
N3:	  
	  
Review	  

n Congestion	  control	  
o AIMD	  –	  additive	  increase,	  multiplicative	  decrease	  
o Internet	  stability	  relies	  on	  politeness	  (!)	  

n Send/Recv,	  RPC	  
o RPC	  seems	  like	  magic	  bullet,	  yet…	  

	  
Outline:	  

n NW	  Performance/LogP	  
n Distributed	  FS	  intro	  

	  
	  
	  
	  
	  
	  

 
Network (I/O) performance: LogP model. 
	  
-‐-‐>	  If	  you	  want	  good	  network	  performance,	  need	  to	  pipeline	  requests	  
[picture]	  
	  
Pipeline	  more	  complex	  than	  for	  CPU	  because	  (a)	  not	  fixed	  number	  of	  stages,	  (b)	  not	  
balanced	  stages...	  essentially,	  CPU	  designed	  around	  pipeline	  -‐-‐>	  simpler	  to	  think	  
about	  it's	  pipline.	  In	  distributed	  systems,	  need	  a	  more	  complete	  model.	  
	  



	  
	  
	  
	  
LogP	  model	  –	  similar	  to	  Patterson/Hennessy	  “Iron	  triangle	  of	  performance”:	  CPI,	  IPS	  
(frequency),	  nInstructions	  

Latency – Elapsed wallclock time from X to Y. 
 
note: "latency" alone is ambiguous; need to say latency from what to 
what;  "latency from x to y". E.g., 1-way latency v. round-trip latency 
v. ... 
 
e.g., how long from when one byte packet sent to when it is received 
 
b/c pipeline is complex, need to specify which pipeline stages you are 
talking about (sometimes care about different subsets of pipelines) 
 
 
NOTE: can hide latency with pipelining; latency does not imply 
resource is busy. Latency tells you how deep pipeline needs to be. 
 
Overhead – Time for first pipeline stage.  
Bottleneck time to initiate operations. (Can't be overlapped.) 
e.g., Cpu time to put packet on wire.  



 
Throughput, bandwidth – (1/gap) -- time for bottleneck stage. 
Maximum steady state rate. 
Time consumed by slowest pipeline stage. 
e.g.,  maximum bytes per second 
 
 
 
How does overhead differ from latency? 

Overhead: resource usage 
Latency: real-time end-to-end delay 

How would you measure latency of a network request? 
How does overhead differ from latency? 
 
How does overhead differ from bandwidth? 
How would you measure overhead of sending a packet? 
How would you measure bandwidth of a network? 
 
 
Example 
 
E.g., suppose you open a TCP connection and start sending 1KB 
messages to another node on a 10Mbit/s Ethernet 

 
 
 
1) What is "bottleneck rate"? (for overhead, BW) 
The only tricky thing about this is that you have complex pipelining 
models (e.g., a disk request "occupies" CPU, bus, scsi controller, scsi 
bus, disk arm) 

	  

Overhead	  –	  
initially	  100us	  to	  
enqueue	  each	  

Latency	  from	  send	  to	  
ack	  

…	  
Gap	  ~1ms:	  At	  some	  point,	  
the	  local	  buffer	  fills.	  Now,	  we	  
can	  only	  send	  one	  packet	  per	  
acknowledgement	  we	  recv.	  

…	  



Which one is the bottleneck depends on configuration (how many 
disks? How many SCSI busses? How fast CPU?) 
 
Which one is the bottleneck depends on how question is asked: 
E.g., "For a Seagate Barracuda 5100 disk, what is the average 
overhead per 1-sector disk request?" v. "For a Dell Dimension 5100, 
what is the overhead per 1-sector disk request?" The first is asking 
how long a disk seek and rotation take; the second is asking how long 
the CPU is busy to set up a request.  
Need to consider: What bottleneck is the question asking about? 
For throughput, steady state bottleneck is the same in both cases. 
For overhead, first stage overhead differs. 
 
 
 
 
 
Examples: 
Latency – significant fraction of the speed of light (1 foot/ns) à <1us 
anywhere in building 
 
Overhead (network send/receive)-- 10's-100's us to send/receive 
TCP/IP packet; 1-10us for streamlined protocols [note: old #’s] 
 
Bandwidth -- 1Mbit/s 3G phone,  1-10 Mbit/s home internet 
connection, 10-50Mbit/s WiFi, 100-1000Mbit/s desktop, 1Gbit/s-
10Gbit/s data center network 
 
 Throughput Overhead 100 byte 4KB Remote 

4kB read 
TCP/IP 
Wireless 

10 Mbit/s 0.1 ms .1ms + 
.08ms 

.1ms + 
3ms 

3.3ms 

TCP/IP 
Ethernet 

100 Mbit/s 0.1 ms .1ms + 
.008ms 

.1ms + 

.3ms 
0.5 ms 

TCP/IP 
Gigabit 
Ethernet 

1000 
Mbit/s 

0.1 ms .1ms + 
.0008ms 

.1ms + 

.03ms 
0.2 ms 

AM/ 
Myrinet 

1200Mbit/s .007ms .007ms + 
.001ms 

.007ms + 

.03ms 
.04ms 

 



 
Example 
Create 1MB file using NFSv3. Close --> client needs to write back 
1MB to server. 
How long? 
 
Assume client sends one 4KB block at a time, waits for server to get 
block safely to disk. 
 
 
[[See NFSExample.tex for better picture]] 
 
100Mbit/s network; o_send = o_recv = 100us 
each block:  

100us (o_send) + 4KB/100Mbit/s + 1us (latency from last byte 
off NIC to last byte arrives) + 100us (o_recv) + 10ms (disk) + 
100us (o_send) + .5KB/100Mbit/s + 1us + 100us (o_recv)  

 
= 100us + 300us + 1us + 100us + 10000us + 100us + 35us + 
1us + 100us = 10702us 

 
1MB/4KB = 256 blocks 
 256 * 10702us = 2.75s 
 
 
1 Gbit/s network 
each block: 

100us + 4KB/1Gbit/s + 1us + 100us + 10ms + 100us + 
.5KB/1Gbit/s + 1us + 100us 
= 100us + 30us + 1us + 100us + 10000us + 100us + 3.5us + 1us 
+ 100us = 10436us 
 
256 * 10436 = 2.74s 
 

MORAL: fast network doesn't buy you much if you haven't paid 
attention to latency and overhead. 
  
