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Abstract
(0]

We present PRACTI, a new approach for large-scale

replication. PRACTI systems can replicate or cache an)g

subset of data on any node (Partial Replication), provide
a broad range of consistency guarantees (Arbitrary Con-
sistency), and permit any node to send information to°
any other node (Topology Independence). A PRACTI®
architecture yields two significant advantages. First, by
providing all three PRACTI properties, it enablestter

trade-offsthan existing mechanisms that support at most

two of the three desirable properties. The PRACTI ap-e

which data,consistency policiesuch as sequential [21]

r causal [16] define which reads must see which writes,
ndtopology policiesuch as client-server, hierarchy, or
d-hoc define the paths along which updates flow.

This paper argues that an ideal replication framework

hould provide all three PRACTI properties:

Partial Replication(PR) means that a system can place
any subset of data and metadata on any node. In con-
trast, some systems require a nhode to maintain copies
of all objects in all volumes they export [26, 37, 39].

Arbitrary ConsistencfAC) means that a system can

proach thus exposes new points in the design space for provide both strong and weak consistency guarantees

replication systems. Second, tfexibility of PRACTI
protocols simplifies the design of replication systems by
allowing a single architecture to subsume a broad range
of existing systems and to reduce development costs for
new ones. To illustrate both advantages, we use our
PRACTI prototype to emulate existing server replica-
tion, client-server, and object replication systems and to
implement novel policies that improve performance for
mobile users, web edge servers, and grid computing by
as much as an order of magnitude.

and that only applications that require strong guaran-
tees pay for them. In contrast, some systems can only
enforce relatively weak coherence guarantees and can
make no guarantees about stronger consistency prop-
erties [11, 29].

Topology Independenc€rll) means that any node
can exchange updates with any other node. In con-
trast, many systems restrict communication to client-
server [15, 18, 25] or hierarchical [4] patterns.

Although many existing systems can each provide two
of these properties, we are aware of no system that pro-

1 Introduction ) . -
i : licati vides all three. As a result, systems give up the ability to
This paper describes PRACTI, a new data replication apg, |t |ocality, support a broad range of applications, or

proach and architecture that can reduce replication cost&y

by an order of magnitude for a range of large-scale sys-
tems and also simplify the design, development, and def)
ployment of new systems.

Data replication is a building block for many large-

namically adapt to network topology.
This paper presents the first replication architecture to

rovide all three PRACTI properties. The protocol draws
on key ideas of existing protocols but recasts them to re-
move the deeply-embedded assumptions that prevent one

scale distributed systems such as mobile file systemg,. yqre of the properties. In particular, our design begins

web service replication systems, enterprise file sys:
tems, and grid replication systems.

h with log exchange mechanisms that support a range of
Because there I5,,gistency guarantees and topology independence but

a fundamental trade-off between performance and Cofg, 5t f;ngamentally assume full replication [26, 37, 39].

s!stency [22] as well as between _avallablllty and CON-1g support partial replication, we extend the mechanisms
sistency [9, 31], systems make different compromises, 4,0 simple but fundamental ways

among these factors by implementing different place-
ment policies, consistency policies, and topology poli-—
cies for different environments. Informallyplace-

ment policiessuch as demand-caching, prefetching, or
replicate-all define which nodes store local copies of
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In order to allow partial replication of data, our design
separates the control path from the data pathsep-
arating invalidation messages that identify what has
changed from body messages that encode the changes
to the contents of files. Distinct invalidation mes-
sages are widely used in hierarchical caching systems,
but we demonstrate how to use them in topology-
independent systems: we develop explicit synchro-
nization rules to enforce consistency despite multi-
ple streams of information, and we introduce general



mechanisms for handling demand read misses. Fourth, it demonstrates that PRACTI replication offers
2. In order to allow partial replication of update meta- decisive practical advantages compared to existing ap-

data, we introducémprecise invalidationswhich al-  Proaches.

low a single invalidation to summarize a set of inval-  Section 2 revisits the design of existing systems in

idations. Imprecise invalidations provide cross-objectlight of the PRACTI taxonomy. Section 3 describes

consistency in a scalable manner: each node incur@Ur protocol for providing PRACTI replication, and Sec-

storage and bandwidth costs proportional to the sizdion 4 experimentally evaluates the prototype. Finally,

of the data sets in which it is interested. For example S€ction 5 surveys related work, and Section 6 highlights

a node that is interested in one set of objedtput ~ Our conclusions.

not another seB, can receive precise invalidations for

objects inA along with an imprecise invalidation that 2 Taxonomy and challenges

summarizes omitted invalidations to objectsinThe | order to put the PRACTI approach in perspective, this

imprecise invalidation then serves as a placeholder fogaction examines existing replication architectures and

the omitted updates both in the node’s local storagg:gnsiders why years of research exploring many differ-
and in the logs of updates the node propagates to oth&in; replication protocols have failed to realize the goal of
nodes. PRACTI replication.

We construct and evaluate a prototype using a range Note that the requirements for supporting flexible
of policies and workloads. Our primary conclusion is consistency guarantees are subtle, and Section 3.3 dis-
that by simultaneously supporting the three PRACTIcysses the full range of flexibility our protocol pro-
propertiesPRACTI replication enables better trade-offs yides. PRACTI replication should support both the weak
for system designers than possible with existing mechcoherence-only guarantees acceptable to some applica-
anisms. For example, for some workloads in our mo- tions and the stronger consistency guarantees required by
bile storage and grid computing case studies, our Syspthers. Note thatonsistencgemantics constrain the or-
tem dominates existing approaches by providing morejer that updates acrossultiple objectshbecome observ-
than an order of magnitude better bandwidth and storaggple to nodes in the system whiteherencesemantics
efficiency than full replication AC-TI replicated server are |ess restrictive in that they only constrain the order
systems, by providing more than an order of magnitudehat updates to single objecbecome observable but do
better synchronization delay compared to topology connot additionally constrain the ordering of updates across
strained PR-AC hierarchical systems, and by providingmultiple locations. (Hennessy and Patterson discusses
consistency guarantees not achievable by limited consishe distinction between consistency and coherence in
tency PR-TI object replication systems. more detail [12].) For example, if a nodel updates

