
N3:	
	
Review	

n Congestion	 control	
o AIMD	 –	 additive	 increase,	 multiplicative	 decrease	
o Internet	 stability	 relies	 on	 politeness	 (!)	

n Send/Recv,	 RPC	
o RPC	 seems	 like	 magic	 bullet,	 yet…	

	
Outline:	

n NW	 Performance/LogP	
n Distributed	 FS	 intro	

	
	
	
	
	
	

Network (I/O) performance: LogP model.
	
-‐-‐>	 If	 you	 want	 good	 network	 performance,	 need	 to	 pipeline	 requests	
[picture]	
	
Pipeline	 more	 complex	 than	 for	 CPU	 because	 (a)	 not	 fixed	 number	 of	 stages,	 (b)	 not	
balanced	 stages...	 essentially,	 CPU	 designed	 around	 pipeline	 -‐-‐>	 simpler	 to	 think	
about	 it's	 pipline.	 In	 distributed	 systems,	 need	 a	 more	 complete	 model.	
	

	
	
	
	
LogP	 model	 –	 similar	 to	 Patterson/Hennessy	 “Iron	 triangle	 of	 performance”:	 CPI,	 IPS	
(frequency),	 nInstructions	

Latency – Elapsed wallclock time from X to Y.

note: "latency" alone is ambiguous; need to say latency from what to
what; "latency from x to y". E.g., 1-way latency v. round-trip latency
v. ...

e.g., how long from when one byte packet sent to when it is received

b/c pipeline is complex, need to specify which pipeline stages you are
talking about (sometimes care about different subsets of pipelines)

NOTE: can hide latency with pipelining; latency does not imply
resource is busy. Latency tells you how deep pipeline needs to be.

Overhead – Time for first pipeline stage.
Bottleneck time to initiate operations. (Can't be overlapped.)
e.g., Cpu time to put packet on wire.

Throughput, bandwidth – (1/gap) -- time for bottleneck stage.
Maximum steady state rate.
Time consumed by slowest pipeline stage.
e.g., maximum bytes per second

How does overhead differ from latency?

Overhead: resource usage
Latency: real-time end-to-end delay

How would you measure latency of a network request?
How does overhead differ from latency?

How does overhead differ from bandwidth?
How would you measure overhead of sending a packet?
How would you measure bandwidth of a network?

Example

E.g., suppose you open a TCP connection and start sending 1KB
messages to another node on a 10Mbit/s Ethernet

1) What is "bottleneck rate"? (for overhead, BW)
The only tricky thing about this is that you have complex pipelining
models (e.g., a disk request "occupies" CPU, bus, scsi controller, scsi
bus, disk arm)

	

Overhead	 –	
initially	 100us	 to	
enqueue	 each	

Latency	 from	 send	 to	
ack	

…	
Gap	 ~1ms:	 At	 some	 point,	
the	 local	 buffer	 fills.	 Now,	 we	
can	 only	 send	 one	 packet	 per	
acknowledgement	 we	 recv.	

…	

Which one is the bottleneck depends on configuration (how many
disks? How many SCSI busses? How fast CPU?)

Which one is the bottleneck depends on how question is asked:
E.g., "For a Seagate Barracuda 5100 disk, what is the average
overhead per 1-sector disk request?" v. "For a Dell Dimension 5100,
what is the overhead per 1-sector disk request?" The first is asking
how long a disk seek and rotation take; the second is asking how long
the CPU is busy to set up a request.
Need to consider: What bottleneck is the question asking about?
For throughput, steady state bottleneck is the same in both cases.
For overhead, first stage overhead differs.

Examples:
Latency – significant fraction of the speed of light (1 foot/ns) à <1us
anywhere in building

Overhead (network send/receive)-- 10's-100's us to send/receive
TCP/IP packet; 1-10us for streamlined protocols [note: old #’s]

Bandwidth -- 1Mbit/s 3G phone, 1-10 Mbit/s home internet
connection, 10-50Mbit/s WiFi, 100-1000Mbit/s desktop, 1Gbit/s-
10Gbit/s data center network

 Throughput Overhead 100 byte 4KB Remote

4kB read
TCP/IP
Wireless

10 Mbit/s 0.1 ms .1ms +
.08ms

.1ms +
3ms

3.3ms

TCP/IP
Ethernet

100 Mbit/s 0.1 ms .1ms +
.008ms

.1ms +

.3ms
0.5 ms

TCP/IP
Gigabit
Ethernet

1000
Mbit/s

0.1 ms .1ms +
.0008ms

.1ms +

.03ms
0.2 ms

AM/
Myrinet

1200Mbit/s .007ms .007ms +
.001ms

.007ms +

.03ms
.04ms

Example
Create 1MB file using NFSv3. Close --> client needs to write back
1MB to server.
How long?

Assume client sends one 4KB block at a time, waits for server to get
block safely to disk.

[[See NFSExample.tex for better picture]]

100Mbit/s network; o_send = o_recv = 100us
each block:

100us (o_send) + 4KB/100Mbit/s + 1us (latency from last byte
off NIC to last byte arrives) + 100us (o_recv) + 10ms (disk) +
100us (o_send) + .5KB/100Mbit/s + 1us + 100us (o_recv)

= 100us + 300us + 1us + 100us + 10000us + 100us + 35us +
1us + 100us = 10702us

1MB/4KB = 256 blocks
 256 * 10702us = 2.75s

1 Gbit/s network
each block:

100us + 4KB/1Gbit/s + 1us + 100us + 10ms + 100us +
.5KB/1Gbit/s + 1us + 100us
= 100us + 30us + 1us + 100us + 10000us + 100us + 3.5us + 1us
+ 100us = 10436us

256 * 10436 = 2.74s

MORAL: fast network doesn't buy you much if you haven't paid
attention to latency and overhead.

