 439: Systems II Mike Dahlin

 25 09/27/11

Example (forbidden for this class; often correct in real world):
class Foo{

 public Foo(){
 …
 }

 public synchronized void doSomething(…){
 …
 while(…){
 this.wait();
 }
 …
 this.signal();
 }

}

(Note that once you leave this class the above style can be used when
an object needs one lock and one condition variable; if you need two
condition variables, fall back on the manual version as in this class.)

10.4 D. Example/Basic template:

(1,2) Always use condition variables for code you write.

Be able to understand code written in semaphores. But the coding
standard your manager (me) is enforcing for this group is condition
variables for synchronization

class Foo{

private:
// Synchronization variables
Lock mutex;
Cond condition1;
Cond condition2;
…

CS 439: Systems II Mike Dahlin

 26 09/27/11

// State variables
…

public:
Foo::foo()
{
 /*

* (#4) Always, grab mutex at start of procedure, release at
* end (or at any return!!!). Reasoning: if there is a logical
* set of actions to do when you hold a mutex, that logical
* set of actions should be expressed as a procedure, right?
*/

 mutex->acquire(){
 Assert(invariants hold – shared variables in consistent state)
 …
 invariants may or may not hold; shared variables may be
 in inconsistent state

…

 // (#5)always “while” never “if”
 while(shared variables in some state){
 assert(invariants hold)
 // (#3) Always hold lock when operating on C.V.
 condition1->wait(&mutex)
 assert(invariants hold)
 }
…

 invariants may or may not hold; shared variables may be
 in inconsistent state
 …
 … // (#3) Always hold lock when operating on C.V.

…condition2->signal(&mutex);
…condition1->signal(&mutex);
…
Assert(invarients hold)

 }mutex->release()
}

CS 439: Systems II Mike Dahlin

 27 09/27/11

11. }; // Class

12.

13. Rule (#6) (Almost) never sleep()
Sleep(time) puts the current thread on a waiting queue at the timer – only
use it to wait until a specific time, not to wait for an event of a different sort
Hint: sleep should never be in a while(…){sleep}
Problems with using sleep:
1) no atomic release/reacquire lock
2) really inefficient (example – cascading sleeps in Aname)
3) not logical
Warning: on the project and on exams, improper use of sleep will be regarded as
strong evidence that you have no idea how to write multi-threaded programs and
will affect your grade accordingly.
(I make this a point of emphasis b/c this error is so common in past years and easy
to avoid.)

Aside: Double checked locking is broken example...

Summary - 1 min

Monitors represent the logic of the program. Wait if necessary, signal
if change something so waiter might need to wake up.

 mutex->lock
 while (need to wait)
 cv->wait();
 mutex->unlock

 mutex->lock
 do something so no need to wait
 cv->signal();
 mutex->unlock

CS 439: Systems II Mike Dahlin

 28 09/27/11

14. Implementing CV

Simple uniprocessor implementation:

class Cond{
private:
 Queue waiting;

public:
void Cond::Wait(Lock *lock){
 disable interrupts;
 readyList->remove(current TCB);
 waiting.add(current TCB);
 lock->release();
 switch();
 enable interrupts;
 lock->Acquire();
}

void Cond::Signal(Lock *lock){
 disable interrupts;
 if(waiting.notEmpty()){
 TCB enabled = waiting.remove();
 readyList->add(enabled);
 }
 enable interrupts;
}

void Cond::broadcast(Lock *lock){
 disable interrupts;
 while(waiting.notEmpty()){
 TCB enabled = waiting.remove();
 readyList->add(enabled);
 }
 enable interrupts;
}

CS 439: Systems II Mike Dahlin

 29 09/27/11

Lecture - 20 min

15. Readers/Writers

15.1 Motivation
Shared database (for example, bank balances, or airline seats)

Two classes of users:
Readers – never modify database
Writers – read and modify data

Using a single mutex lock would be overly restrictive.
Instead, want:
 many readers at same time
 only one writer at same time

15.2 Constraints
Notice: for every constraint, there is a synchronization variable.
This time different types for different purposes.
1) Reader can access database when no writers (Condition okToRead)
2) Writers can access database when no readers or writers (condition

okToWrite)
3) Only one thread manipulates shared variables at a time (mutex)

15.3 Solution
Basic structure

Database::read()
check in -- wait until no writers
access database
check out – wake up waiting writer

Database::write()

CS 439: Systems II Mike Dahlin

 30 09/27/11

check in -- wait until no readers or writers
access database
check out – wake up waiting readers or writers

State variables:

AR = 0; // # active readers
AW = 0; // # active writers
WR = 0; // # waiting readers
WW = 0; // # waiting writers