More broadly, we argue that PRACTI protocols can ghject A and then objec3 and another node2 reads
simplify the design of replication systems. At present,the new version of3, most consistency semantics would
because mechanisms and pOliCieS are entangled, Wh%sure that any Subsequent readmh)ﬁee the new ver-

a replication system is built for a new environment, it sion of A, while most coherence semantics would permit
must often be built from scratch or must m0d|fy eXiSting a read ofA to return either the new or old version.
mechanisms to accommodate new policy trade-offs. In

contrast, our system can be viewed as a replication miPRACTI Taxonomy. The PRACTI paradigm defines a
crokernel that defines a common substrate of core mecaxonomy for understanding the design space for replica-
anisms over which a broad range of systems can be coriion systems as illustrated in Figure 1. As the figure in-
structed by selecting appropriate policies. For exampledicates, many existing replication systems can be viewed
in this study we use our prototype both to emulate exist-as belonging to one of four protocol families, each of
ing server replication, client-server, and object replica-which provides at most two of the PRACTI properties.
tion systems and to implement novel policies to support Server replicationsystems like Replicated Dictio-
mobile users, web edge servers, and grid computing. nary [37] and Bayou [26] provide log-based peer-to-peer

In summary, this paper makes four contributions.update exchange that allows any node to send updates to
First, it defines the PRACTI paradigm and provides a tax-any other node (TI) and that consistently orders writes
onomy for replication systems that explains why existingacross all objects. Lazy Replication [19] and TACT [39]
replication architectures fall short of ideal. Second, ituse this approach to provide a wide range of tunable con-
describes the first replication protocol to simultaneouslysistency guarantees (AC). Unfortunately, these protocols
provide all three PRACTI properties. Third, it provides fundamentally assume full replication: all nodes store
a prototype PRACTI replication toolkit that cleanly sep- all data from any volume they export and all nodes re-
arates mechanism from policy and thereby allows nearlceive all updates. As a result, these systems are unable
arbitrary replication, consistency, and topology policies.to exploit workload locality to efficiently use networks
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provide cross-object consistency guarantees [27].

Object replicationsystems such as Ficus [11], Pan-
gaea [29], and WIinFS [23] allow nodes to choose arbi-
trary subsets of data to store (PR) and arbitrary peers
with whom to communicate (TI). But, these protocols
Fig. 1: The PRACTI taxonomy defines a design space for Clas_enforc_e no ordering Constrain_ts on updates across multi-
sifying families of replication systems. p_Ie objects, so they can provide coherence_but not con-

sistency guarantees. Unfortunately, reasoning about the

and storage, and they may be unsuitable for devices witgorner cases of consistency protocols is complex, so sys-
limited resources. tems that provide only weak consistency or coherence

Client-serversystems like Sprite [25] and Coda [18] 9uarantees can complicate constructing, debugging, and
and hierarchical caching systems like hierarchical USiNg the applications built over them. Furthermore, sup-
AFS [24] permit nodes to cache arbitrary subsets of dat&©rt for only weak consistency may prevent deployment
(PR). Although specific systems generally enforce a sePf @pplications with more stringent requirements.

consistency policy, a broad range of consistency guaranyhy is PRACTI hard?  Itis surprising that despite the
tees are provided by variations of the basic architecturgjisadvantages of omitting any of the PRACT!I properties,
(AC). However, these protocols fundamentally requireno system provides all three. Our analysis suggests that
communication to flow between a child and its parent.these limitations are fundamental to these existing proto-
Even when systems permit limited client-client commu- col families: the assumption of full replication is deeply
nication for cooperative caching, they must still serializeembedded in the core of server replication protocols; the
control messages at a central server for consistency [Shssumption of hierarchical communication is fundamen-
These restricted communication patterns (1) hurt perfortal to client-server consistency protocols; careful assign-
mance when network topologies do not match the fixednent of key ranges to nodes is central to the properties of
communication topology or when network costs changeDHTSs; and the lack of consistency is a key factor in the
over time (e.g., in environments with mobile nodes), (2)flexibility of object replication systems.
hurt availability when a network path or node failure dis-  To understand why it is difficult for existing architec-
rupts a fixed communication topology, and (3) limit shar- tures to provide all three PRACTI properties, consider
ing during disconnected operation when a set of nodegigure 2's illustration of a naive attempt to add PR to a
can communicate with one another but not with the resiAC-T| server replication protocol like Bayou. Suppose a
of the system. user’s desktop node stores all of the user’s files, including
DHT-based storage systemsuch as BH [35], files A andB, butthe user’s palmtop only stores a small
PAST [28], and CFS [6] implement a specific—if subset that include® but notA. Then, the desktop is-
sophisticated—topology and replication policy: they cansues a series of writes, including a write to flmaking
be viewed as generalizations of client-server systemé A’) followed by a write to fileB (making it B’). When
where the server is split across a large number of nodethe desktop and palmtop synchronize, for PR, the desk-
on a per-object or per-block basis for scalability andtop sends the write aB but not the write ofA. At this
replicated to multiple nodes for availability and relia- point, everything is OK: the palmtop and desktop have
bility. This division and replication, however, introduce exactly the data they want, and reads of local data pro-
new challenges for providing consistency. For exampleyide a consistent view of the order that writes occurred.
the Pond OceanStore prototype assigns each object toRBut for Tl, we not only have to worry about local reads
set of primary replicas that receive all updates for thebut also propagation of data to other nodes. For instance,
object, uses an agreement protocol to coordinate thessppose that the user’s laptop, which also stores all of the
servers for per-object coherence, and does not attempt waser’s files including bothd and B, synchronizes with