Example (cont)
---> Instead of sending one block at time, send all blocks. Then wait
for server to send "Ack" saying all on disk

1 Gbit/s network:
-- bottleneck is o_send and o_recv
-- picture
-- Time: 256*100us (now last packet starting to go on wire)
 + 4KB/1000Mbit/s (now last packet entirely on wire)
 + 1us (now last byte of last packet arriving at receiver)
 + 100us (now last packet received at receiver)
 + 4KB/100MB/s (now last packet on disk; assuming end of
streaming, sequential write)
 + 100us (now ack is on wire)
 + 256B/1000Mbit/s (now ack on wire)
 + 1us (now last byte of ack is at receiver)
 + 100us (now ack received at receiver)

 = 25600us
 + 30us
 + 1us
 + 100us
 + 40us
 + 100us
 + 1.5us
 + 1us
 + 100us
 = 26236us
 = 26ms

MORAL: Need to pipeline to get good performance from IO systems

Notes on example
-- NFS v3 kind of works like first example (except 5-10 outstanding
requests at a time instead of 1); NFS v4 adds support for something
like second approach

-- Send/receiver overheads in example are clearly too high. Any
modern machine can keep a 100Mbit/s or even 1Gbit/s network "full"
of 4KB messages.
(What does o_send need to be?)

What is latency if go cross-country?
3000 miles * 5000 ft/mile à 15ms
now 4KB read dominated by latency for all networks

Key to good performance:

n (1) in LAN – minimize overhead
n (2) in WAN – keep pipeline full

Example: LogP network benchmark

	
LogP	 Performance	 Assessment	 of	 Fast	 Network	 Interfaces	
www.cs.rutgers.edu/~rmartin/papers/papers/micropaper.ps	

Sender: (uniprocessor)
Thread1:
Start timer
 repeat M times
 send msg
 spin for delta
Stop timer

Thread2:
while (1) receive msg

Receiver:
while(1)
 receive msg
 send reply

Small Message Performance

8 LogP Performance Assessment of Fast Network Interfaces

We can see from the steady-state time-line of Figure 3 that , where Idle is the time the
sender spends waiting to drain a reply from the network. However, we cannot directly measure Idle or or;
since the request function stalls waiting for a reply and then uses or time pulling the reply out of the network.
Therefore, we attempt to find or in a different manner; we add a controlled amount of computation, �!
between messages" As indicated in the bottom time-line in Figure 3 for �>Idle, the sender becomes the bot-
tleneck and the average message cost is , where g’ is the new bottleneck, e.g., the average
time per issue in the steady-state with delay regime. Since we know � and can measure os and g’, we can
solve for or.

3.2 Microbenchmark Signature

Here is the resulting pseudo-code for our communication microbenchmark:

Start Timer
Repeat M times

Issue Request

FIGURE 3. Request issue time-line

Time

Send-only

Transition

Steady-state

os

or

os os os

os os osososos

os osos oror

oror

First response received at RTT, then every g

Idle

g
Steady-state

or os osos oror

g’

�

with Delay

�

Idle

os or Idle+ + g=

os or �+ + g�=

Small Message Performance

LogP Performance Assessment of Fast Network Interfaces 9

Compute for � time
Stop Timer

... handle remaining replies

By executing this microbenchmark for a range of M and �, we construct a signature consisting of several
message issue curves, each corresponding to a different value of �! as illustrated by Figure 4. In the figure,
any value of � less than Idle will have a steady state message cost of ‘g’, while any value of � larger than
Idle, e.g. �’, will have a steady state message cost of g’ >g. From this graph we can directly read the
parameters g, os , and or. Then, we can compute latency given the round-trip time.

3.3 Small Message Empirical Results

Since many of our measurements are in the microsecond range, any undesirable events such as cache
misses, context switching, and timer interrupts can lead to significant errors in the measurements. We repeat
the microbenchmark for each point in the signature until we obtain an accuracy of "5% and a confidence
level of 95%. We process the measurements in batches of 50 samples to minimize the cache effect of the sta-
tistics collection routines.

Figures 5, 6, and 7 give the microbenchmark signatures of our three platforms. The empirical signatures of
our platforms closely model the abstract signature of Figure 4. Each graph exhibits the three regimes of
operation: Send-only, Transition, and Steady-state. Given the signatures, we can extract the LogP parame-
ters. For the Paragon signature in Figure 7, by averaging the first few points corresponding to small M and �
= 0, we find that os is 1.4 microseconds. Next, by taking the asymptotic value of the � = 0 curve we find that
g is 7.6 microseconds. To compute or, we arbitrarily pick a value of � that increases the gap, e.g., the curve
� = 16. Subtracting � + os from g’ =19.6 gives us or to be 2.2 microseconds. Finally, subtracting the over-
head from the one-way time (RTT/2) we get L = 7.5 #sec. Similar analysis finds the LogP characterization
for Meiko to be os =1.7 #sec, or = 1.6$#sec, g= 13.6$#sec, and L= 7.5#sec. On the Myrinet, os =2.0 #sec, or

FIGURE 4. Expected microbenchmark signature

Av
er

ag
e

Ti
m

e
pe

r M
es

sa
ge

Number of Messages (M)

os

g

�

�’
�’

os + or

or

send-only steady-statetransition

Example: Batching
General rule of thumb: OS provides abstraction of byte transfers, but
batch into block I/O for efficiency (pro-rates overhead and latency
over larger unit)

Example

• Suppose CPU takes 100us of processing to issue one 512 byte
write request

• Each request is to a random sector on disk
• Disk has parameters as above (4ms avg seek, 3ms ½ rot,

transfer .02ms)
• 32KB write buffer on disk (producer/consumer bounded buffer)

• Writes are issued asynchronously (CPU can issue k+1 as soon
as k is in write buffer)

(1) Suppose CPU issues k back-to-back requests, when does CPU

complete?

