
CS 439: Systems II   Mike Dahlin 

 1 

Lecture S7: Reliability 
  
********************************* 
Review  -- 1 min 
*********************************   
Transactions 

ACID: atomicity, consistency, isolation, durability 
logging 
LFS,  
 
 
 

*********************************  
Outline - 1 min 
********************************** 
Reliability 
 disk reliablity 

RAIDs 
 

*********************************   
Preview - 1 min 
*********************************   
 
 
 
*********************************   
Lecture - 20 min 
*********************************   
 

1. Disk Reliability 
 

Simple model 
 
Disk advertises: MTTF and nonrecoverable read error. 
 
E.g.,  



CS 439: Systems II   Mike Dahlin 

 2 

1,500,000 hours MTTF 
1 unrecoverable read-sector error per 10^16 bits read 
 
What does this mean? 
 
MTTF -- mean time to (total device) failure 
-- head failure (e.g., electrostatic discharge, physical impact with 
contaminating particles, heat damage from rubbing against platter) 
-- damage to track positioning information 
-- bad electronics, capaciters, etc. 
 
1.5M hours ~= 171 years (!) 
 
MTTF v. Lifetime 
-- MTTF estimate is during "useful life" of device (e.g., 5 years) 
-- Bathtub model 
 
--> 1.5M hours really means "during first 5 years of operation, expect 
to lose .5%-1% of disks per year" 
 
Note: advertised  MTTF failure rates v. reality 
Empirical field studies have found 
-- higher failure rates (2%-3%/year) 
-- increasing failure rates during deployment (not quite bathtub) 
-- variable failure rates across different production runs (even for 
same disk from same manufacturer; certainly across different models 
and different manufacturers) 
 
Also note: A deployment may have many disks. E.g., cs department 
has several hundred; google has millions 
--> failures are routine (yearly, monthly, daily, hourly occurrance 
depending on scale.) 
 
 
Nonrecoverable read error 
-- bad media, corrosion, scratch from contamination, manufacturing 
defect (not always immediately apparent. e.g., material flakes off --> 
bad sector + particle that may damange other sectors) 
-- "high fly write" - head gets too far away during a write 
-- disk head impact (thermal damage) 



CS 439: Systems II   Mike Dahlin 

 3 

 
For high-throughput sequential reads/writes 
1 error / 10^16 bits * 120 MB/s  
~= 1 error / 10^16 bits * 10^9 bits/s 
~= 1 error/10^7 seconds 
~= 1 error/115 days (!) 
 
Challenges (basic model): 
-- disk failure (lose one disk) 
-- sector corruption (lose a few sectors on a disk) 
 -- detected in HW or not 
 
Remember: manufacturer gives MTTF estimate but, your milage may 
vary 
-- correlated failures 
-- bathtub curve 
-- environmental challenges  
-- Google reports seeing about 2% of disks fail per year 
 
 
Key techniques 
(1) Transactions (see above) 
(2) Redundancy: checksums -- End-to-end checksum a la ZFS 
-- Previously: rely on disk HW checksums 
-- Many recent new file systems include additional checksums (ZFS, 
google FS, HDFS, ...) 
(3) RAID: Redundancy: redundant copies of data 
 
 

2. Checksums 
Each sector encoded with checksum --> detect/corrects some errors 
(included in "nonrecoverable read error" estimate) 
 
Old file systems relied on hardware checksums 
-- occasional false negative 
-- doesn't detect data written to wrong sector (e.g., software/firmware 
error) 
-- doesn't detect bus controller bug 
etc. 



CS 439: Systems II   Mike Dahlin 

 4 

 
Recent file systems include stronger checksums on data 
-- more bits 
-- end-to-end principle 
e.g., ZFS checksum tree 
e.g., google FS, HDFS 
 
 
ADVICE: Current state of the art is to include end-to-end checksums; 
advise this for any system you design (and at least consider it for any 
system you buy) 
 

3. RAIDS and reliability 
 
So, you've detected an error (either through hardware checksum or file 
system checksum). Now what? 
 
Need to repair the damage. 
 