Node 2 deleting objects. These functions operate the local node’s

C , e
Local AP ore Log and Checkpoint modifications are appended to the
l(cr_eate, read, S log and then update the checkpoint, and reads access the
Node 1jwrite ddets) random-access checkpoint. To support partial replication

Core .. .
policies, the mechanisms allow each node to select an ar-

2
Log %a‘f bitrary subset of the system’s objects to store locally, and
2 nodes are free to change this subset at any time (e.g., to
—— § |mplem_ent caching, prefetching, hoardln_g, or replicate-
g all). This local state allows a node to satisfy requests to
5 Core read_valid chally—stored objects without needing to com-
5 Body municate with other nodes.
Node 4 . To handle read misses and to push u.pda}tes be@ween
Core R nodes, cores use two types of communication as illus-
& trated in the figure—causally ordereéftreams of In-
2 validations and unorderedBody messages. The pro-
[Boey]” tocol for sending streams of invalidations is similar to
Bayou's [26] log exchange protocol, and it ensures that
Fig. 3: High level PRACTI architecture. each node’s log and checkpoint always reflect a causally

the palmtop: the palmtop can send the writeobut not consistent view of the system’s data. But it differs from

the write of A. Unfortunately, the laptop now can present €Xisting log exchange protocols in two key ways:
an inconsistent view of data to a user or application. Irl. Separation of invalidations and bodiesnvalidation
particular, a sequence of reads at the laptop can return streams notify a receiver that writes have occurred,
the new version o8 and then return the old version of  but separate body messages contain the contents of the
A, which is inconsistent with the writes that occurred at  writes. A core coordinates these separate sources of
the desktop under causal [16] or even the weaker FIFO information to maintain local consistency invariants.
consistency [22]. This separation supports partial replication of data—a
This example illustrates the broader, fundamental node only needs to receive and store bodies of objects
challenge: supporting flexible consistency (AC) requires that interest it.
careful ordering O.f how “pd"’?tes propagate through_ thg_ Imprecise invalidations. Although the invalidation
system, but consistent ordering becomes more difficu . . .
. , . . streams each logically contain a causally consistent
if nodes communicate in ad-hoc patterns (TI) or if some .
. record of all writes known to the sender but not the re-
nodes know about updates to some objects but not other " ) . . S
objects (PR) ceiver, nodes can omit se_ndmg groups of invalidations
. ' - : by instead sendingmprecise invalidations Whereas
Existing systems resolve this dilemma in one of three " L o .
o . traditionalprecise invalidationslescribe the target and
ways. The full replication of AC-TI replicated server . : . . : S .
) . logical time of a single write, an imprecise invalida-
systems ensures that all nodes have enough information : : :
. T tion can concisely summarize a set of writes over an
to order all updates. Restricted communication in PR- . . .
. . . interval of time across a set of target objects. Thus, a
AC client-server and hierarchical systems ensures that _. . N o
. . single imprecise invalidation can replace a large num-
the root server of a subtree can track what information o .
. i ber of precise invalidations and thereby support partial
is cached by descendents; the server can then deter- o .
. A . replication of metadata—a node only needs to receive
mine which invalidations it needs to propagate down and o o S .
S N . . traditional precise invalidations and store per-object
which it can safely omit. Finally, PR-TI object replica- ; . .
) ! . 2. ; metadata for objects that interest it.
tion systems simply give up ability to consistently order
writes to different objects and instead allow inconsisten- Imprecise invalidations allow nodes to maintain con-
cies such as the one just illustrated. sistency invariants despite partial replication of meta-
data and despite topology independence. In particular,

3 PRACTI replication they serve as placeholders in a receiver’s log to en-
Figure 3 shows the high-level architecture of our imple- sure that there are no causal gaps in the log a node
mentation of a PRACTI protocol. stores and transmits to other nodes. Similarly, just as
Node 1in the figure illustrates the main local data a node tracks which objects aldVALID so it can
structures of each node. A nod€sreembodies the pro- block a read to an object that has been invalidated

tocol’s mechanisms by maintaining a node’s local state. but for which the corresponding body message has not
Applications access data stored in the local core via the been received, a node tracks which sets of objects are
per-nodelLocal API for creating, reading, writing, and IMPRECISEso it can block a read to an object that



has been targeted by an imprecise invalidation and fos
which the node therefore may not know about the most
recent write.

The mechanisms just outlined, embodied in a node’s
Core allow a node to store data for any subsets of ob-
jects, to store per-object metadata for any subset of ob-
jects, to receive precise invalidations for any subset ofe
objects from any node, and to receive body messages
for any subset of objects from any node. Given these
mechanisms, a node&ontroller embodies a system’s
replication and topology policies by directing commu-
nication among nodes. A node’s controller (1) selects
which nodes should send it invalidations and, for each
invalidation stream subscription, specifies subsets of ob-
jects for which invalidations should be precise, (2) se-,
lects which nodes to prefetch bodies from and which
bodies to prefetch, and (3) selects which node should ser-
vice each demand read miss.

Invalidations from a log are sent via a causally-ordered
stream that logically contains all invalidations known
to the sender but not to the receiver. As in Bayou,
nodes use version vectors to summarize the contents of
their logs in order to efficiently identify which updates

in a sender’s log are needed by a receiver [26].

A receiver of an invalidation inserts the invalidation
into its sorted log and updates its checkpoint. Check-
point update of the entry for object ID entails marking
the entryINVALID and recording the logical time of
the invalidation. Note that checkpoint update for an
incoming invalidation is skipped if the checkpoint en-
try already stores a logical time that is at least as high
as the logical time of the incoming invalidation.

