Lecture #28

R R R ek Rk S b S bk e S Sk b b S e bk S

Review -- 1 min
khkkkkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkkkhkhkhkikhkkkkkkk*kx
RAID: use redundancy to make multiple disks feasible
—> good performance
- excellent availability
1 disk: 1M hours mittf
100 disks: 90 data, 10 parity, (G=11) 1hr mttr: 1B hr mittf
100K years!
100 disks: 80 data, 20 parity (G=12), 1 hr mttr: 1x10"14 hr mttf
1B years!
RAID Architectures
e mirroring
o parity on blocks
* interleaved parity on blocks

khkkkhkkhhkkhhkkkhhkkhhkkhhkhkkhkkhhkhkhkkhkkhhkkhkk%xx

Outline- 1 min
khkkhkkhkhkhkkhkhkhkhkhkhkhkkhhdhdhdhdhkhkhkhkhhhhkkkddd%k

System-level availability
Tape Storage
Benchmarking

R R Rk Rk S b bk e e kb b S b e b S

Preview - 1 min
khkkhkkhkhkhkkhkhkhkhkhkhkhhhdhdhdhdhdhkhkhhhhhkkkkkdd%k

Networks --
Intro — networking basics
Performance models

khkkkkhkhkkkhkkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

Lecture- 20 min

khkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

System-level availability



motivation: disk-only piece now seems pretty reliable
other pieces will limit availability

Disk
controller

Disk

Host Array
controller

Host

adapter controller

(DMA, etC) g:::iltp;p,)igtgé)buffering, DlSk
controller

Disk
controller

This is hardware version
¢ Starting to see Array controller in OS’s
¢ Hardware premium — 2-5x cost v. individual disk prices

System-level availability
Any of those pieces can fail
worry about cable failures?
Yes—at rates of 1 per billion years, cable failures are
significant

3 levels— bottom up

1) disks—more complicated than RAID model
2) other hardware in the box

3) system — software, environment, etc.

1) Disk failure models




» correlated disk failures
¢ same shipment, same environment
» system crash during parity update + disk failure
need atomic update of data + parity = logging, NVRAM, ...
» predict failures by watching “soft errors’
“negative” MTTR — pull disk beforeit fails
* reconstruction can “cause” failures
» uncorrectable bit errors of 1 per 10"14 bits read
e > 1512 byte sector in 24 billion cannot be read
» > P(sucessful reading 100M sectors
= (1-1/(2.4*10710)) N 2*10"8 = 99.2%
- 0.8% of disk failures result in data loss

(Not so much “causing” failure—just that there is another failure
mode other than head crash that the earlier model didn’t account for)

2) Non-disk Hardware failures
Most common component failures (in order of failures)
fans, power supplies, controllers, cables

Solution 1: “Orthogonal RAID”



host

Array
controll
er

String
controll

EE G-

String
controll

e

String
controll

e

String
controll

[

D




host
host
— 1 [Array
: String troll
Array Strlng cor;troller e
controll | \controll -
er |
String 3 @ @ @ String
controller controller
]
I
String String
controller controller
]
I
String String
controller controller
]

Solution 2: “Fully dual-redundant”

3) System-level availability
Sources.

environment — e.g. power outage
* need UPS
operations—e.g. “rm-r *”
maintenance — e.g. kick power cord out of wall while
cleaning
software
e.g. bug in software
hardware
e.g. disk failure, CPU failure, memory failure




GRAPH: figure 1 Jim Gray “A Census of Tandem System
Availability between 1985 and 1990” |EEE Transactions on Reliability v39
n4 Oct 1990

Moral: Hardware is pretty good (HW and maintenence terms)
environment is significant (need uninterruptable power supply)
software, operations are big problem

khkkkkhkhkhkkhkhkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%

Admin-3 min

khkkkkhkhkhkkhkhkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

hw5

checkpoint
¢ should be starting to see progress; even some preliminary results
¢ want roadmap of what remains to be done

khkkkkhkhkhkkhkkhkkkhkhkhkhkhkkkkkkkhkikhkkkkkkkk*%x

Lecture- 24 min

khkkkkhkhkhkkhkkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

Alternative Storage Technologies

Idea — tapes are cheaper than disks; for some things that we don’t access too
often, we can store it more cheaply on tape