Example (cont) 
---> Instead of sending one block at time, send all blocks. Then wait 
for server to send "Ack" saying all on disk 



1 Gbit/s network: 
-- bottleneck is o_send and o_recv 
-- picture 
-- Time: 256*100us (now last packet starting to go on wire) 
 + 4KB/1000Mbit/s (now last packet entirely on wire) 
 + 1us (now last byte of last packet arriving at receiver) 
 + 100us (now last packet received at receiver) 
 + 4KB/100MB/s (now last packet on disk; assuming end of 
streaming, sequential write) 
 + 100us (now ack is on wire) 
 + 256B/1000Mbit/s (now ack on wire) 
 + 1us (now last byte of ack is at receiver) 
 + 100us (now ack received at receiver) 
 
 =  25600us 
 + 30us 
 + 1us 
 + 100us 
 + 40us 
 + 100us 
 + 1.5us 
 + 1us 
 + 100us 
 = 26236us 
 = 26ms 
 
MORAL: Need to pipeline to get good performance from IO systems 
 
Notes on example 
-- NFS v3 kind of works like first example (except 5-10 outstanding 
requests at a time instead of 1); NFS v4 adds support for something 
like second approach 
 
-- Send/receiver overheads in example are clearly too high. Any 
modern machine can keep a 100Mbit/s or even 1Gbit/s network "full" 
of 4KB messages. 
(What does o_send need to be?) 
 
 
 



 
What is latency if go cross-country? 
3000 miles * 5000 ft/mile à 15ms 
now 4KB read dominated by latency for all networks 
 
Key to good performance:  

n (1) in LAN – minimize overhead 
n (2) in WAN – keep pipeline full 

 
 
 
 
 
 
Example: LogP network benchmark 

	  
LogP	  Performance	  Assessment	  of	  Fast	  Network	  Interfaces	  
www.cs.rutgers.edu/~rmartin/papers/papers/micropaper.ps	  

 
Sender: (uniprocessor) 
Thread1: 
Start timer 
   repeat M times 
        send msg 
        spin for delta 
Stop timer 
 
Thread2: 
while (1) receive msg 
 
 
Receiver: 
while(1) 
    receive msg 
    send reply 
 
 
 



 
 
 

 
 
 
 
 
 

Small Message Performance
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We can see from the steady-state time-line of Figure 3 that , where Idle is the time the
sender spends waiting to drain a reply from the network. However, we cannot directly measure Idle or or;
since the request function stalls waiting for a reply and then uses or time pulling the reply out of the network.
Therefore, we attempt to find or in a different manner; we add a controlled amount of computation, �!
between messages" As indicated in the bottom time-line in Figure 3 for �>Idle, the sender becomes the bot-
tleneck and the average message cost is , where g’ is the new bottleneck, e.g., the average
time per issue in the steady-state with delay regime. Since we know � and can measure os and g’, we can
solve for or.

3.2 Microbenchmark Signature

Here is the resulting pseudo-code for our communication microbenchmark:

Start Timer
Repeat M times

Issue Request

FIGURE 3. Request issue time-line

Time

Send-only

Transition

Steady-state

os

or

os os os

os os osososos

os osos oror

oror

First response received at RTT, then every g

Idle

g
Steady-state

or os osos oror

g’

�

with Delay

�

Idle

os or Idle+ + g=

os or �+ + g�=
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Compute for � time
Stop Timer

... handle remaining replies

By executing this microbenchmark for a range of M and �, we construct a signature consisting of several
message issue curves, each corresponding to a different value of �! as illustrated by Figure 4. In the figure,
any value of � less than Idle will have a steady state message cost of ‘g’, while any value of � larger than
Idle, e.g. �’, will have a steady state message cost of g’ >g. From this graph we can directly read the
parameters g, os , and or. Then, we can compute latency given the round-trip time.

3.3 Small Message Empirical Results

Since many of our measurements are in the microsecond range, any undesirable events such as cache
misses, context switching, and timer interrupts can lead to significant errors in the measurements. We repeat
the microbenchmark for each point in the signature until we obtain an accuracy of "5% and a confidence
level of 95%. We process the measurements in batches of 50 samples to minimize the cache effect of the sta-
tistics collection routines.

Figures 5, 6, and 7 give the microbenchmark signatures of our three platforms. The empirical signatures of
our platforms closely model the abstract signature of Figure 4. Each graph exhibits the three regimes of
operation: Send-only, Transition, and Steady-state. Given the signatures, we can extract the LogP parame-
ters. For the Paragon signature in Figure 7, by averaging the first few points corresponding to small M and �
= 0, we find that os is 1.4 microseconds. Next, by taking the asymptotic value of the � = 0 curve we find that
g is 7.6 microseconds. To compute or, we arbitrarily pick a value of � that increases the gap, e.g., the curve
� = 16. Subtracting � + os from g’ =19.6 gives us or to be 2.2 microseconds. Finally, subtracting the over-
head from the one-way time (RTT/2) we get L = 7.5 #sec. Similar analysis finds the LogP characterization
for Meiko to be os =1.7 #sec, or = 1.6$#sec, g= 13.6$#sec, and L= 7.5#sec. On the Myrinet, os =2.0 #sec, or

FIGURE 4. Expected microbenchmark signature
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Example: Batching 
General rule of thumb: OS provides abstraction of byte transfers, but 
batch into block I/O for efficiency (pro-rates overhead and latency 
over larger unit) 
 
 
 
Example 

• Suppose CPU takes 100us of processing to issue one 512 byte 
write request 

• Each request is to a random sector on disk 
• Disk has parameters as above (4ms avg seek, 3ms ½ rot, 

transfer .02ms) 
• 32KB write buffer on disk (producer/consumer bounded buffer) 



• Writes are issued asynchronously (CPU can issue k+1 as soon 
as k is in write buffer) 

 
 
 
 
 
 
 
 
 
 
(1) Suppose CPU issues k back-to-back requests, when does CPU 

complete? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

(2) When does first write to disk complete at the disk? 
 