A node can send any body from its checkpoint to any
other node at any time. When a node receives a body,
it updates its checkpoint entry by first checking to see

s . , if the entry’s logical time matches the body’s logical
_These mechanisms also support flexible consistency yime and, if so, storing the body in the entry and mark-
via a variation of the TACT [39] interface, which al- ing the entryVALID.
lows individual read and write requests to specify the
semantics they require. By using this interface, app”_RationaIe. Separating invalidations from bodies pro-
cations that require weak guarantees can minimize penides topology-independent protocol that supports both
formance [22] and availability [9] overheads while ap- arbitrary consistency and partial replication.
plications that require strong guarantees can getthem. ~ Supporting arbitrary consistency requires a node to be
The rest of this section describes the design in moreble to consistently order all writes. Log-based invalida-
detail. It first explains how our system’s log exchangetion exchange meets this need by ensuring three crucial
protocol separates invalidation and body messages. Rroperties [26]. First therefix propertyensures that a
then describes how imprecise invalidations allow theNode’s state always reflects a prefix of the sequence of
log exchange protocol to partially replicate invalidations. invalidations by each node in the system, i.e., if a node’s
Next, it discusses the crosscutting issue of how to proState reflects theh invalidation by some node in the
vide flexible consistency. After that, it describes severaSystem, then the node’s state reflects all earlier invalida-

novel features of our prototype that enable it to supportions byn. Second, each node’s local state always re-
the broadest range of policies. flects acausally consisteritl6] view of all invalidations

that have occurred. This property follows from the prefix
3.1 Separation of invalidations and bodies  property and from the use of Lamport clocks to ensure
As just described, nodes maintain their local state by exthat once a node has observed the invalidation for write
changing two types of updates: ordered streams of inw, all of its subsequent local writes’ logical timestamps
validations and unordered body messadegalidations ~ Will exceedw's. Third, the system ensuresentual con-
are metadata that describe writes; each contains an objesistency all connected nodes eventually agree on the
ID* and logical time of a write. A write’s logical time is Ssame total order of all invalidations. This combination of
assigned at the local interface that first receives the writeproperties provides the basis for a broad range of tunable
and it contains the current value of the node’s Lamportconsistency semantics using standard techniques [39].
clock [20] and the node’s ID. Like invalidationsody At the same time, this design supports partial replica-
messagesontain the write’s object ID and logical time, tion by allowing bodies to be sent to or stored on any
but they also contain the actual contents of the write. ~ node at any time. It supports arbitrary body replica-
The protocol for exchanging updates is simple. tion policies including demand caching, push-caching,
As illustrated for node 1 in Figure 3, each node main-Prefetching, hoarding, prg-positioning bodies according
tains alog of the invalidations it has received sorted 0 @ global placement policy, or push-all.
by logical time. And, for random access, each nodeDesign issues. The basic protocol adapts well-
stores bodies in eheckpoinindexed by object ID. understood log exchange mechanisms [26, 37]. But, the
For simolici . . . separation of invalidations and bodies raises two new is-

or simplicity, we describe the protocol in terms of full-object . . L . . .

writes. For efficiency, our implementation actually tracks checkpoint SU€s: (1) coordinating disjoint streams of invalidations
state, invalidations, and bodies on arbitrary byte ranges. and bodies and (2) handling reads of invalid data.




The first issue is how to coordinate the separate bod[fftg;fa; “lg‘gm s

messages and invalidation streams to ensure that the afroob, 11@node1> <targetSet, dtart, end>
rival of out-of-order bodies does not break the cons!s-:;;gg;: Eg:ggz: hoy 10@NOGEL  16@nodet
tency invariants established by the carefully ordered in- —> ' 15@node2 ' 17@node2
. . . L. </foola, 16@nodel>
validation log exchange protocol. The solution is simple: <foob, 16@node2>

when a node receives a body message, it does not applfooc, 17@node2>

that message to its checkpoint until the corresponding iyecise Invalidations Imprecise Invalidation
validation has been applied. A node therefore buffers
body messages that arrive “early.” As a result, the check- Fig. 4: Example imprecise invalidation.

point is always consistent with the log, and the flexible
consistency properties of the log [39] extend naturally to
the checkpoint despite its partial replication.

it means “one or more objects fargetSetvere updated
betweerstartandend” An imprecise invalidation must

beconservativeeach precise invalidation that it replaces

The second issue is how to handle demand reads %ust have itobjld included intargetSetand must have

nodes that rephcqte only a subset .Of the systems.dlatqts logical time included betweestart andend but for
The core mechanism supports a wide range of policies;

by default, the system blocks a local read request untiFﬁlClent encodingargetSetmay include additional ob-

S Jects. In our prototype, theargetSets encoded as a list
the re_quested object’s status\/IAI__ID. Qf course, FO €N of subdirectories and thetart andendtimes are partial
sure liveness, when dNVALID object is read, an imple-

. version vectors with an entry for each node whose writes
mentation should arrange for someone to send the bod y

" Yire summarized by the imprecise invalidation.
Therefore, when a local read blocks, the core notifies the A node reduces its bandwidth requirements by sub-

controllgr. The cont.roII.er can thgn .|mplement any pOIIC):jscribing to receive precise invalidations only for desired
for locating and retrieving the missing data such as send-

: e . ubsets of data and receiving imprecise invalidations for
ing the request up a static hierarchy (i.e., ask your parerE1

, ; e rest. And a node saves storage by tracking per-object
or a central server), querying a separate centralized [8 tate only for desired subsets of data and tracking coarse-
or DHT-based [35] directory, using a hint-based search Y g

strategy, or relying on a push-all strategy [26, 37] (i'e',gralned bookkeeping information for the rest.

just wait and the data will come.) Processing imprecise invalidations. When a node re-
) o ) o ceives imprecise invalidatidnit insertsl into its log and
3.2 Partial replication of invalidations updates its checkpoint. For the log, imprecise invalida-

Although separation of invalidations from bodies Sup_tions act as placeholders to ensure that the omitted pre-
ports partial replication of bodies, for true partial repli- Cise invalidations do not introduce causal gaps in the log
cation the system must not require all nodes to see afihat a node stores locally or in the streams of invalida-
invalidations or to store metadata for each object. Ex1ions that a node transmits to other nodes.