(2) When does first write to disk complete at the disk?

(e.g., latency from when first write starts at CPU until done at disk?)

7.1ms

cpu	 dis

32	 KB	

o:	 100us	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 |	 	 	 	 	 	 	 	 	
7ms	
l	 	 100us	 	 	 	 	 	 	 	 	 	 	 |	 0-‐64*7=448ms	 |	 	 	 	 	 	 	 	

100us	
k	

7ms	

Time	
per	

(3) Suppose there are 500 writes in a burst, when does the last write

complete at the disk?

100us + 500 * 7ms

Admin - 3 min

Lecture - 23 min

Distributed file system
	
Outline	
Distributed	 File	 Systems	
2	 Case	 studies:	 NFS,	 AFS	
Crosscutting	 issues	
	 Performance	
	 Failures	
	 Cache	 coherence/consistency	
	 Distributed	 commit	
	

A distributed file system provides transparent access to files stored
on a remote disk

Themes:
failures: what happens when a server crashes, but a client doesn’t? Or
vice versa?

Performance à caching; use caching at both clients and server to
improve performance

cache coherence – how do we make sure each client sees most up-to-
date copy?

Atomic update – how to update state at two or more machines

These issues and strategies we will discuss are much more general
than file system – arise in many distributed systems.

Simple: no caching
use RPC to forward every file system request to remote server (e.g.
Novell Netware)

Example operations: open, seek, read, write, close

Server implements each operation as it would for a local request and
sends back result to client
straightforward utilization of RPC

Advantage: server provides consistent view of file system to both A
and B

	

read	

data	

done	 write	

S	

A	 B	

cache	

issues: Failures, performance
Failures – see NFS (below)

Performance can be lousy:

going over network is slower than going to local memory!
lots of network traffic
server can be a bottleneck – what if lots of clients?

NFS (Sun Network File System)
(I'll	 talk	 about	 "NFS	 v.3"	 to	 illustrate	 issues	 in	 a	 simple	 system;	 NFS	 v.	 4	 makes	
significant	 changes,	 including	 some	 of	 the	 state-‐of	 the	 art	 techniques	 I'll	 talk	 about	
later	 this	 week...)	

Idea: use caching to reduce network load

Cache file blocks, file headers, etc at both clients and servers

Advantage: if open/read/write/close can be done locally, no network
traffic

	

read	

data	

done	 write	

S	

A	 B	

cache	

cache	 cache	

Issues:
(1) no longer have automatic stub generation à lose one advantage of
“RPC” over message passing
(2) helps performance; challenges failures and cache consistency

Issues: part 1: cache consistency

What if multiple clients are sharing same files? Easy if they are both
reading – each gets a copy of the file

What if one writing? How do updates happen?

At writer – NFS has hybrid delayed write/write through policy

• write through within 30 seconds or immediately when file
closed

How does other client find out about change (it has cached copy, so
doesn’t see any reason to talk to the server)

NFS protocol, part 1: weak consistency

In NFS, client polls server periodically, to check if file has changed.
Poll server if data hasn’t been checked in last 3-30 seconds (exact
timeout is tunable parameter)

Thus, when file is changed on one client, server is notified, but other
clients use old version of file until timeout. They then check server,
and get new version.

What if multiple clients write the same file? In NFS, can get either
version (or parts of both). Completely arbitrary!

HTTP uses essentially same protocol

If rule #1 in CS is "any problem can be solved with an additional level
of indirection", Dahlin's rule #2 is "I can make it go as fast as you
want, as long as you don't need the right answer"

We'll talk about better ways to enforce consistency next week.

Issues, part 2: Failures
What if server crashes? Can client wait until server comes back up,
and continue as before?

1) any data in server memory but not yet on disk can be lost

2) shared state across RPCs. Ex: open, seek, read. What if server

crashes after seek? Then when client does “read”, it will fail.

3) Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgement?

	

T	 =	 0:	
X’	

X’	 on	
disk	

X’	 T=30;	 X	
still	 OK?	

S	

A	 B	

X’	

X	 X’	

X’	

Message system will retry – send it again. How does it know
not to delete it again? (Could solve this with two-phase commit
protocol, but NFS takes a more ad hoc approach – sound
familiar?)

What if client crashes?
1) Might lose modified data in client cache

NFS: Solve problems in protocol (ad hoc?)

NFS Protocol (part 2): solutions
Key idea: Server is stateless. Client not allowed to rely on any server
state

1) write through caching – when a file is closed, all modified blocks

are sent immediately to server disk. To the client “close” doesn’t
return until all bytes are stored on server disk.

Client caches dirty data until close. Client failure --> data loss.
Network write (to server) -- block until data safely on disk.