(e.g., latency from when first write starts at CPU until done at disk?) 
 
7.1ms 
 

cpu	   dis

32	  KB	  

o:	  100us	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  |	  	  	  	  	  	  	  	  	  
7ms	  
l	  	  100us	  	  	  	  	  	  	  	  	  	  	  |	  0-‐64*7=448ms	  |	  	  	  	  	  	  	  	  

100us	  
k	  

7ms	  

Time	  
per	  



 
(3) Suppose there are 500 writes in a burst, when does the last write 

complete at the disk? 
 
100us + 500 * 7ms 
 
 
 

 

 
 

*********************************   
Admin - 3 min 
*********************************   
 
*********************************   
Lecture - 23 min 
*********************************   

Distributed file system 
	  
Outline	  
Distributed	  File	  Systems	  
2	  Case	  studies:	  NFS,	  AFS	  
Crosscutting	  issues	  
	   Performance	  
	   Failures	  
	   Cache	  coherence/consistency	  
	   Distributed	  commit	  
	  

A distributed file system provides transparent access to files stored 
on a remote disk 
 
Themes: 
failures: what happens when a server crashes, but a client doesn’t? Or 
vice versa? 
 



Performance à  caching; use caching at both clients and server to 
improve performance 
 
cache coherence – how do we make sure each client sees most up-to-
date copy? 
 
Atomic update – how to update state at two or more machines 
 
These issues and strategies we will discuss are much more general 
than file system – arise in many distributed systems. 

Simple: no caching 
use RPC to forward every file system request to remote server (e.g. 
Novell Netware) 
 
Example operations: open, seek, read, write, close 
 
Server implements each operation as it would for a local request and 
sends back result to client 
straightforward utilization of RPC 
 

 
Advantage: server provides consistent view of file system to both A 
and B 

	  

read	  

data	  

done	   write	  

S	  

A	   B	  

cache	  



 
 
issues: Failures, performance 
Failures – see NFS (below) 
 
Performance can be lousy: 

going over network is slower than going to local memory! 
lots of network traffic 
server can be a bottleneck – what if lots of  clients? 
 

NFS (Sun Network File System) 
(I'll	  talk	  about	  "NFS	  v.3"	  to	  illustrate	  issues	  in	  a	  simple	  system;	  NFS	  v.	  4	  makes	  
significant	  changes,	  including	  some	  of	  the	  state-‐of	  the	  art	  techniques	  I'll	  talk	  about	  
later	  this	  week...)	  

 
Idea: use caching to reduce network load 
 
Cache file blocks, file headers, etc at both clients and servers 
 

 
Advantage: if open/read/write/close can be done locally, no network 
traffic 
 

	  

read	  

data	  

done	   write	  

S	  

A	   B	  

cache	  

cache	  cache	  



Issues:  
(1) no longer have automatic stub generation à lose one advantage of 
“RPC” over message passing 
(2) helps performance; challenges failures and cache consistency 
 

Issues: part 1: cache consistency 
 
What if multiple clients are sharing same files? Easy if they are both 
reading – each gets a copy of the file 
 
What if one writing? How do updates happen? 
 
At writer – NFS has hybrid delayed write/write through policy 

• write through within 30 seconds or immediately when file 
closed 

 
How does other client find out about change (it has cached copy, so 
doesn’t see any reason to talk to the server) 
 

NFS protocol, part 1: weak consistency 
 
In NFS, client polls server periodically, to check if file has changed. 
Poll server if data hasn’t been checked in last 3-30 seconds (exact 
timeout is tunable parameter) 
 
Thus, when file is changed on one client, server is notified, but other 
clients use old version of file until timeout. They then check server, 
and get new version. 
 



 
What if multiple clients write the same file? In NFS, can get either 
version (or parts of both). Completely arbitrary! 
 
HTTP uses essentially same protocol 
 
If rule #1 in CS is "any problem can be solved with an additional level 
of indirection", Dahlin's rule #2 is "I can make it go as fast as you 
want, as long as you don't need the right answer" 
 
We'll talk about better ways to enforce consistency next week. 

Issues, part 2: Failures 
What if server crashes? Can client wait until server comes back up, 
and continue as before? 
 
1)  any data in server memory but not yet on disk can be lost 
 
2)  shared state across RPCs. Ex: open, seek, read. What if server 

crashes after seek? Then when client does “read”, it will fail. 
 
3)  Message retries: suppose server crashes after it does UNIX “rm 

foo”, but before acknowledgement? 

	  

T	  =	  0:	  
X’	  

X’	  on	  
disk	  

X’	   T=30;	  X	  
still	  OK?	  

S	  

A	   B	  

X’	  

X	  X’	  

X’	  



Message system will retry – send it again. How does it know 
not to delete it again? (Could solve this with two-phase commit 
protocol, but NFS takes a more ad hoc approach – sound 
familiar?) 
 

What if client crashes? 
1)  Might lose modified data in client cache 
 
 
NFS: Solve problems in protocol (ad hoc?) 

NFS Protocol (part 2): solutions 
Key idea: Server is stateless. Client not allowed to rely on any server 
state 
 
1)  write through caching – when a file is closed, all modified blocks 

are sent immediately to server disk. To the client “close” doesn’t 
return until all bytes are stored on server disk. 
 
Client caches dirty data until close. Client failure --> data loss. 
Network write (to server) -- block until data safely on disk. 