Data stored to disk is supposed to be permanent. Physical reality  -- 
disks fail  
 -- Today disks advertise ~1.4million hour MTTF 
 -- 1.4M hours/8760 hours/year = annualized failure rate of .6%  
 -- expect to lose ~.5-1% of your disks each year 
 -- some reports from large deployed systems see higher 
annualized failure rates (~2%) 
 
 Note MTTF 1.4M hours = 160 year MTTF does not mean disks 
will last 100+ years. This is failure rate during useful life (bathtub 
curve) 
 
 
If you have 1 disk, this should make you nervous. You shouldn't 
ignore it. 
If you have 10 or 100 disks, you can't ignore it. 
 
 
Organization may have hundreds or thousands of disks 



CS 439: Systems II   Mike Dahlin 

 5 

Suppose you need to store more data than fits on a single disk? How 
should you arrange data across disks? 
 
Naive option: treat disk as huge pool of disk blocks so that: 
 disk 1 has blocks 1, k+1, 2k+1, …. 
 Disk 2 has blocks 2, k+2, … 
 … 
 
Benefits 

• load gets balanced automatically across disks 
• can transfer large files at aggregate BW of all disks 

 
Problem: what if one disk fails? 
Big problem: for k disks k times as likely to have a failed disk at any 
given time 
 
Availability v. reliability 
 
Availiability – never lose access to data; system should continue 
working even if some components are not working (liveness) 
Reliability – never lose data  (safety) 
 
(Battery runs out on my laptop makes storage unavailable but 
hopefully not unreliable) 
 
RAID 
 
RAID -- redundant array of inexpensive disks 
-- use redundancy to improve reliablity 
 
In RAID, dedicate one disk to hold parity for other disks in stripe 
 
 disk 1 has blocks 1, K+1, 2K+1, … 
 disk 2 has blocks 2, K+2, 2K+2, … 
 … 
 parity disk has blocks parity(1…k), parity(K+1…2K)… 
 
details 
-- block is at least several KB; can be larger  



CS 439: Systems II   Mike Dahlin 

 6 

-- rotate parity -- [better still, rotate parity across disks; disk 0 has 
parity blocks for stripes 0, N, 2N, ...]; improves small-write 
performance 
-- need transactions to update blocks + parity atomically 
 
If lose any disk, can recover data from other disks plus parity 
ex: 
 disk 1 has    1 0 0 1 
 disk 2 has    0 1 0 1 
 disk 3 has    1 0 0 0 
 parity has     0  1 0 0 
 
What if we lose disk 2? Its contents are parity of remainder! 
Thus can lose any disk, and data is still available 
 
Details: 

• disk failures are “fail-stop” – disks tell you when they fail 
• update – read-modify-write data and parity atomically 

• solution – write-ahead logging or log-structure 
 
Simple (naïve) analysis 
 
why does this work? 
 
Suppose MTTF = 100K hours (11.5 years) 
Department has 100 disks  100K/100 until first failure = 1000 hours 
= lose data every 41.66 days! 
 
Suppose MTTR = 10 hours and we arrange disks as 99 disks + 1 
parity 
QUESTION: 1% better? 2x better? 10x better? 
 
Assuming independent failures(*) – need to get unlucky and have a 
second failure before the first disk is fixed 
 
e.g., 41 days until the first failure happens, then race to fix disk before 
next one fails. Since I fix the disk in 10 hours and the next disk is 
expected to fail in 1000 hours, I win this race 99 out of 100 times 
 
 MTTDL = 100 * 1000 = 100K hours 

Preferred Customer
Comment:  



CS 439: Systems II   Mike Dahlin 

 7 

 
ANSWER 100x better. 1% reduction in effective space gets 100x 
improvement in reliability! 
 
Of course, I can improve this further by  
(1) using more redundancy (e.g., 1 parity per 10 rather than 1 per 
100) 
 
Typical deployments – 1-2 parity per 1-10 disks; (e.g., 3 replicas of 
data in Google file system) 
 
standard (naive) formula 
one parity disk per group: 
MTTDL = MTTF^2_disk / (N * (G-1) * MTTR_disk) 
 
e.g., 100 disks in groups of 9 data + 1 parity; 10 hr mttr 
 
100K^2 / (100 * 9 * 10) = 1.1M hours (>100 years) 
 

Intution: MTTF/N = time for first failure 
              MTTF/G-1 = time to second failure after first occurs 
             (MTTF/G-1)/MTTR_disk -- probability second  failure 
occurs before first disk repaired 

 
for 2 parity disks per group: 
 
MTTDL_2 parity ~= MTTF_1 parity * MTTF/(G-2)MTTR = 
MTTF^3_disk / (N * (G-1) * (G-2) * MTTR^2_disk) 
 
e.g., 100 disks in groups of 8+2 
100K^3/(100*9*8*10^2) = 10^15/10^5 = 10B hours (>1M years) 
 