ploiting locality is fundamental to replication in large- ~ Tracking the effects of imprecise invalidations on a
scale systems, and requiring full replication of metadatenode’s checkpoint must address four related problems:
would prevent deployment of a replication system for a. For consistency, a node mimgically mark all objects
wide range of environments, workloads, and devices. For targeted by a new imprecise invalidationIB&/ALID.
example, consider palmtops caching data from an enter- This action ensures that if a node tries to read data that
prise file system with 10,000 users and 10,000 files per may have been updated by an omitted write, the node
user: if each palmtop were required to store 100 bytes of can detect that information is missing and block the
per-object metadata, then 10GB of storage would be con- read until the missing information has been received.
sumed on each device. Similarly, if the palmtops were rey
quired to receive every invalidation during log exchange
and if an average user issued just 100 updates per day,
then invalidations would consume 100MB/day of band-
width to each device.

To support true partial replication, invalidation 3.
streamdlogically contain all invalidations as described
in Section 3.1, but imeality they omit some by replacing
them withimprecise invalidations.

As Figure 4 illustrates, an imprecise invalidation is a
conservative summary of several standarghrecise in- 4. For processing efficiency, a node should not have to
validations. Each imprecise invalidation hastargetSet iterate across all objects encompassedagetSeto
of objects startlogical time, and aendlogical time, and apply an imprecise invalidation.

For liveness, a node must be able to unblock reads for
an object once the per-object state is brought up to date
(e.g., when a node receives the precise invalidations
that were summarized by an imprecise invalidation.)

For space efficiency, a node should not have to store
per-object state for all objects. As the example at the
start of this subsection illustrates, doing so would sig-
nificantly restrict the range of replication policies, de-
vices, and workloads that can be accommodated.



H Global State:  currentVV[nodel] = 100
To meet these requirements, rather than track the ef- PerIS State:  lastPrecisevV[nodel] = 100

fects of imprecise invalidations on individual objects, (@ !'MtdS&€  per-Obj State:A VALID 98@node1
L . ISisPRECISE B VALID 99@nodel
nodes keep bookkeeping information on groups of ob- C VALID 100@nodel
jects calledinterest SetsIn particular, each node inde- (3) Imprecise $,:(target:{Avac}y start=101@nodeL, end=103@node:
pendently partitions the object ID space into one or more = 'nva Arrives
interest sets and decides whether to store per-object state Global State:  currentVV[node1] = 103
i ; ISisnow Per-IS State:  lastPreciseVV[nodel] = 100
on a per-interest set basis. A node tracks whether each® \yprecise Por_Obj State:A VALID. 98@nodel
interest set i®RECISHper-object state reflects all inval- B vALID 2?)0@@2'0(1311
idations) oiMPRECISE(per-object state is not stored or node

. . . . . .. Missing
may not reflect all precise invalidations) by maintaining @) preciseinvals \LPIl:(A, 101@nodel), PI2=(B, 103@node1)

two pieces of state. Arrive
i i 7 ] Global State:  currentVV[nodel] = 103
. Eagh node maintains a global vanaptarrentvy Final Sale  peris State:  lastPreciseVV[nodet] = 103
which is a version vector encompassing the highest Per-Obj State:A INVALID 101@nodet
timestamp of any invalidation (precise or imprecise) C VALID  100@nodel
applied to any interest set. Fig. 5: Example of maintaining interest set state. For clarity, we

e Each node maintains for each interest ISethe vari- only show nodel’s elements ofirrentVVandlastPreciseVV

ablelS.lastPreciseV\Mwhich is the latest version vec-  of interest sets. Note that our implementation allows a

tor for whichISis known to bePRECISE node to dynamically repartition its data across interest
If 1S.lastPreciseVV = currentV\then interest sd8 has sets as its locality patterns change.
not missed any invalidations and itFRECISE 4. Imprecise invalidations are efficient to apply, requiring

In this arrangement, applying an imprecise invalida- \york that is proportional to the number of interest sets

tion | to an interest seS merely involves updating two  at the receiver rather than the number of summarized
variables—the globalurrentVVand the interest setS.- invalidations.

lastPreciseVVIn particular, a node that receives impre-

cise invalidatiorl always advancesurrentVVto include ~ Example. The example in Figure 5 illustrates the
I's end logical time because after applyirigthe sys- maintenance of interest set state. Initially, (1) interest set
tem’s state may reflect events udfend Conversely, the 1Sis PRECISEand object#\, B, andC areVALID. Then,
node only advancetS.lastPreciseV\o the latest time (2) an imprecise invalidation arrives. | (3) advances

for which IS has missed no invalidations. currentVVbut notlS.lastPreciseVymaking!lS IMPRE-
This per-interest set state meets the four requirementS!SE But then (4) precise invalidatiord1 andPI2 ar-
listed above. rive on a single invalidation channel from another node.

1. By default, a read request blocks until the interest sef®) These advandé.lastPreciseVVand in the final state
in which the object lies i®PRECISEand the objectis 1SiS PRECISEAandB areINVALID, andCis VALID.
VALID. This blocking ensures that reads only observe Notice that although the node never receives a pre-
the checkpoint state they would have observed if all in-CiS€ invalidation with timel02@node}l the fact that a
validations were precise and therefore allows nodes t§ingle incoming stream contains invalidations with times

enforce the same consistency guarantees as protocol§1@nodeand103@nodeallows it to infer by the pre-
without imprecise invalidations. fix property that no invalidation at tim&02@nodelc-