2)  Stateless protocol – server keeps no state about client (except as 
hints to help improve performance; e.g. a cache) 

• each read request gives enough information to do entire 
operation – ReadAt(inumber, position) not Read(openFile) 

• when server crashes and restarts, can start processing 
requests immediately, as if nothing happened 

 
3) Timeout and repeat requests to mask lost messages 
 
Standard RPC technique. 
Simple solution: 

Request/acknowledge protocol 
Common case: 
1) Sender sends message (msg, msgId) and sets timer 
2) Receiver receives message and sends (ack, msgId) 
3) Sender receives (ack, msgId) and clears timer 
 
If timer goes off, goto (1) 
 



How does this work? Local procedure call guarantes exactly 
once semantics. What does retransmission guarantee? 
n What if msg 1 lost? 
n What if ack lost? 

 
Guarantees at least once semantics assuming no machines 
crash or otherwise discontinue protocol 
n Receiver guaranteed to recv message at least once 

3)   
4)  Operations are “idempotent”: all requests are OK to repeat (all 

requests are done at least once). So, if server crashes between disk 
I/O and message send, client can resend message, server just does 
operation all over again 

 
• read and write file block are easy – just re-read or re-write 

file block; no side effects 
• What about “remove”? NFS just ignores this problem – does 

the remove twice; second time returns an error if file not 
found 
 

    5) Failures are transparent to client system 
Is this a good idea? What should happen if server crashes? Suppose 
you are an application, in middle of reading a file, and server crashes? 
 
Options; 
a)  hang until server comes back up (next week)? 
b)  return an error? Problem is: most applications don’t know they are 

talking over the network – we’re transparent, right? 
Many UNIX apps simply ignore errors! Crash if there is a problem. 
(Network à many more errors than before) 
 
NFS does both options – can select which one. Usually, hang and only 
return error if really must – if see “NFS stale file handle” that’s why 
 

NFS Summary 
NFS pros & cons 
+ simple 
+ highly portable 
n sometimes inconsistent 



n doesn’t scale up to large # of clients 
 
Might think NFS is really stupid, but Netscape/WWW does something 
similar: cache recently seen pages, and refetch them if they are too 
old. Nothing in WWW to help with cache coherence 
 
 
 
Notice: what happened to “RPC è transparent distributed system”? 
n performance à add caching 
n failures à change all public methods to (mostly) idempotent 
n performance v. failures à write through cache 
n performance v. failures à weak consistency 
Basically ended up rearchitecting and rewriting everything! 
 
Next 2 weeks -- address fundamental problems in distributed systems. 
You see them in NFS 
-- performance 
-- consistency 
-- distributed commit 
-- security 
After we talk about (some of) these, we'll revisit in context of a 
scalable cluster file system: The Google File System 
 
 
*********************************************** 
*********************************************** 
*********************************************** 
 

Performance 
Cost of a procedure call << same machine RPC << network RPC 
 
means programmer must be aware that RPC is cheap, but not free 
 
Caching can help, but  
n generally gets rid of “transparent stub generation” advantage of 

RPC 
n makes failure handling more complex, raises consistency issues 



n Not work for all worlkloads, all cases. (E.g., web caching -- data 
changes, zipf distribution --> client caches have 20-50% hit rate --
> network performance dominates (amdhal's law) 

 
--> Caching alone can't fully mask slow network. 

NFS Example:  
File	  close	  needs	  to	  write	  back	  all	  dirty	  sectors	  from	  client	  cache	  to	  server	  disk.	  

Network performance 
	  
"How	  fast	  is	  your	  network?"	  
	  
Bandwidth	  isn't	  whole	  story.	  Bandwidth	  is	  the	  MIPS	  of	  I/O	  
In architecture, MIPS is one of three factors (cycles per instruction, instruction count, instructions per 
second) -- only looking at one is misleading 
Similar issues for IO 
	  
Example	  

Suppose I have a 100Mbps and 1000Mbps network. Is second 
network 10x faster? 
Not if I use it to do a “remote read” (50 byte request, 50 byte 
response) 

Graph: (lab) 510us (100Mbps), 501us (1000 Mbps) 
(Graph: fixed portion  + variable portion…) 

 Cross-country: 50.5ms (10Mbps), 50.5ms (100Mbps) 
What’s going on? 

	  
Example	  
e.g.,	  Suppose	  I	  replace	  load/store	  from	  local	  memory	  with	  load/store	  from	  remote	  
machine	  via	  network.	  
Bandwidth	  not	  *that*	  different	  -‐-‐	  maybe	  10-‐100	  GB/s	  v.	  10	  Gbit/s	  (2011)	  -‐-‐>	  10-‐
100x	  
But	  slowdown	  would	  probably	  be	  many	  times	  that	  (1000x-‐100,000x)	  
	  
Other	  factors	  
-‐-‐	  Latency.	  Speed	  of	  light	  to	  get	  across	  building	  (~us)/campus(100us)/country(10's	  
of	  ms)	  (v.	  100ns	  to	  memory)	  
-‐-‐	  Overhead.	  Thousands	  of	  instructions	  to	  send/receive	  a	  packet	  (100us	  to	  
send/recv	  a	  packet)	  
	  
Result:	  Even	  if	  network	  bandwidth	  is	  10Gbit/s,	  if	  I	  only	  access	  one	  remote	  word	  at	  a	  
time,	  I'll	  probably	  see	  an	  effective	  bandwidth	  of	  	  1	  word	  per	  100us	  or	  1ms	  (100-‐
1000x	  slower)	  



	  
So,	  if	  bandwidth	  alone	  can	  get	  you	  off	  by	  a	  factor	  of	  1000x,	  how	  do	  you	  reason	  about	  
performance?	  
	  

*********************************************** 
*********************************************** 
*********************************************** 
 

Cache consistency 
Today: cache consistency – callbacks, leases 
Wednesday: reliability 

	  

Recall -- NFS caching sometimes gives wrong answer 
	  
-‐-‐	  client	  caching	  data	  checks	  with	  server	  to	  see	  if	  still	  valid	  if	  it	  has	  been	  more	  than	  
30s	  since	  last	  check	  
-‐-‐>	  Window	  of	  vulnerability	  
-‐-‐>	  My	  compiles	  occasionally	  fail	  and	  I	  tear	  my	  hair	  out	  
	  
"I	  can	  make	  any	  system	  run	  fast	  as	  long	  as	  you	  don't	  insist	  on	  the	  right	  answer."	  
	  