Condition okToRead = NIL;
Condition okToWrite = NIL;
Lock lock = FREE;

Code:
Database::read(){
 startRead(); // first, check self into the system
 Access Data
 doneRead(); // Check self out of system
}

Database::startRead(){

lock.Acquire();
while((AW + WW) > 0){

WR++;
okToRead.Wait(&lock);
WR--;

}
AR++;
lock.Release();

 }

 Database::doneRead(){

lock.Acquire();
AR--;
if(AR == 0 && WW > 0){ // if no other readers still
 okToWrite.Signal(); // active, wake up writer
}
lock.Release();

}

CS 439: Systems II Mike Dahlin

 31 09/27/11

Database::write(){ // symmetrical
 startWrite(); // check in
 accessData
 doneWrite(); // check out
}

Database::startWrite(){

lock.Acquire();
while((AW + AR) > 0){ // check if safe to write
 // if any readers or writers, wait

WW++;
okToWrite->Wait(&lock);
WW--;

}
AW++;
lock.Release();

 }

 Database::doneWrite(){

lock.Acquire();
AW--;
if(WW > 0){

okToWrite->Signal(); // give priority to writers
}
else if (WR > 0){
 okToRead->Broadcast();
}
lock.Release();

}

Question
1) Can readers starve?
2) Why does checkRead need a while?
3) Suppose we had a large DB with many records, and we want

many users to access it at once. Probably want to allow two
different people to update their bank balances at the same
time, right? What are issues?

CS 439: Systems II Mike Dahlin

 32 09/27/11

16. Example: Sleeping Barber (Midterm 2002)
The shop has a barber, a barber chair, and a waiting room with NCHAIRS chairs. If there are no customers
present, the barber sits in the barber chair and falls asleep. When a customer arrives, he wakes the sleeping
barber. If an additional customer arrives while the barber is cutting hair, he sits in a waiting room chair if
one is available. If no chairs are available, he leaves the shop. When the barber finishes cutting a
customer’s hair, he tells the customer to leave; then, if there are any customers in the waiting room he
announces that the next customer can sit down. Customers in the waiting room get their hair cut in FIFO
order.

The barber shop can be modeled as 2 shared objects, a BarberChair with the methods napInChair(),
wakeBarber(), sitInChair(), cutHair(), and tellCustomerDone(). The BarberChair must have a state variable
with the following states: EMPTY, BARBER_IN_CHAIR, LONG_HAIR_CUSTOMER_IN_CHAIR,
SHORT_HAIR_CUSTOMER_IN_CHAIR. Note that neither a customer or barber should sit down until the
previous customer is out of the chair (state == EMPTY). Note that cutHair() must not return until the
customer is sitting in the chair (LONG_HAIR_CUSTOMER_IN_CHAIR). And note that a customer
should not get out of the chair (e.g., return from sit in chair) until his hair is cut
(SHORT_HAIR_CUSTOMER_IN_CHAIR). The barber should only get in the chair
(BARBER_IN_CHAIR) if no customers are waiting. You may need additional state variables.

The WaitingRoom has the methods enter() which immediately returns WR_FULL if the waiting room is
full or (immediately or eventually) returns MY_TURN when it is the caller’s turn to get his hair cut, and it
has the method callNextCustomer() which returns WR_BUSY or WR_EMPTY depending on if there is a
customer in the waiting room or not. Customers are served in FIFO order.

Thus, each customer thread executes the code:

Customer(WaitingRoom *wr, BarberChair *bc)
{
 status = wr->custEnter();
 if(status == WR_FULL){
 return;
 }
 bc->wakeBarber();
 bc->sitInChair(); // Wait for chair to be EMPTY
 // Make state LONG_HAIR_CUSTOMER_IN_CHAIR
 // Wait until SHORT_HAIR_CUSTOMER_IN_CHAIR
 // then make chair EMPTY and return
 return;
}

The barber thread executes the code:
Barber(WaitingRoom *wr, BarberChair *bc)
{
 while(1){ // A barber’s work is never done
 status = wr->callNextCustomer();
 if(status == WR_EMPTY){
 bc->napInChair(); // Set state to BARBER_IN_CHAIR; return with state EMPTY
 }
 bc->cutHair(); // Block until LONG_HAIR_CUSTOMER_IN_CHAIR;
 // Return with SHORT_HAIR_CUSTOMER_IN_CHAIR
 bc->waitCustomerDepart(); // Return when EMPTY
 }

CS 439: Systems II Mike Dahlin

 33 09/27/11

}

Write the code for the WaitingRoom class and the BarberChair class. Use locks and condition
variables for synchronization and follow the coding standards specified in the handout.