> Forli th i ¢ tall block .tcurred, and therefore it is able to advamgdastPrecise-
. Forliveness, the system must eventually unblock waity /115 PRECISE

ing reads. The core signals the controller when a rea
of an IMPRECISEinterest set blocks, and the con- 3.3 Consistency: Approach and costs

troller is responsible for arranging for the missing pre- gnforcing cache consistency entails fundamental trade-
cise invalidations to be sent. When the missing in-4fts For example the CAP dilemma states that a replica-
validations arrive, they advant8.lastPreciseVVThe (o system that provides sequent@dnsistency cannot
algorithm for processing invalidations guarantees thakjmyjtaneously provide 100%vailability in an environ-

any interest sdfS can be mad®RECISEvy receiving  ment that can bartitioned [9, 31]. Similarly, Lipton

a sequenc8of invalidations fromS.lastPreciseV¥0 544 Sandberg describe fundamental consistency v. per-
currentVVif Sis causally sorted and includes all pre- t5rmance trade-offs [22].

cise invalidations targetints in that interval. A system that seeks to support arbitrary consistency

3. Storage is limited: each node only needs to store pemust therefore do two things. First, it must allow a range
object state for data currently of interest to that node of consistency guarantees to be enforced. Second, it must
Thus, the total metadata state at a node is proportionansure that workloads only pay for the consistency guar-
to the number of objects of interest plus the numberantees they actually need.



Providing flexible guarantees. Discussing the seman- write requests from the bandwidth overhead paid by in-
tic guarantees of large-scale replication systems requireglidation propagation.

careful distinctions along several dimensionSonsis- The read interface allows each read to specify its con-
tencyconstrains the order that updates across multiplaistency and staleness requirements. Therefore, a read
memory locations become observable to nodes in theloes not block unleshat readrequires the local node to
system, whilecoherenceconstrains the order that up- gather more recent invalidations and updates than it al-
dates to a single location become observable but doegady has. Similarly, most writes complete locally, and a
not additionally constrain the ordering of updates acrossvrite only blocks to synchronize with other nodeshiat
multiple locations [12]. Stalenessonstrains the real- write requires it. Therefore, as in TACT [39], the perfor-
time delay from when a write completes until it becomesmance/availability versus consistency dilemmas are re-
observable. Finallyconflict resolutior{18, 34] provides  solved on a per-read, per-write basis.

ways to cope with cases where concurrent reads and Conversely, all invalidations that propagate through

writes at different nodes conflict. the system carry sufficient information that a later read
Our protocol provides considerable flexibility along can determine what missing updates must be fetched to
all four of these dimensions. ensure the consistency or staleness level the read de-

With respect to consistency and staleness, it provideshands. Therefore, the system may pay an extra cost: if a
a range of traditional guarantees such as the relativelgeployment never needs strong consistency, then our pro-
weak constraints of causal consistency [16, 20] or deltdocol may propagate some bookkeeping information that
coherence [32], to the stronger constraints of sequentias never used. We believe this cost is acceptable for two
consistency [21] or linearizability [13]. Further, it pro- reasons: (1) other features of the design—separation of
vides a continuous range of guarantees between causavalidations from bodies and imprecise invalidations—
consistency, sequential consistency, and linearizabilityninimize the amount of extra data transferred; and (2)
by supporting TACT's order error for bounding incon- we believe the bandwidth costs of consistency are less
sistency and temporal error for bounding staleness [39]important than the availability and response time costs.
Because our design uses a variation of peer-to-peer logxperiments in Section 4 quantify these bandwidth costs,
exchange [26, 37], adapting flexible consistency tech-and we argue that they are not significant.
niques from the literature is straightforward.

With respect to coherence, although our default read3-4 Additional features

interface enforces causal consistency, the interface alfhree novel aspects of our implementation further our
lows programs that do not demand cross-object consisgoal of constructing a flexible framework that can ac-
tency to issuemprecise reads Imprecise reads may commodate the broadest range of policies. First, our im-
achieve higher availability and performance than precisgylementation allows systems to use any desired policy
reads because they can return without waiting for an infor [imiting the size of their logs and to fall back on an
terest set to beconfeRECISE Imprecise reads thus ob- efficientincremental checkpoint transféo transmit up-
serve causal coherence (causally coherent ordering qfates that have been garbage collected from the log. This
reads and writes for any individual item) rather thanfeature both limits storage overheads and improves sup-
causal consistency (causally consistent ordering of readsort for synchronizing intermittently connected devices.
and writes across all items.) Second, our implementation ussslf-tuning body prop-

With respect to conflict resolution, our prototype pro- agationto enable prefetching policies that are simulta-
vides an interface for detecting and resolving write-neously aggressive and safe. Third, our implementation
write conflicts according to application-specific seman-providesincremental log exchange allow systems to
tics [18, 26]. In particular, nodes log conflicting concur- minimize the window for conflicting updates. Due to
rent writes that they detect in a way that guarantees thagpace constraints, we briefly outline these aspects of the
all nodes that areRECISHor an interest set will even-  implementation and provide additional details in an ex-
tually observe the same sequence of conflicting writesended technical report [3].
for that interest set. The nodes then provide an interface
for programs or humans to read these conflicting writedncremental checkpoint transfer. Imprecise invalida-
and to issue new compensating transactions to resolviéons yield an unexpected benefit: incremental check-
the conflicts. point transfer.

Nodes can garbage collect any prefix of their logs,

Costs of consistency. PRACTI protocols should en- which allows each node to bound the amount local stor-
sure that workloads only pay for the semantic guaranage used for the log to any desired fraction of its total
tees they need. Our protocol does so by distinguishinglisk space. But, if a nodel garbage collects log en-
the availability and response time costs paid by read antties older tham1.omitVVand another node2 requests



to nlvia a low-priority network connection that ensures

aranrv 10000 ety 500 that prefetch traffic does not consume network resources
TAF B AR B that regular TCP connections could use [36]. When a lot
IpVV 100,100 ||IpVV 100,100 IpVV 50,50 IpVV 50,50 . . . . .
7777777777777777777777777777777777 ‘ [reonsay  Of spare bandwidth is available, the queue drains quickly
1= <l Saes050 end=100.100 ey 100100 and nearly all bodies are sent as soon as they are inserted.
: 1pVV 100,100 : _oni 1100 . . H H
77777777 Key s I But, when I|tt|_e spare pandW|dth is available, the buffer
i ' ot sends only high priority updates and absorbs repeated
D Toheckpoint i Garget, sent-50.50 end-100,1005% —rvy 10100 writes to the same object.
. : : omitVV/ 100,100
() -fE8e | e =
| er—obj state| H , , H H -
() -Inpesie, Incremental log propagation. T_he prototype imple
ments a novel variation on existing batch log exchange
Fig. 6: Incremental checkpoints frond to n2. protocols. In particular, in the batch log exchange used