	  

 

Sequential ordering constraints 
Cache coherence – what should happen? What if one Cpu changes file 
and before it’s done, another CPU reads file? 
 

“right answer” turns out to be more subtle than one might hope… 
• Essentially same problem as reasoning about synchronization of 

multi-threaded programs – we have several programs running on 
(potentially) multiple processors (at arbitrary speeds), what can they 
see as they read and write memory (or files)? 

• But now even load/store may not be atomic operations 
o Caching, write buffering, multipath routing through network 
o à write by one thread may not immediately be seen by 

another! 



• Consistency/coherence/staleness semantics define how “non-atomic” 
memory can be (and give you a basis for reasoning about distributed 
programs) 

o Essentially ask “can a distributed program tell that memory is 
‘playing tricks on it’ compared to case where all threads run on 
uniprocessor with single memory?”  

o Memory system semantics restrict/define which “new” 
behaviors a memory system (or file  system) can expose to a 
program 

 
 
consistency	  v.	  coherence	  v.	  staleness	  
	  
_ Coherence	  restricts	  order	  of	  reads	  and	  writes	  to	  one	  location	  
–	  Can	  you	  tell	  memory	  system	  is	  playing	  tricks	  on	  you	  by	  looking	  at	  one	  location?	  
–	  Example	  
P1:                            P2: 
for(ii = 0; ii < 100; ii++){    while(1){ 
write(A, ii);                      printf(‘‘%d ‘‘, 
}                                         read(A)); 
                                } 
–	  Where	  is	  incoherence?	  
_ 1	  2	  3	  3	  3	  4	  9	  10	  9	  11	  12	  13	  ...	  
–	  Why	  might	  a	  system	  exhibit	  incoherence?	  
	  	  	  	  	  e.g.,	  2	  nodes,	  writer	  sends	  updates	  via	  Internet;	  updates	  get	  
	  	  	  	  	  reordered	  en	  route...	  
	  
	  	  	  	  	  e.g.,	  cooperative	  caching	  -‐-‐	  read	  cached	  value	  from	  two	  different	  
	  	  	  	  	  	  peers,	  could	  get	  out-‐of-‐order	  answer	  
	  
	  	  	  	  	  e.g.,	  client	  switching	  between	  two	  servers	  (e.g.,	  on	  Internet,	  
	  	  	  	  	  	  get	  redirected	  to	  different	  Akamai	  node)	  
	  
	  
	  
_ Staleness	  bounds	  the	  maximum	  (real-‐time)	  delay	  between	  writes	  and	  reads	  to	  one	  location.	  
–	  Can	  you	  tell	  memory	  system	  is	  playing	  tricks	  on	  you	  by	  looking	  at	  clock?	  
 
–	  Example	  (think	  stock	  prices)	  
P1:                                P2: 
while(1){                          while(1){ 
sleep(1000ms);                       sleep(1000ms); 
write(A, ‘‘At %t price is %d\n’’);   printf(‘‘%s‘‘, 
}                                         read(A)); 
                                   } 
–	  Where	  is	  staleness	  (assuming	  real	  time	  OS)	  
_ At	  1:00:00	  price	  is	  10.50	  



_ At	  1:00:01	  price	  is	  10.55	  
_ At	  1:00:02	  price	  is	  10.65	  
_ At	  1:00:02	  price	  is	  10.65	  
_ At	  1:00:02	  price	  is	  10.65	  
_ At	  1:00:05	  price	  is	  13.18	  
_ ...	  
	  
-‐-‐	  Why	  might	  a	  system	  exhibit	  staleness?	  
	  
e.g.,	  NFS	  polling	  interval	  
e.g.,	  network	  delay	  prevents	  update/invalidation	  from	  reaching	  cache	  for	  a	  while...	  
	  
	  
 

Consistency	  restricts	  order	  of	  reads	  and	  writes	  across	  locations	  
–	  Can	  you	  tell	  memory	  system	  is	  playing	  tricks	  on	  you	  by	  looking	  at	  multiple	  locations?	  
–	  Example	  1	  
P1:                                 P2: 
for(ii = 0; ii < 100; ii++){        while(1){ 
write(A, ii);                         printf(‘‘(%d, %d), ‘‘, 
write(B, ii);                              read(A), read(B)); 
}                                   } 
–	  Where	  is	  inconsistency?:	  
_ (0,0),	  (0,1),	  (1,2),	  (4,3),	  (4,8),	  (8,	  9),	  (9,9),	  (9,10),	  (9,10),	  (10,10),	  (11,10),	  (11,11),	  (12,12),	  ...	  
–	  Is	  there	  also	  incoherence?	  
–	  Example	  2	  (a	  classic)	  
P1:                                P2: 
write(A, 0);                       write(B, 0); 
...                                ... 
write(A, 1);                       write(B, 1); 
if(read(B) == 0){                  if(read(A) == 0){ 
printf(‘‘P1.’’);                      printf(‘‘P2.’’); 
}                                  } 
–	  Which	  outputs	  are	  legal	  under	  strict	  coherence?	  Under	  sequential	  consistency?	  
_ “P1.”	  
_ “P2.”	  
_ “” 
_ “P1.P2.”	  
_ “P2.P1.”	  
–	  Why	  might	  a	  system	  exhibit	  inconsistency?	  
–	  Notice	  
_ In	  first	  example,	  order	  between	  writes	  must	  be	  maintained...fairly	  obvious	  notion	  of	  
causality	  
_ In	  second	  example,	  order	  between	  writes	  and	  reads	  must	  be	  maintained.	  (Less	  obvious?)	  
_ _ Consistency	  involves	  ordering	  both	  writes	  and	  reads. 
 