Technology motivation
¢ Helical Scan Tapes
¢ Hélical v. linear tape — better density
e.g. VCR
¢ Inherently better storage density than disk
“3-d” tapev. “2-d” disk
¢ Cheap media
plastic ($5) v. metal and silicon ($500)
¢ OK to good bandwidth (0.1-10 MB/s)



¢ Taperobots

¢ automatically load tape in 10’ s of seconds
(Helical addsto load time)

Problems With Tape
¢ Slow seek time (10's of seconds)
¢ Slow tape load (10’s of seconds)
¢ Mediacheap, robots expensive (fallacy of mediav. system)
¢ Standards slow technology advance
—> disks catching up
But tape readers become obsolete
¢ Tape and head wear
¢ replace after 100's of reads
¢ Unpredictable accesstime
¢ retry in firmware to improve recording density
Bottom line: previous applications are write seldom, read seldom
e.g. Backup (write once, read seldom), software distribution (write
once, read once), data interchange (write once read once)

Case study: Parallel tape (alaRAID)

problem 1: for given size access, parallel increases number of seeks
(slow) v. bandwidth (which tapes are pretty good at) = need huge amounts
of datato make it worth while

problem 2: unpredictable time due to retry - parallel system slowed
by slowest component

Case study (optimism): Digital library

1M book library * 400 pages/book * 4000 bytes per page (text) =2 TB
images. ~100 TB
Storage Tec 120 TB robot -- $500K in 1994

$500K robot v. $100M library

Old computer hands get to talk about how they learned to program
¢ type program into cards, carry cards to operator, smile at them so
they don’t lose your job or drop it on the floor; come back the next
day and see “Oh, | forgot a semicolon on line 378" Typein



semicolon (there was a machine to read old card set up to a point,
insert a change, and read rest of old card set), try again
¢ WEe'll be ableto tell same stories about library
¢ high tech —had an electric card catalog
then walk to library (10 minutes)
find book (10 minutes)
check it out and walk back (10 minutes)
and get this— while I’ ve got the book no one else can read it
for amonth!!
Other arguments for
1) cost of handling paper
storage cost — “Library = 100M mausoleum for dead trees’
catalogue cost -- $20/book
reshelve a book -- $1/book
% new books purchased that are NEVER checked out — 20%
2) technology trends

* & & o

Technical challenges
1) tape wear out, obsolecence
=>» need to periodically recopy data as part of cost model
(shouldn’t be too bad given tech trends.)

Other challenges — economic, legal

Benchmarks

“For better or worse, benchmarks shape afield”

1/O Benchmarks
typically measure throughput
possibly with upper limit on response time



Key issue — benchmark scaling
what if fix problem size, given 60%/year increase in DRAM
capacity?

Benchmark Size of Data %Timein 10 (1992)
1O Stones 1MB 26%
Andrew 4.5MB 4%

(IMB? Fitsin L2 cache on modern machines!!!)

Observation — most benchmarks synthetic
¢ scaling
¢ hard to deal with large data sets

Self-scaling, Synthetic Benchmarks

|dea: automatically increase workload to stress system being
measured

3 examples

» TPC —transaction processsing (TPC-A, TPC-B, TPC-C,

TPC-D)
* NFS: SPEC SFS (aka Laddis)
o Unix I/O: Willy

Transaction Processing
TP aka OLTP (On-lin transaction processing)

» Changesto alarge body of shared information from many terminals,

with the TP system guaranteeing proper behavior on failures

» e.g.if bank’s computer fails when a customer withdraws money, the TP
system would guarantee that the account is debited if the customer
received the mondy and that the account is unchanged if the money was

not received
» Airline reservation systems and banks use TP



Key idea: Atomic Transactions

Each transaction = 2-10 disk I/Os + 5K-20K CPU instructions per
disk 110
SW efficiency crucial to avoiding disk accesses

Classic metric: TPS (Transactions per second)
¢ Dbut under what workload? How were machines configured?