--> You can get really gaudy numbers with naive formula and a 
small amount of redundancy 
 
 (2) improving repair time  
 
Hot swap 
“Hot swap” – immediate switch to new disk in seconds/minutes 
(possibly w/o operator intervention) 



CS 439: Systems II   Mike Dahlin 

 8 

 
Unfortunately, physical limits of disk put lower bound on repair time. 
E.g.,  
 
Limited by time to read/write data – if dedicate 100% of disk BW to 
repair, 1TB/50MB/s = 20K seconds – 6 hours; more if reads are 
slowed down because of non-repair traffic; technology trends – this 
number is rising 
  
(a) Have enough redundancy to survive multi-hour MTTR 

 
(b) Declustering – spread repair load – instead of organizing 100 

disks into 10 groups of 10, send each data item to 10 random disks 
out of 100 ; if a disk fails, send the repair traffic to a random disk 
(excluding the ones already used for that data)  each remaining 
disk supplies 1% of the repair reads and receives 1% of the repair 
writes  repair in minutes not hours 

 
PICTURE: 
 



CS 439: Systems II   Mike Dahlin 

 9 

 
(Note: For simplicity picture shows separate spare disks; enhancement 
is to just leave spare storage capacity on existing disks. I'll leave that 
as an exercise...) 
 



CS 439: Systems II   Mike Dahlin 

 10 

 

3.1 Problem: Naive estimate is wildly optimistic 
 
 
The above equation is wildly optimistic. 100 disks in groups of 9+1 
 100 years? No way. 
 
NOTE: independent failure assumption is way too optimistic 
(1) “bathtub” lifetime – quoted MTTF only valid during intended 

service lifetime (e.g., first 3-5 years of services possibly not 
including burn-in) 

 
(2) Field data v. measured data (2-4x failure rate; increasing failure 

rate over time) 
 

(3) environmental correlation – power surges, vibration, 
manufacturing defect, faulty controller or server, … 
 

(4) Unrecoverable read errors 
 
Early raid formula ignored these. On modern drives, they can be more 
common than total disk failures (see above). 
 
we had 
whole disk failure + whole disk failure = data loss 
 
now we also have 
whole disk failure + nonrecoverable error = data loss 
 
(Note: We ignore nonrecoverable error + nonrecoverable error because odds 
of losing the same sector on multiple disks is tiny) 
 
 
Problem: Over time bad sectors accumulate at some rate; eventually, it is 
inevitable that when you try to recover from a failed disk, you will find that 
one of the sectors you need to read is gone. 
 
Solution: Scrubbing 
Periodically read all data blocks; detect errors; correct them 



CS 439: Systems II   Mike Dahlin 

 11 

Scrubbing rate is limited by disk size v. bandwidth and by what fraction of 
bandwidth you are willing to give up to maintenance (scrubbing) 
 
 

 
[[Elerath and Pecht "A Highly Accurate Method for Assessing Reliability of 
Redundant Arrays of Inexpensive Disks (RAID)" IEEE Transactions on 
Computers V 58 n 3 march 2009]] 
17520 hours = 2 years;  
naive v. field data is ~100x after year 1 
 



CS 439: Systems II   Mike Dahlin 

 12 

3.2 Common configurations today: 
Mirrored: 2 identical disks (write to both, read from either) 
3-5 data + 1 parity 
3-way replication 
5-10 data + 2 parity 
 

Advice: double redundancy increasingly sensible for important data 
(You may be able to get by with 1 parity or mirroring + additional 
backup copy) 
 

3.3 Environmental factors 
Disk failure is not the only thing you need to worry about 
 
Other "advanced" sources of failure 
  Operator error 
  Malicious operator 
  Malware: Virus, ransomware 
  Fire, flood, hurricane, … 
  Bankruptcy of outsourced storage provider 
  FBI raid on collocation center (!) 

http://blog.wired.com/27bstroke6/2009/04/data-centers-ra.html 
   
   
One solution: SafeStore – geographic, operator, organization, software 
diversity; restrict interface;  
 
http://www.cs.utexas.edu/users/dahlin/papers/SafeStore-
USENIX07.pdf 
 
 

*********************************   
Summary - 1 min 
*********************************    

Key idea: redundancy 