in Bayou, a node first receives a batch of updates com-
prising a start timestartVVand a series of writes, it then
rolls back its checkpoint to befostartVVusing an undo
log, and finally it rolls forward, merging the newly re-

ceived batch of writes with its existing redo log and ap-

to ensure consistency, such a chec_kpomt exchange muﬁfying updates to the checkpoint. In contrast, our incre-
atomically update2's state for all objects in the system. mental log exchange applies each incoming write to the
Otherwise, the prefix property and causal consistency in-

. : i, ) current checkpoint state without requiring roll-back and
variants could be violated. Trgdmona_l checkpoint eX- oll-forward of existing writes.
changes, therefore, may block interactive requests while .
The advantages of the incremental approach are ef-

the checkpoint is atomically assemblechator applied ficiency (each write is only applied to the checkpoint

atn2, and they may waste system resources if a check- . .
) ! : once), concurrency (a node can process information from
point transfer is started but fails to complete.

Rather than t terring inf i bout all obiect multiple continuous streams), and consistency (con-
atner than transterring information about all ObJectS, o a4 nodes can stay continuously synchronized which

an mcremental pheckpomt up_dates an arbitrary 'n.tereslleduces the window for conflicting writes.) The disad-
set. As Figure 6 illustrates, an incremental checkpoint for

. . . L L vantage is that it only supports simple conflict detec-
Interest setS_lncIudes (1) an Imprecise invalidation that tion logic: for our incremental algorithm, a node detects
COVErs 'a Il objects from the rec_elved_arrentVVup to the' a write/write conflict when an invalidationjgrevAccept
sender_scurrentV\{ (2) the logical .t|me of the sender's logical time (set by the original writer to equal the log-
per—object state forS_ (IS..IastPreC|seV),/ and (3)_ PET" " ical time of the overwritten value) differs from the logi-
object state: the logical timestamp for each objediSn

whose timestamp exceeds the receivéBsastPrecise cal time the invalidation overwrites in the node’s check-
) . > oint. Conversely, batch log exchange supports more
VV. Thus, the receiver’s state f&8 is brought up to in- b Y g g PP

%texible conflict detection: Bayou writes contaidepen-

. encycheckprocedure that can read any object to deter-

sets may becpmle/lPRECISEto enforce con§|stency. mine if a conflict has occurred [34]; this approach works
Overall, this approach makes checkpoint transfer gy, 5 patch system because rollback takes all of the sys-

much smoother process than under existing protocolshem,s state to a logical moment in time at which these

As Figure 6 illustrates, the receiver can receive an iNpacys can be re-executed. Note that this variation is
cremental checkpoint for a small portion of its ID Spaceorthogonal to the PRACTI approach: a full replication

gnd then either backgrou_nd fetch checkpoints of othegystem such as Bayou could be modified to use our in-
interest sets or fault them in on demand. cremental log propagation mechanism, and a PRACTI
system could use batch log exchange with roll-back and
roll-forward.

a log exchange beginning befargé.omitVV thennlcan-
not send a stream of invalidations. Insteatimust send
a checkpoint of its per-object state.

In existing server replication protocols [26], in order

Self-tuning body propagation. In addition to support-
ing demand-fetch of particular objects, our prototype
provides a novel self-tuning prefetching mechanism. A .
nodenl subscribes to updates from a nau&by send- 4 Evaluation

ing a listL of directories of interest along withstartVV ~ We have constructed a prototype PRACTI system writ-
version vector.n2 will then sendnl any bodies it sees ten in Java and using BerkeleyDB [33] for per-node lo-
that are inL and that are newer thatartVV. To do this, cal storage. All features described in this paper are im-
n2 maintains a priority queue of pending sends: when glemented including local create/read/write/delete, flex-
new eligible body arrives2 deletes any pending sends ible consistency, incremental log exchange, remote read
of older versions of the same object and then inserts a refand prefetch, garbage collection of the log, incremental
erence to the updated object. This priority queue draingheckpoint transfer between nodes, and crash recovery.



We use this prototype both (1) to evaluate the PRACTI

- Full Repl. j!
architecture in several environments such as web service _ -
replication, data access for mobile users, and grid scien- 3 =
tific computing and (2) to characterize PRACTI's prop- § ot Rajtial Repl of Dajal f
erties across a range of key metrics. g — ]

Our experiments seek to answer two questions. E ,
1. Does a PRACTI architecture offer significant advan- & "
tages over existing replication architecture§® find
that our system can dominate existing approaches by WM'"Pania‘ Repl. of Pata and Metadata _
providing more than an order of magnitude better Files of Interest (%)
bandwidth and storage efficiency than AC-TI repli- Fig. 7: Impact of locality on replication cost.