2) Stateless protocol – server keeps no state about client (except as
hints to help improve performance; e.g. a cache)

• each read request gives enough information to do entire
operation – ReadAt(inumber, position) not Read(openFile)

• when server crashes and restarts, can start processing
requests immediately, as if nothing happened

3) Timeout and repeat requests to mask lost messages

Standard RPC technique.
Simple solution:

Request/acknowledge protocol
Common case:
1) Sender sends message (msg, msgId) and sets timer
2) Receiver receives message and sends (ack, msgId)
3) Sender receives (ack, msgId) and clears timer

If timer goes off, goto (1)

How does this work? Local procedure call guarantes exactly
once semantics. What does retransmission guarantee?
n What if msg 1 lost?
n What if ack lost?

Guarantees at least once semantics assuming no machines
crash or otherwise discontinue protocol
n Receiver guaranteed to recv message at least once

3)
4) Operations are “idempotent”: all requests are OK to repeat (all

requests are done at least once). So, if server crashes between disk
I/O and message send, client can resend message, server just does
operation all over again

• read and write file block are easy – just re-read or re-write

file block; no side effects
• What about “remove”? NFS just ignores this problem – does

the remove twice; second time returns an error if file not
found

 5) Failures are transparent to client system
Is this a good idea? What should happen if server crashes? Suppose
you are an application, in middle of reading a file, and server crashes?

Options;
a) hang until server comes back up (next week)?
b) return an error? Problem is: most applications don’t know they are

talking over the network – we’re transparent, right?
Many UNIX apps simply ignore errors! Crash if there is a problem.
(Network à many more errors than before)

NFS does both options – can select which one. Usually, hang and only
return error if really must – if see “NFS stale file handle” that’s why

NFS Summary
NFS pros & cons
+ simple
+ highly portable
n sometimes inconsistent

n doesn’t scale up to large # of clients

Might think NFS is really stupid, but Netscape/WWW does something
similar: cache recently seen pages, and refetch them if they are too
old. Nothing in WWW to help with cache coherence

Notice: what happened to “RPC è transparent distributed system”?
n performance à add caching
n failures à change all public methods to (mostly) idempotent
n performance v. failures à write through cache
n performance v. failures à weak consistency
Basically ended up rearchitecting and rewriting everything!

Next 2 weeks -- address fundamental problems in distributed systems.
You see them in NFS
-- performance
-- consistency
-- distributed commit
-- security
After we talk about (some of) these, we'll revisit in context of a
scalable cluster file system: The Google File System

Performance
Cost of a procedure call << same machine RPC << network RPC

means programmer must be aware that RPC is cheap, but not free

Caching can help, but
n generally gets rid of “transparent stub generation” advantage of

RPC
n makes failure handling more complex, raises consistency issues

n Not work for all worlkloads, all cases. (E.g., web caching -- data
changes, zipf distribution --> client caches have 20-50% hit rate --
> network performance dominates (amdhal's law)

--> Caching alone can't fully mask slow network.

NFS Example:
File	 close	 needs	 to	 write	 back	 all	 dirty	 sectors	 from	 client	 cache	 to	 server	 disk.	

Network performance
	
"How	 fast	 is	 your	 network?"	
	
Bandwidth	 isn't	 whole	 story.	 Bandwidth	 is	 the	 MIPS	 of	 I/O	
In architecture, MIPS is one of three factors (cycles per instruction, instruction count, instructions per
second) -- only looking at one is misleading
Similar issues for IO
	
Example	

Suppose I have a 100Mbps and 1000Mbps network. Is second
network 10x faster?
Not if I use it to do a “remote read” (50 byte request, 50 byte
response)

Graph: (lab) 510us (100Mbps), 501us (1000 Mbps)
(Graph: fixed portion + variable portion…)

 Cross-country: 50.5ms (10Mbps), 50.5ms (100Mbps)
What’s going on?

	
Example	
e.g.,	 Suppose	 I	 replace	 load/store	 from	 local	 memory	 with	 load/store	 from	 remote	
machine	 via	 network.	
Bandwidth	 not	 *that*	 different	 -‐-‐	 maybe	 10-‐100	 GB/s	 v.	 10	 Gbit/s	 (2011)	 -‐-‐>	 10-‐
100x	
But	 slowdown	 would	 probably	 be	 many	 times	 that	 (1000x-‐100,000x)	
	
Other	 factors	
-‐-‐	 Latency.	 Speed	 of	 light	 to	 get	 across	 building	 (~us)/campus(100us)/country(10's	
of	 ms)	 (v.	 100ns	 to	 memory)	
-‐-‐	 Overhead.	 Thousands	 of	 instructions	 to	 send/receive	 a	 packet	 (100us	 to	
send/recv	 a	 packet)	
	
Result:	 Even	 if	 network	 bandwidth	 is	 10Gbit/s,	 if	 I	 only	 access	 one	 remote	 word	 at	 a	
time,	 I'll	 probably	 see	 an	 effective	 bandwidth	 of	 	 1	 word	 per	 100us	 or	 1ms	 (100-‐
1000x	 slower)	

	
So,	 if	 bandwidth	 alone	 can	 get	 you	 off	 by	 a	 factor	 of	 1000x,	 how	 do	 you	 reason	 about	
performance?	

Cache consistency
Today: cache consistency – callbacks, leases
Wednesday: reliability

	

Recall -- NFS caching sometimes gives wrong answer
	
-‐-‐	 client	 caching	 data	 checks	 with	 server	 to	 see	 if	 still	 valid	 if	 it	 has	 been	 more	 than	
30s	 since	 last	 check	
-‐-‐>	 Window	 of	 vulnerability	
-‐-‐>	 My	 compiles	 occasionally	 fail	 and	 I	 tear	 my	 hair	 out	
	
"I	 can	 make	 any	 system	 run	 fast	 as	 long	 as	 you	 don't	 insist	 on	 the	 right	 answer."	
	