Hint and requirement reminder: remember to start by asking for each method “when can a
thread wait?” and writing down a synchronization variable for each such situation.

List the member variables of class WaitingRoom including their type, their name, and their initial
value
 Type Name Initial Value (if applicable)
 mutex lock
 cond canGo
 int nfull 0
 int ticketAvail 0
 int ticketTurn -1

int WaitingRoom::custEnter()

lock.acquire();
int ret;
if(nfull == NCHAIRS){
 ret = WR_FULL;
}
else{
 ret = MY_TURN;
 myTicket = ticketAvail++;
 nfull++;
 while(myTicket > ticketTurn){
 canGo.wait(&lock);
 }
 nfull--;
}
lock.release();
return ret;

int WaitingRoom::callNextCustomer()

lock.acquire();
if(nfull == 0){
 ret = EMPTY;
}
else{
 ret = BUSY;

 ticketTurn++;
 canGo.broadcast();
}
lock.release();
return ret;

CS 439: Systems II Mike Dahlin

 34 09/27/11

List the member variables of class BarberChair including their type, their name, and their initial
value
 Type Name Initial Value (if applicable)
 mutex lock
 cond custUp
 cond barberGetUp
 cond sitDown
 cond seatFree
 cond cutDone
 int state EMPTY
 int custWalkedIn 0

void BarberChair::napInChair()
 lock.acquire();
 if(state == EMPTY){ // Cust could arrive before I sit down
 state = BARBER_IN_CHAIR;

 while(custWalkedIn == 0){
 barberGetUp.wait(&lock);
 }
 state = EMPTY

 seatFree.signal(&lock);
 }
 lock.release();

void BarberChair::wakeBarber()

lock.acquire();
custWalkedIn = 1;
barberGetUp.signal(&lock);
lock.release()

void BarberChair::sitInChair()
lock.acquire()
while(state != EMPTY){
 seatFree.wait(&lock);
}
custWalkedIn = 0;
state = LONG_HAIR_CUSTOMER_IN_CHAIR;
sitDown.signal(&lock);
while(state != SHORT_HAIR_CUSTOMER_IN_CHAIR){
 cutDone.wait(&lock);
}
state = EMPTY;
custUp.signal(&lock);
lock.release();

}

void BarberChair::cutHair()

lock.acquire();
while(state != LONG_HAIR_CUSTOMER_IN_CHAIR){
 sitDown.wait(&lock);
}
state = SHORT_HAIR_CUSTOMER_IN_CHAIR;
cutDone.signal(&lock);
lock.release();

CS 439: Systems II Mike Dahlin

 35 09/27/11

void BarberChair::waitCustomerDepart()

lock.acquire();
while(state != EMPTY){ // NOTE: No other cust can arrive until I call call_next_cust()
 custUp.wait(&lock);
}

lock.release();

CS 439: Systems II Mike Dahlin

 36 09/27/11

17. Semaphores v. Condition variables

Illustrate the difference by considering: can we build monitors out of
semaphores? After all, semaphores provide atomic operations and
queuing.

Does this work:

Wait(){ semaphore->P() }
Signal{ semaphore->V()}

No: Condition variables only work inside a lock. If try to use
semaphores inside a lock, have to watch for deadlock.

Does this work:

Wait(Lock *lock){
lock->Release();
semaphore->P();
lock->Acquire();

}

Signal(){
 semaphore->V();
}

Condition variables have no history, but semaphores do have history.

What if thread signals and no one is waiting?
 No Op
What if thread later waits?
 Thread waits.

What if thread V’s and no one is waiting?
 Increment
What if thread later does P
 Decrement and continue

CS 439: Systems II Mike Dahlin

 37 09/27/11

In other words, P+V are commutative – result is the same no mater
what order they occur. Condition variables are not commutative.
That’s why they must be in a critical section – need to access state
variables to do their job.

Does this fix the problem?
 Signal(){
 if semaphore queue is not empty
 semaphore->V();
 }

For one, not legal to look at contents of seemaphore queue.
Also, race condition – signaller can slip in after lock is released and
before wait. Then waiter never wakes up

Need to release lock and go to sleep atomically.

Is it possible to implement condition variables using semaphores?
Yes, but exercise left to the reader!

Summary - 1 min

2 types of synchronization
 mutual exclusion
 sheduling/waiting
semaphore can be used for both (is this good?)

Semaphore operations
 P()
 V()

CS 439: Systems II Mike Dahlin

 38 09/27/11

 Note: you can’t ask the value of a semaphore – only can do P()
and V()

Semaphore built on same hardware primitives as lock using
essentially same techniques

Monitor = shared object = lock + [CV]* + state