 
 
 
 

A:	  0	  
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A:	  0	  
B:	  0	  
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Semantics for non-atomic memory 
 
Above defines 3 axes/dimensions: 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
	  
	  
	  
Now	  we	  can	  start	  talking	  about	  particular	  design	  points	  in	  this	  space.	  
	  
One	  option:	  Insist	  that	  distributed	  memory	  look	  "just	  like"	  local	  memory	  
	  
	  
	  
Definitions	  (from	  Tannenbaum	  Distributed	  Systems	  (with	  slight	  modifications	  and	  
additions))	  
	  
	  
–	  sequential	  consistency	  –	  The	  result	  of	  any	  execution	  is	  the	  same	  as	  if	  the	  (read	  and	  
write)	  operations	  by	  all	  processes	  on	  the	  data	  store	  were	  executed	  in	  some	  sequential	  order	  
and	  the	  operations	  of	  each	  individual	  process	  appear	  in	  the	  sequence	  in	  the	  order	  specified	  
by	  its	  program	  
	  
Sounds	  pretty	  strong	  (and	  	  it	  is).	  But	  it	  is	  not	  “perfect”	  –	  e.g.,	  
	  
A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  B	  

consistency	  

coherence	  

staleness	  



//	  Initially	  A,	  B	  are	  0	  
write(A,	  1)	  
write(B,	  1)	  	  	  	  	  	  	  	  	  sleep(1	  year)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  read(A),	  read(B)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  printf(“A=%d	  B=%d”,	  A,	  B)	  
	  
output	  “A=0	  B=0”	  is	  legal	  under	  sequential	  consistency!	  
	  
à	  Expect	  certain	  staleness	  guarantees	  
	  
	  
	  
	  
	  
	  
	  
–	  delta	  coherence	  -‐	  the	  maximum	  real-‐time	  delay	  between	  when	  a	  write	  completes	  and	  
when	  a	  subsequent	  read	  begins	  such	  that	  the	  read	  must	  return	  a	  value	  at	  least	  as	  new	  as	  
that	  write	  
	  
–	  strict	  coherence	  -‐	  any	  read	  on	  a	  data	  item	  x	  returns	  a	  value	  corresponding	  to	  the	  most	  
recent	  write	  on	  x	  
	  
strict	  coherence	  =	  delta	  coherence,	  delta	  =	  0	  
	  
linearizability	  =	  sequential	  consistency	  +	  delta	  coherence	  +	  delta	  =	  0	  
(formal	  definition	  is	  essentialy	  -‐-‐	  sequential	  consistency	  +	  the	  global	  sequence	  is	  consistent	  
with	  real	  time)	  
	  
-‐-‐>	  linearizability	  is	  essentially	  the	  origin	  in	  the	  design	  space	  -‐-‐	  the	  strongest	  consistency	  we	  
typically	  ask	  for	  
	  
	  
	  
Even	  this	  is	  a	  bit	  less	  tight	  than	  you	  might	  hope…	  Simple	  to	  see	  what	  strict	  
coherence	  means	  if	  reads	  and	  writes	  are	  instantaneous.	  But	  they	  are	  not!	  
	  

Note that every operation takes time: actual read could occur anytime 
between when system call is started, and when system call returns 
 
 



 
Assume what we want is distributed system to behave exactly the 
same as if all processes are running on a single UNIX system 

if read finishes before write starts, then get old copy 
if read starts after write finishes, then get new copy 
 
Otherwise – indeterminant – can get either new or old copy 
 

Similarly, if write starts before another write finishes, may get either 
old or new version. (Hence, in above diagram, non-deterministic as to 
which you end up with!) 
 
In NFS, if read starts more than 30 seconds after write finishes, get 
new copy. Othewise, who knows? Could get partial update. 

	  
	  
Regular	  v.	  atomic	  semantics	  
Regular	  semantics	  -‐-‐	  return	  either	  the	  value	  of	  the	  last	  completed	  write	  or	  that	  of	  
one	  of	  the	  writes	  which	  are	  concurrent	  with	  the	  read.	  
	  
Atomic	  semantics	  -‐-‐	  guarantee	  that	  the	  read	  and	  write	  operations	  to	  the	  variable	  
behave	  exactly	  as	  if	  they	  happened	  instantaneously	  in	  some	  point	  in	  time	  which	  is	  
within	  the	  actual	  time	  where	  the	  operation	  took	  place.	  (Usually	  this	  is	  what	  is	  
assumed	  for	  strict	  coherence)	  
	  
_ Strict	  coherence	  =	  delta	  coherence	  with	  delta	  =	  0	  
	  
	  
	  
	  
	  
	  

A	  ß-‐-‐-‐	  read	  A	  -‐-‐-‐-‐à	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ß-‐-‐-‐-‐-‐	  read	  A	  or	  B	  -‐-‐-‐-‐-‐à	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  write	  B	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐à	  
	   	   	   	   ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  read	  A	  or	  B	  or	  C	  -‐-‐-‐-‐à	  
	   	   	   	   	   ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  	  write	  C	  -‐-‐-‐-‐-‐-‐à	  
	   	   	   	   	   	   	  	  	  	  ß-‐	  -‐-‐-‐-‐-‐-‐-‐-‐	  	  read	  B	  or	  C	  -‐-‐-‐à	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ß	  read	  B	  or	  C	  à	  
	  
	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  	  TIME	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐à	  



Limitations of strong consistency 
	  
So,	  we	  can	  define	  "perfect"	  consistency/coherence/staleness.	  	  
	  
Are	  we	  done?	  "Distribibuted	  systems	  should	  implement	  linearizability"???	  
	  
Unfortunately,	  no.	  Implementing	  these	  semantics	  has	  costs.	  Some	  of	  these	  costs	  are	  
fundamental	  (and	  sometimes	  they	  are	  unacceptable.)	  
	  