	

Sequential ordering constraints
Cache coherence – what should happen? What if one Cpu changes file
and before it’s done, another CPU reads file?

“right answer” turns out to be more subtle than one might hope…
• Essentially same problem as reasoning about synchronization of

multi-threaded programs – we have several programs running on
(potentially) multiple processors (at arbitrary speeds), what can they
see as they read and write memory (or files)?

• But now even load/store may not be atomic operations
o Caching, write buffering, multipath routing through network
o à write by one thread may not immediately be seen by

another!

• Consistency/coherence/staleness semantics define how “non-atomic”
memory can be (and give you a basis for reasoning about distributed
programs)

o Essentially ask “can a distributed program tell that memory is
‘playing tricks on it’ compared to case where all threads run on
uniprocessor with single memory?”

o Memory system semantics restrict/define which “new”
behaviors a memory system (or file system) can expose to a
program

consistency	 v.	 coherence	 v.	 staleness	
	
_ Coherence	 restricts	 order	 of	 reads	 and	 writes	 to	 one	 location	
–	 Can	 you	 tell	 memory	 system	 is	 playing	 tricks	 on	 you	 by	 looking	 at	 one	 location?	
–	 Example	
P1: P2:
for(ii = 0; ii < 100; ii++){ while(1){
write(A, ii); printf(‘‘%d ‘‘,
} read(A));
 }
–	 Where	 is	 incoherence?	
_ 1	 2	 3	 3	 3	 4	 9	 10	 9	 11	 12	 13	 ...	
–	 Why	 might	 a	 system	 exhibit	 incoherence?	
	 	 	 	 	 e.g.,	 2	 nodes,	 writer	 sends	 updates	 via	 Internet;	 updates	 get	
	 	 	 	 	 reordered	 en	 route...	
	
	 	 	 	 	 e.g.,	 cooperative	 caching	 -‐-‐	 read	 cached	 value	 from	 two	 different	
	 	 	 	 	 	 peers,	 could	 get	 out-‐of-‐order	 answer	
	
	 	 	 	 	 e.g.,	 client	 switching	 between	 two	 servers	 (e.g.,	 on	 Internet,	
	 	 	 	 	 	 get	 redirected	 to	 different	 Akamai	 node)	
	
	
	
_ Staleness	 bounds	 the	 maximum	 (real-‐time)	 delay	 between	 writes	 and	 reads	 to	 one	 location.	
–	 Can	 you	 tell	 memory	 system	 is	 playing	 tricks	 on	 you	 by	 looking	 at	 clock?	

–	 Example	 (think	 stock	 prices)	
P1: P2:
while(1){ while(1){
sleep(1000ms); sleep(1000ms);
write(A, ‘‘At %t price is %d\n’’); printf(‘‘%s‘‘,
} read(A));
 }
–	 Where	 is	 staleness	 (assuming	 real	 time	 OS)	
_ At	 1:00:00	 price	 is	 10.50	

_ At	 1:00:01	 price	 is	 10.55	
_ At	 1:00:02	 price	 is	 10.65	
_ At	 1:00:02	 price	 is	 10.65	
_ At	 1:00:02	 price	 is	 10.65	
_ At	 1:00:05	 price	 is	 13.18	
_ ...	
	
-‐-‐	 Why	 might	 a	 system	 exhibit	 staleness?	
	
e.g.,	 NFS	 polling	 interval	
e.g.,	 network	 delay	 prevents	 update/invalidation	 from	 reaching	 cache	 for	 a	 while...	
	
	

Consistency	 restricts	 order	 of	 reads	 and	 writes	 across	 locations	
–	 Can	 you	 tell	 memory	 system	 is	 playing	 tricks	 on	 you	 by	 looking	 at	 multiple	 locations?	
–	 Example	 1	
P1: P2:
for(ii = 0; ii < 100; ii++){ while(1){
write(A, ii); printf(‘‘(%d, %d), ‘‘,
write(B, ii); read(A), read(B));
} }
–	 Where	 is	 inconsistency?:	
_ (0,0),	 (0,1),	 (1,2),	 (4,3),	 (4,8),	 (8,	 9),	 (9,9),	 (9,10),	 (9,10),	 (10,10),	 (11,10),	 (11,11),	 (12,12),	 ...	
–	 Is	 there	 also	 incoherence?	
–	 Example	 2	 (a	 classic)	
P1: P2:
write(A, 0); write(B, 0);
... ...
write(A, 1); write(B, 1);
if(read(B) == 0){ if(read(A) == 0){
printf(‘‘P1.’’); printf(‘‘P2.’’);
} }
–	 Which	 outputs	 are	 legal	 under	 strict	 coherence?	 Under	 sequential	 consistency?	
_ “P1.”	
_ “P2.”	
_ “”
_ “P1.P2.”	
_ “P2.P1.”	
–	 Why	 might	 a	 system	 exhibit	 inconsistency?	
–	 Notice	
_ In	 first	 example,	 order	 between	 writes	 must	 be	 maintained...fairly	 obvious	 notion	 of	
causality	
_ In	 second	 example,	 order	 between	 writes	 and	 reads	 must	 be	 maintained.	 (Less	 obvious?)	
_ _ Consistency	 involves	 ordering	 both	 writes	 and	 reads.