TPC Benchmark history
« Early 1980's: great interest in OLTP
¢ EXxpecting demand for high TPS( e.g. ATM machines, credit
cards)
¢ Each vendor picked own conditions for TPS claims, report
only CPU times with widely different 1/0O
¢ Conflicting claims = disbelief of all benchmarks = chaos
In market
e 1984 —Jim Gray of Tandem distributed paper to Tandem employees and
19 other companies to propose standard benchmark
» Published “A measure of transaction processing power” Datamation,
1985 by Anonymous et. Al
¢ toindicate thiswas an effort of alarge group
¢ toavoid delays of legal department of each author’sfirm

TP by Anon et. d
* Proposed 3 standard tests to characterize commercial OLTP
¢ TPL: OLTPtest “DebitCredit” — simulates ATMs
¢ Batch sort
¢ Batch scan
» DebitCredit
¢ Onetype of transaction — 100 bytes each
¢ recorded 3 places. account file, branch file, teller file + all
events recorded in history file
» Scaling: size of account, branch, teller, history are all function of
throughput



TPS #ATMs account-file size

10 1000 0.1GB
100 10K 1.0GB
1000 100K 10.0 GB
10,000 1000K 100.0 GB

- each TPS = 100K account records, 10 branches, 100 ATMs

* response time: 95% transactions take < 1 second
» Configuration control: report price (initial purchase price + 5 year
mai ntenence = cost of ownership)

Problemswith TP1

Often ignored the user network to terminals

used transaction generator with no think time (made sense for vendor
but not what customer would see)

Solution: hire auditor to certify results
auditors soon saw many ways to trick system
—> propsed minimum compliance list (13 pages)
still can’t reproduce results

- 1988: TPPC (Transaction processing performance council)
they create standard TPC benchmarksin 1990

New TP benchmarks

* TPC-A: Revised TP1/DebitCredit
* Arrivals: Random (TPC) v. uniform (TP1)
e Terminals: smart v. dumb (affects instr. Path lenght)
« ATM scaling: 10 terminals per TPSv 100
» branch scaling: 1 record per TPSv. 10
* response time constraint: 90% < 2 secondsv. 95% < 1
 full disclosure: approved by TPC
» complete TPS/response time plot v. single point
e TPC-B: Same as TPC-A but without terminals (batch processing)



o Other efforts:
» TPC-C - complex query processing
» TPC-D — decision support

Lessons from TPC

* importance of scaling

e importance of standard
» peformance/cost metric

NFS Benchmark — SPEC SFS'LADDIS

1993 — attempt by NSF companies to agree on standard benchmark

 multiple“client” load generator machines

* no caching at clients

» read and write (and stat and ...) random files

* reads: 85% full block + 15% partial block

o writes: 50% full block + 15% partial block

» each client access private subdirectory (subdirectories can even bein
different file systems!)

* max avg response time 50 ms

» scaling: for every 100 NFS ops/sec, increase capacity by 1GB

» Result: plot of server load (throughput) v. response time

Limitations
* low-level benchmark — NFS server specific

e.g. no client cache (so, an odd workload)

—> not correspond to performance seen by client
» odd workload

odd access patterns (no client caches)

no client sharing of data

each client gets own subdirectory or file system



Willy — self-scaling UNIX file system benchmark

(Chen and Patterson 1993)

Self-scaling to stress different aspects of system
Examine 5 paramers

* unique bytestouched -> givesfile cache size

» percentage of reads

» avg /O request size (Bernoulli C =1)

» percentage of sequential requests: typically 50%
» Number of processes: concurrency of workload
|dea: fix four parameters while vary 1 paramter
Search space to find high throughput

Example: Fig 6.26

Benchmark conclusions

» scaling to track technology

» TPC: price performance as normalizing config

 auditing to ensure no foul play

 throughput with restricted response time is normal measure

» practical challenges
¢ large data sets = artificial workload (so can artificially generate)
¢ large configurations = expensive to do tests (e.g. for high TPC

need thousands of clients)

khkkkkhkhkhkkhkhkhkkkhkhkhkhkkhkkkkkkkhkikhkkkkkkkk*%x

Summary - 1 min

khkkkkhkhkhkkhkhkhkkkhkhkhkhkkhkkkkkkhkhkikhkkkkkkk*%x