–	  Sequential	  consistency	  has	  fundamental	  performance	  cost:	  fast	  reads	  or	  fast	  writes	  but	  
not	  both	  	  

r	  +	  w	  >=	  	  t	  (where	  r	  is	  read	  time,	  $w	  is	  the	  write	  	  time,	  and	  t	  is	  the	  minimal	  packet	  
transfer	  time	  between	  nodes.)	  [Lipton	  and	  Sandberg]	  

	  
–	  Sequential	  consistency	  has	  a	  fundamental	  CAP	  dilemma	  (Brewer):	  A	  system	  can	  not	  have	  
sequential	  Consistency	  and	  maintain	  100%	  Availability	  in	  the	  presence	  of	  Partitions.	  
	  
	  
	  
	  
à	   develop	  weaker	  models	  
	  
	  
–	  causal	  consistency	  –	  writes	  that	  are	  potentially	  causally	  related	  must	  be	  seen	  by	  all	  
processes	  in	  the	  same	  order.	  Concurrent	  writes	  may	  be	  seen	  in	  a	  different	  order	  on	  different	  
machines.	  
	  
Basic	  idea	  -‐-‐	  if	  I	  see	  a	  write	  that	  you	  issued,	  then	  I	  can	  also	  see	  (at	  least)	  all	  writes	  you	  could	  
have	  seen	  when	  you	  issued	  the	  write	  
	  

n if	  $P_1$	  reads	  a	  write	  $A$	  before	  issuing	  a	  write	  $B$,	  then	  any	  process	  
that	  sees	  $B$	  cannot	  subsequently	  see	  the	  	  old	  value	  of	  $A$	  

n 	  
n Hard	  to	  see	  why	  this	  is	  useful	  if	  you	  assume	  a	  centralized	  consistency	  

server.	  	  Think	  about	  a	  world	  where	  machines	  can	  send	  writes	  to	  one	  
another.	  If	  $A$	  reads	  a	  bunch	  of	  writes	  from	  $B$	  and	  then	  creates	  some	  
writes	  of	  its	  own.	  Then	  $C$	  synchronizes	  with	  	  $A$,	  $A$	  must	  send	  $B$'s	  
writes	  to	  $C$	  before	  sending	  its	  own.	  

	  
	  
	  
	  
	  



	  
	  
	  
	  
	  
	  
	  
e.g.,	  
while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  while(1)	  
	  	  write(A,	  I++)	  	  	  	  	  	  	  	  	  	  write(B,	  j++)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  print(A,	  B)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  print(A,	  B)	  
	  
	  
	   	   	   	   	   	   (1,1)	   	   	   (1,1)	  
	   	   	   	   	   	   (1,2)	   	   	   (2,1)	  
	   	   	   	   	   	   (1,3)	   	   	   (3,1)	  
	   	   	   	   	   	   (1,4)	   	   	   (4,1)	  
	   	   	   	   	   	   (2,5)	   	   	   (5,3)	  
	  
This	  is	  causally	  consistent,	  but	  not	  sequentially	  consistent.	  
This	  would	  be	  useful	  if	  A	  and	  B	  were	  on	  different	  nodes	  on	  internet	  –	  I	  might	  see	  the	  closer	  
node’s	  updates	  before	  the	  more	  distant	  nodes,	  and	  you	  might	  see	  a	  different	  order…	  



	  
e.g.,	  
while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  while(1)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  write(A,	  I++)	  	  	  	  	  	  	  	  	  	  write(B,	  readA)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  print(A,	  B)	  
	  
	  
	   	   	   	   	   	   (1,1)	   	   	   	  
	   	   	   	   	   	   (1,2)	   	   	   	  
	   	   	   	   	   	   (1,3)	   	   	   	  
	   	   	   	   	   	   (1,4)	   	   	   	  
	   	   	   	   	   	   (2,5)	   	   	   	  
	  
No	  longer	  causally	  consistent	  –	  if	  I	  see	  new	  value	  of	  B,	  then	  I	  need	  to	  see	  new	  value	  of	  A	  
	  
	  
	  
Theorem:	  Causally	  consistent	  is	  the	  strongest	  consistency	  you	  can	  provide	  without	  giving	  
up	  availability.	  (Dahlin,	  Alvisi,	  Mahajan	  -‐-‐	  April	  2011)	  
	  
	  
There	  are	  also	  weaker	  options	  
	  
–	  FIFO	  consistency	  (aka	  PRAM	  consistency)	  –	  writes	  done	  by	  a	  single	  process	  are	  seen	  by	  
all	  other	  processes	  in	  the	  order	  in	  which	  they	  were	  issued,	  but	  writes	  from	  different	  
processes	  may	  be	  seen	  in	  different	  orders	  by	  different	  processes	  
	  
–	  Is	  FIFO	  stronger	  or	  weaker	  than	  causal? 
 
(A weaker semantic allows more legal orderings than a stronger semantic. 
Consistency semantic A is stronger than consistency semantic B if any 
sequence of read and write results that are legal in A are also legal in B but 
there is at least one sequence that is legal in B but that is not legal in A.) 
 

Why would you ever want this? Requires no coordination at all. E.g., 
2 web servers.... 
 
 
 
 

How to provide improved consistency across clients?  
 
(1) Poll each read – send every read to central server à get 

centralized semantics (e.g., can get sequential consistency this way 
– see the global order?) 

We can optimize this with getattr(), but still slow… 



 
 



Callbacks (e.g., Sprite, Andrew File System) 
AFS (CMU late 80’s) à DCE DFS (commercial product) 

 
Notify client if data they are caching is no longer valid 
 

Callbacks: 
(1) When a client reads data from server, server remembers that client 

has data 
(2) When client writes data, server notifies all other clients (that are 

caching the data) that they must contact server on next read 
 

Write begins 
Tell server “I want to write foo” 
Server tells all clients “discard current copy of foo” 
All clients acknowledge 
Server tells writer “ok to write foo” 
Write completes 

 
What semantics does this provide? 