A:	 0	
A:	 0	

A:	 0	
B:	 0	

1	

Semantics for non-atomic memory

Above defines 3 axes/dimensions:

	
	
	
Now	 we	 can	 start	 talking	 about	 particular	 design	 points	 in	 this	 space.	
	
One	 option:	 Insist	 that	 distributed	 memory	 look	 "just	 like"	 local	 memory	
	
	
	
Definitions	 (from	 Tannenbaum	 Distributed	 Systems	 (with	 slight	 modifications	 and	
additions))	
	
	
–	 sequential	 consistency	 –	 The	 result	 of	 any	 execution	 is	 the	 same	 as	 if	 the	 (read	 and	
write)	 operations	 by	 all	 processes	 on	 the	 data	 store	 were	 executed	 in	 some	 sequential	 order	
and	 the	 operations	 of	 each	 individual	 process	 appear	 in	 the	 sequence	 in	 the	 order	 specified	
by	 its	 program	
	
Sounds	 pretty	 strong	 (and	 	 it	 is).	 But	 it	 is	 not	 “perfect”	 –	 e.g.,	
	
A	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 B	

consistency	

coherence	

staleness	

//	 Initially	 A,	 B	 are	 0	
write(A,	 1)	
write(B,	 1)	 	 	 	 	 	 	 	 	 sleep(1	 year)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 read(A),	 read(B)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 printf(“A=%d	 B=%d”,	 A,	 B)	
	
output	 “A=0	 B=0”	 is	 legal	 under	 sequential	 consistency!	
	
à	 Expect	 certain	 staleness	 guarantees	
	
	
	
	
	
	
	
–	 delta	 coherence	 -‐	 the	 maximum	 real-‐time	 delay	 between	 when	 a	 write	 completes	 and	
when	 a	 subsequent	 read	 begins	 such	 that	 the	 read	 must	 return	 a	 value	 at	 least	 as	 new	 as	
that	 write	
	
–	 strict	 coherence	 -‐	 any	 read	 on	 a	 data	 item	 x	 returns	 a	 value	 corresponding	 to	 the	 most	
recent	 write	 on	 x	
	
strict	 coherence	 =	 delta	 coherence,	 delta	 =	 0	
	
linearizability	 =	 sequential	 consistency	 +	 delta	 coherence	 +	 delta	 =	 0	
(formal	 definition	 is	 essentialy	 -‐-‐	 sequential	 consistency	 +	 the	 global	 sequence	 is	 consistent	
with	 real	 time)	
	
-‐-‐>	 linearizability	 is	 essentially	 the	 origin	 in	 the	 design	 space	 -‐-‐	 the	 strongest	 consistency	 we	
typically	 ask	 for	
	
	
	
Even	 this	 is	 a	 bit	 less	 tight	 than	 you	 might	 hope…	 Simple	 to	 see	 what	 strict	
coherence	 means	 if	 reads	 and	 writes	 are	 instantaneous.	 But	 they	 are	 not!	
	

Note that every operation takes time: actual read could occur anytime
between when system call is started, and when system call returns

Assume what we want is distributed system to behave exactly the
same as if all processes are running on a single UNIX system

if read finishes before write starts, then get old copy
if read starts after write finishes, then get new copy

Otherwise – indeterminant – can get either new or old copy

Similarly, if write starts before another write finishes, may get either
old or new version. (Hence, in above diagram, non-deterministic as to
which you end up with!)

In NFS, if read starts more than 30 seconds after write finishes, get
new copy. Othewise, who knows? Could get partial update.

	
	
Regular	 v.	 atomic	 semantics	
Regular	 semantics	 -‐-‐	 return	 either	 the	 value	 of	 the	 last	 completed	 write	 or	 that	 of	
one	 of	 the	 writes	 which	 are	 concurrent	 with	 the	 read.	
	
Atomic	 semantics	 -‐-‐	 guarantee	 that	 the	 read	 and	 write	 operations	 to	 the	 variable	
behave	 exactly	 as	 if	 they	 happened	 instantaneously	 in	 some	 point	 in	 time	 which	 is	
within	 the	 actual	 time	 where	 the	 operation	 took	 place.	 (Usually	 this	 is	 what	 is	
assumed	 for	 strict	 coherence)	
	
_ Strict	 coherence	 =	 delta	 coherence	 with	 delta	 =	 0	
	
	
	
	
	
	

A	 ß-‐-‐-‐	 read	 A	 -‐-‐-‐-‐à	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ß-‐-‐-‐-‐-‐	 read	 A	 or	 B	 -‐-‐-‐-‐-‐à	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	 	 write	 B	 	 -‐-‐-‐-‐-‐-‐-‐-‐-‐à	
	 	 	 	 ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	 	 read	 A	 or	 B	 or	 C	 -‐-‐-‐-‐à	
	 	 	 	 	 ß-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	 	 	 write	 C	 -‐-‐-‐-‐-‐-‐à	
	 	 	 	 	 	 	 	 	 	 ß-‐	 -‐-‐-‐-‐-‐-‐-‐-‐	 	 read	 B	 or	 C	 -‐-‐-‐à	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ß	 read	 B	 or	 C	 à	
	
	
-‐	 	 TIME	 	 -‐à	

Limitations of strong consistency
	
So,	 we	 can	 define	 "perfect"	 consistency/coherence/staleness.	 	
	
Are	 we	 done?	 "Distribibuted	 systems	 should	 implement	 linearizability"???	
	
Unfortunately,	 no.	 Implementing	 these	 semantics	 has	 costs.	 Some	 of	 these	 costs	 are	
fundamental	 (and	 sometimes	 they	 are	 unacceptable.)	
	
–	 Sequential	 consistency	 has	 fundamental	 performance	 cost:	 fast	 reads	 or	 fast	 writes	 but	
not	 both	 	

r	 +	 w	 >=	 	 t	 (where	 r	 is	 read	 time,	 $w	 is	 the	 write	 	 time,	 and	 t	 is	 the	 minimal	 packet	
transfer	 time	 between	 nodes.)	 [Lipton	 and	 Sandberg]	

	
–	 Sequential	 consistency	 has	 a	 fundamental	 CAP	 dilemma	 (Brewer):	 A	 system	 can	 not	 have	
sequential	 Consistency	 and	 maintain	 100%	 Availability	 in	 the	 presence	 of	 Partitions.	
	
	
	
	
à	 develop	 weaker	 models	
	
	
–	 causal	 consistency	 –	 writes	 that	 are	 potentially	 causally	 related	 must	 be	 seen	 by	 all	
processes	 in	 the	 same	 order.	 Concurrent	 writes	 may	 be	 seen	 in	 a	 different	 order	 on	 different	
machines.	
	
Basic	 idea	 -‐-‐	 if	 I	 see	 a	 write	 that	 you	 issued,	 then	 I	 can	 also	 see	 (at	 least)	 all	 writes	 you	 could	
have	 seen	 when	 you	 issued	 the	 write	
	

n if	 P_1	 reads	 a	 write	 A	 before	 issuing	 a	 write	 B,	 then	 any	 process	
that	 sees	 B	 cannot	 subsequently	 see	 the	 	 old	 value	 of	 A	

n 	
n Hard	 to	 see	 why	 this	 is	 useful	 if	 you	 assume	 a	 centralized	 consistency	

server.	 	 Think	 about	 a	 world	 where	 machines	 can	 send	 writes	 to	 one	
another.	 If	 A	 reads	 a	 bunch	 of	 writes	 from	 B	 and	 then	 creates	 some	
writes	 of	 its	 own.	 Then	 C	 synchronizes	 with	 	 A,	 A	 must	 send	 B's	
writes	 to	 C	 before	 sending	 its	 own.	

	
	
	
	
	

	
	
	
	
	
	
	
e.g.,	
while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 while(1)	
	 	 write(A,	 I++)	 	 	 	 	 	 	 	 	 	 write(B,	 j++)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 print(A,	 B)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 print(A,	 B)	
	
	
	 	 	 	 	 	 (1,1)	 	 	 (1,1)	
	 	 	 	 	 	 (1,2)	 	 	 (2,1)	
	 	 	 	 	 	 (1,3)	 	 	 (3,1)	
	 	 	 	 	 	 (1,4)	 	 	 (4,1)	
	 	 	 	 	 	 (2,5)	 	 	 (5,3)	
	
This	 is	 causally	 consistent,	 but	 not	 sequentially	 consistent.	
This	 would	 be	 useful	 if	 A	 and	 B	 were	 on	 different	 nodes	 on	 internet	 –	 I	 might	 see	 the	 closer	
node’s	 updates	 before	 the	 more	 distant	 nodes,	 and	 you	 might	 see	 a	 different	 order…	

	
e.g.,	
while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 while(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 write(A,	 I++)	 	 	 	 	 	 	 	 	 	 write(B,	 readA)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 print(A,	 B)	
	
	
	 	 	 	 	 	 (1,1)	 	 	 	
	 	 	 	 	 	 (1,2)	 	 	 	
	 	 	 	 	 	 (1,3)	 	 	 	
	 	 	 	 	 	 (1,4)	 	 	 	
	 	 	 	 	 	 (2,5)	 	 	 	
	
No	 longer	 causally	 consistent	 –	 if	 I	 see	 new	 value	 of	 B,	 then	 I	 need	 to	 see	 new	 value	 of	 A	
	
	
	
Theorem:	 Causally	 consistent	 is	 the	 strongest	 consistency	 you	 can	 provide	 without	 giving	
up	 availability.	 (Dahlin,	 Alvisi,	 Mahajan	 -‐-‐	 April	 2011)	
	
	
There	 are	 also	 weaker	 options	
	
–	 FIFO	 consistency	 (aka	 PRAM	 consistency)	 –	 writes	 done	 by	 a	 single	 process	 are	 seen	 by	
all	 other	 processes	 in	 the	 order	 in	 which	 they	 were	 issued,	 but	 writes	 from	 different	
processes	 may	 be	 seen	 in	 different	 orders	 by	 different	 processes	
	
–	 Is	 FIFO	 stronger	 or	 weaker	 than	 causal?

(A weaker semantic allows more legal orderings than a stronger semantic.
Consistency semantic A is stronger than consistency semantic B if any
sequence of read and write results that are legal in A are also legal in B but
there is at least one sequence that is legal in B but that is not legal in A.)

Why would you ever want this? Requires no coordination at all. E.g.,
2 web servers....

How to provide improved consistency across clients?

(1) Poll each read – send every read to central server à get

centralized semantics (e.g., can get sequential consistency this way
– see the global order?)

We can optimize this with getattr(), but still slow…

Callbacks (e.g., Sprite, Andrew File System)
AFS (CMU late 80’s) à DCE DFS (commercial product)

Notify client if data they are caching is no longer valid

Callbacks:
(1) When a client reads data from server, server remembers that client

has data
(2) When client writes data, server notifies all other clients (that are

caching the data) that they must contact server on next read

Write begins
Tell server “I want to write foo”
Server tells all clients “discard current copy of foo”
All clients acknowledge
Server tells writer “ok to write foo”
Write completes

What semantics does this provide?