	  

T	  =	  0:	  
X’	  

X’	  on	  
disk	  

Fetch	  new	  
version	  next	  
time	  X	  is	  
opened	  

S	  

A	   B	  

X’	  

X	  X’	  

X’	  

X’	   X	  



n linearizability if client issues one operation at a time and blocks 
until completion 

n (weaker if I can, say, read from cache while my write is pending) 
 
 

Fault tolerance 1: Recovery of callback state 
AFS	  approach:	  protocol	  level	  design	  (e.g.,	  ad-‐hoc)	  
	  
	  

Challenge: improved caching + consistency increases failure handling 
complexity: 
 
What if server crashes? Lose all callback state 
 
QUESTION: Why is this a problem? 
 
QUESTION: What can you do? 
Reconstruct callback information from clients – go ask everyone 
“who has which files cached?” 
 
QUESTION: What if client crashes? 
 
 

Fault tolerance 2: CAP -- consistency v. availability during 
partitions 
Key	  idea:	  Leases	  
 
CAP says sequential consistency must give up availability during partitions 
 
How does this manifest in AFS? 
 
 
Write completes when all caching clients have acknowledged  
 QUESTION: why do I have to wait? 
 [answer – you can return early if you are willing to weaken 
semantics… but if you want linearizability, you have to wait] 
 
 



Naïve solution: client blocks indefinitely if any client crashes 
n How does this scale as we increase # clients? 

 
 
Solution: lease --  combine polling and callbacks 
 
Lease: cache has the right to access cached object X for Y seconds; after Y 
seconds, must renew lease before accessing cached object 
 
Server does callbacks for X seconds after lease 
 
New solution:  

(1) Write waits until all caching nodes acknowledge or leases expire 
(sequential coherence) 

(2) Write returns immediately (delta coherence) 
 

Enhancement: Volume lease… 

 

 

Other AFS features 

 
1) files cached on local disk 
NFS caches only in memory 
à reduce server load  
 

 2) more precise consistency model 
1)  callbacks  

o server records who has copy of file 
o send “callback” on each update 
 

2)  write-through on close 
If file changes, server is updated (on close) 
Server then immediately tells those with old copy 

 
3)  session semantics – updates visible only on close 

In UNIX (single machine) updates visible immediately to 
other programs who have file open 



In AFS, everyone who has file open sees old version; 
anyone who opens file again will see new version 

 
In AFS slight variation: session semantics 

a)  on open and cache miss – get file from server; set up 
callback 

b)  on write close: send copy to server; tells all clients with 
copies to fetch new version on next open 

Essentially – think of all reads happening when file opened and all 
writes happening when file closed… 
 

 

 

AFS pros & cons 
Relative to NFS, less server load: 
+ disk as cache à more files can be cached locally 
+ callbacks à server not involved if file is read-only 

 
- more complex recovery 
 
 
 

Fault tolerance 3: Disconnected operation 
 
Leases do a pretty good  engineering job on CAP dilemma. If I can 
talk to server, I can access data. Clients disconnected from server are 
stuck. (Notice -- they are stuck even if they have the data they want to 
read in their cache.) 
 
 
 
AFS stores data on local disk 
Suppose server crashes – can client keep going? 
n almost – except renewing callbacks on open/close; writing though 

on close 
 



Support disconnected operation – allow client to access cached data 
even when it cannot contact server. 
n Improve availability 
n Support mobility 
 
 
Coda (and NTFS) 
(1) Reads -- prefetch "hoard" data into local cache 

Want to make sure you have everything in cache you need. What 
should you do? (Hoard  list) 

(2) Writes -- write updates to local log; send log to server when 
reconnect 
Need to make sure that updates you did when disconnected make 
it back to server. What should you do? (Log writes + 
reconciliation) 

 
CAP dilemma: Cannot provide sequential consistency and 100% 
availability in a system that can be partitioned.  
 

n What consistency does this provide? (causal?) 
 
 
 
Problem: Conflicting writes… 
What happens if two disconnected nodes both write same file? Is this 
OK? 
 
Coda solution: 
(1) Detect 
(2) Regular files: manual selection of “right” version to keep 
(3) Directories: automatically correct most cases (manual for the rest) 
 
 
 

Avoiding central server 
Coda	  lets	  me	  write	  when	  disconnected,	  but	  all	  updates	  go	  through	  server	  
	  
What	  if	  you	  don’t	  want	  to	  have	  to	  synchronize	  through	  a	  server	  
	  
Basic	  idea	  



- Each	  node’s	  writes	  are	  a	  	  log	  [picture]	  
- Version	  vector	  –	  index	  of	  highest	  known	  write	  from	  each	  node	  
- Log	  exchange	  –	  you	  send	  me	  your	  VV,	  I	  send	  you	  all	  updates	  you	  have	  not	  yet	  

seen	  
- à	  Eventual	  consistency	  
- Lamport	  clock	  –	  my	  accept	  stamp	  =	  max(VV)	  +	  1	  	  
- Send	  elements	  from	  my	  log	  sorted	  by	  accept	  stamp	  
- à	  Causal	  consistency	  
- Still	  need	  to	  deal	  with	  conflicting	  concurrent	  writes	  (how	  can	  you	  detect?)	  

	  

Google file system [see gradOS notes] 
	  
	  

Consistency in memcached 
	  

memcached: reading from a database is slow 
--> have another set of machines act as a cache (distributed hash table) 
[picture] 
 
basic idea: 
read(x) 
       data = memcached->read(x) 
        if(data) return data 
        else 
                  data = db->read(x) 
                  memcached->set(x, data) 
                  return x 
 
 
write(x, data) 
          db->write(x, data) 
          memcached->set(x, data) 
 
 
What incoherence might you observe? 
How long can incoherence last (how much staleness) 
 What if writer crashes after setting DB but before setting 
memcached? 
 
Obvious fix (?) 



write(x, data) 
           memcached->clear(x); 
 db->write(x, data); 
 memcached->set(x, data); 
 
Does this solve the problem? 
 
 
             

*********************************   
Summary - 1 min 
*********************************    
 
Next time: improve consistency, 2 phase commit à atomic distributed 
updates 

 
	  

	  
	  