	

T	 =	 0:	
X’	

X’	 on	
disk	

Fetch	 new	
version	 next	
time	 X	 is	
opened	

S	

A	 B	

X’	

X	 X’	

X’	

X’	 X	

n linearizability if client issues one operation at a time and blocks
until completion

n (weaker if I can, say, read from cache while my write is pending)

Fault tolerance 1: Recovery of callback state
AFS	 approach:	 protocol	 level	 design	 (e.g.,	 ad-‐hoc)	
	
	

Challenge: improved caching + consistency increases failure handling
complexity:

What if server crashes? Lose all callback state

QUESTION: Why is this a problem?

QUESTION: What can you do?
Reconstruct callback information from clients – go ask everyone
“who has which files cached?”

QUESTION: What if client crashes?

Fault tolerance 2: CAP -- consistency v. availability during
partitions
Key	 idea:	 Leases	

CAP says sequential consistency must give up availability during partitions

How does this manifest in AFS?

Write completes when all caching clients have acknowledged
 QUESTION: why do I have to wait?
 [answer – you can return early if you are willing to weaken
semantics… but if you want linearizability, you have to wait]

Naïve solution: client blocks indefinitely if any client crashes
n How does this scale as we increase # clients?

Solution: lease -- combine polling and callbacks

Lease: cache has the right to access cached object X for Y seconds; after Y
seconds, must renew lease before accessing cached object

Server does callbacks for X seconds after lease

New solution:

(1) Write waits until all caching nodes acknowledge or leases expire
(sequential coherence)

(2) Write returns immediately (delta coherence)

Enhancement: Volume lease…

Other AFS features

1) files cached on local disk
NFS caches only in memory
à reduce server load

 2) more precise consistency model
1) callbacks

o server records who has copy of file
o send “callback” on each update

2) write-through on close
If file changes, server is updated (on close)
Server then immediately tells those with old copy

3) session semantics – updates visible only on close

In UNIX (single machine) updates visible immediately to
other programs who have file open

In AFS, everyone who has file open sees old version;
anyone who opens file again will see new version

In AFS slight variation: session semantics

a) on open and cache miss – get file from server; set up
callback

b) on write close: send copy to server; tells all clients with
copies to fetch new version on next open

Essentially – think of all reads happening when file opened and all
writes happening when file closed…

AFS pros & cons
Relative to NFS, less server load:
+ disk as cache à more files can be cached locally
+ callbacks à server not involved if file is read-only

- more complex recovery

Fault tolerance 3: Disconnected operation

Leases do a pretty good engineering job on CAP dilemma. If I can
talk to server, I can access data. Clients disconnected from server are
stuck. (Notice -- they are stuck even if they have the data they want to
read in their cache.)

AFS stores data on local disk
Suppose server crashes – can client keep going?
n almost – except renewing callbacks on open/close; writing though

on close

Support disconnected operation – allow client to access cached data
even when it cannot contact server.
n Improve availability
n Support mobility

Coda (and NTFS)
(1) Reads -- prefetch "hoard" data into local cache

Want to make sure you have everything in cache you need. What
should you do? (Hoard list)

(2) Writes -- write updates to local log; send log to server when
reconnect
Need to make sure that updates you did when disconnected make
it back to server. What should you do? (Log writes +
reconciliation)

CAP dilemma: Cannot provide sequential consistency and 100%
availability in a system that can be partitioned.

n What consistency does this provide? (causal?)

Problem: Conflicting writes…
What happens if two disconnected nodes both write same file? Is this
OK?

Coda solution:
(1) Detect
(2) Regular files: manual selection of “right” version to keep
(3) Directories: automatically correct most cases (manual for the rest)

Avoiding central server
Coda	 lets	 me	 write	 when	 disconnected,	 but	 all	 updates	 go	 through	 server	
	
What	 if	 you	 don’t	 want	 to	 have	 to	 synchronize	 through	 a	 server	
	
Basic	 idea	

- Each	 node’s	 writes	 are	 a	 	 log	 [picture]	
- Version	 vector	 –	 index	 of	 highest	 known	 write	 from	 each	 node	
- Log	 exchange	 –	 you	 send	 me	 your	 VV,	 I	 send	 you	 all	 updates	 you	 have	 not	 yet	

seen	
- à	 Eventual	 consistency	
- Lamport	 clock	 –	 my	 accept	 stamp	 =	 max(VV)	 +	 1	 	
- Send	 elements	 from	 my	 log	 sorted	 by	 accept	 stamp	
- à	 Causal	 consistency	
- Still	 need	 to	 deal	 with	 conflicting	 concurrent	 writes	 (how	 can	 you	 detect?)	

	

Google file system [see gradOS notes]
	
	

Consistency in memcached
	

memcached: reading from a database is slow
--> have another set of machines act as a cache (distributed hash table)
[picture]

basic idea:
read(x)
 data = memcached->read(x)
 if(data) return data
 else
 data = db->read(x)
 memcached->set(x, data)
 return x

write(x, data)
 db->write(x, data)
 memcached->set(x, data)

What incoherence might you observe?
How long can incoherence last (how much staleness)
 What if writer crashes after setting DB but before setting
memcached?

Obvious fix (?)

write(x, data)
 memcached->clear(x);
 db->write(x, data);
 memcached->set(x, data);

Does this solve the problem?

Summary - 1 min

Next time: improve consistency, 2 phase commit à atomic distributed
updates

	

	
	