fl?dtzdbztetrevresr lswiﬁreomni\o’z,a%ir:n d”;g aio?: gigzrtgfpn;‘:"gn" any environments; and (2) they demonstrate that these
y Y P rade-offs are not fundamental—a PRACTI system can

hierarchical systems, and consistency guarantees ngt . o i .
achievable by PR-TI per-object replication systems. Support PR while retaining the good AC-TI properties of

server replication systems.
2. What are the costs of PRACTI's generalityGiven
that a flexible PRACTI protocol can subsume exist-Locality of reference. Different devices in a distrib-
ing approaches, is it significantly more expensive touted system often access different subsets of the system’s
implement a given system using PRACTI than to im- data because of locality and different hardware capabili-
plement it using narrowly-focused specialized mech-ties. In such environments, some nodes may access 10%,
anisms? We find that the primary “extra” cost of 1%, or less of the system’s data, and partial replication
PRACT!I's generality is that our system can transmitmay yield significant improvements in both bandwidth
more consistency information than a customized systo distribute updates and space to store data.
tem might require. But, our implementation reduces Figure 7 examines the impact of locality on replication
this cost compared to past systems via separating incost for three systems implemented on our PRACTI core
validations and bodies and via imprecise invalidations,using different controllers: a full replication system simi-
so these costs appear to be minor. lar to Bayou, a partial-body replication system that sends
To provide a framework for exploring these issues, weall precise invalidations to each node but that only sends
first focus on partial replication in 4.1. We then examineSOMe bodies to a node, and a partial-replication system
topology independence in 4.2. Finally, we examine thethat sends some bodies and some precise invalidations to

costs of flexible consistency in 4.3. a node but that summarizes other invalidations using im-
] o precise invalidations. In this benchmark, we overwrite
4.1 Partial replication a collection of 1000 files of 10KB each. A node sub-

When comparing to the full replication protocols from scribes to invalidations and body updates for the subset
which our PRACTI system descends, we find that sup©f the files that are of interest to that node. The x axis
port for partial replication dramatically improves perfor- shows the fraction of files that belong to a node’s sub-
mance for three reasons: set, and the y axis shows the total bandwidth required to
1. Locality of Referencepartial replication of bodies and  transmit these updates to the node.
invalidations careachreduce storage and bandwidth ~ The results show that partial replication of both bod-
costs by an order of magnitude for nodes that cardées and invalidations is crucial when nodes exhibit local-
about only a subset of the system’s data. ity. Partial replication of bodies yields up to an order
of magnitude improvement, but it is then limited by full
replication of metadata. Using imprecise invalidations
to provide true partial replication can gain over another
order of magnitude as locality increases.
3. Self-tuning Replicationself-tuning replication mini- Note that Figure 7 shows bandwidth costs. Partial
mizes response time for a given bandwidth budget.  repjication provides similar improvements for space re-
Itis not a surprise that partial replication can yield signif- quirements (graph omitted.)
icant performance advantages over existing server repli-
cation systems. What is significant is that (1) our experBytes die young. Bytes are often overwritten or
iments provide evidence that despite the good propertiedeleted soon after creation [2]. Full replication systems
of server replication systems (e.g., support for disconsend all writes to all servers, even if some of the writes
nected operation, flexible consistency, and dynamic netare quickly made obsolete. In contrast, PRACTI repli-
work topologies) these systems may be impractical forcation can send invalidations separately from bodies: if

2. Bytes Die Young:partial replication of bodies can
significantly reduce bandwidth costs when “bytes die
young” [2].
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Office server 1000GB 100MB 10Mb/s 100Mb/s
Home desktop| 10GB 10MB 10Mb/s 1Mb/s
Laptop 10GB 10MB 10Mb/s 50Kb/s
. Demand Fetch 1Mb/s | Hotel only
Palmtop 100MB 100KB 1Mb/s N/A

Fig. 9: Configuration for mobile storage experiments.

Self Tuning

ol ] bandwidth consumption to available resourdsplicate

All sends all updates regardless of workload or environ-
ment. This makeReplicate Alla poor neighbor—it con-
sumes prefetching bandwidth corresponding to the cur-
rent write rate even if other applications could make bet-
ter use of the network.

Mean response time (ms)

Replicate All — e
) |

.
' 0 1 2 3
Bandwidth Factor

Fig. 8: Read response time available bandwidth varies for full
replication, demand reads, and self-tuning replication.

a file is written multiple times on one node before being4.2 Topology independence
read on another, overwritten bodies need never be sentywe examine topology independence by considering two
To examine this effect, we randomly write a set of files environments: a mobile data access system distributed
on one node and randomly read the files on another nodecross multiple devices and a wide-area-network file sys-
Due to space constraints, we defer the graph to the exem designed to make it easy for PlanetLab and Grid
tended report [3]. To summarize: when the write to readresearchers to run experiments that rely on distributed
ratio is 2, PRACTI uses 55% of the bandwidth of full state. In both cases, PRACTI's combined partial repli-
replication, and when the ratio is 5, PRACTI uses 24%. cation and topology independence allows our design to

Self-tuning replication. Separation of invalidations dominate topology-restricted hierarchical approaches by

from bodies enables a novel self-tuning data prefetchinéjomg two things:

mechanism described in Section 3.4. As a result, systerds Adapt to changing topologiess PRACTI system can
can replicate bodies aggressively when network capacity Make use of the best paths among nodes.

is plentiful and replicate less aggressively when networle, Adapt to changing workloadss PRACTI system can
capacity is scarce. optimize communication paths to, for example, use di-

Figure 8 illustrates the benefits of this approach by rect node-to-node transfers for some objects and dis-
evaluating three systems that replicate a web service tripution trees for others.

from.a single Qrigin server to mu!tiple edge servers. INwe primarily compare against standard restricted-
thedissemination servicege examine, all updates occur topology client-server systems like Coda and IMAP. For

at the origin server and all client rea_ds are proces_sed Q:rompleteness, our graphs also compare against topology-
edge servers, which serve both static and dynamic Coq'ndependent, full replication systems like Bayou.
tent. We compare the read response time observed by the

edge server when accessing the database to service cligvibbile storage. We first consider a mobile storage
requests for three replication policid3emand Fetclfol- system that distributes data across palmtop, laptop, home
lows a standard client-server HTTP caching model bydesktop, and office server machines. We compare a
replicating precise invalidations to all nodes but sending®?RACTI system to a client-server system that supports
new bodies only in response to demand requéstpli-  partial replication but that distributes updates via a cen-
cate All follows a Bayou-like approach and replicates tral server and to a full-replication system that can dis-
both precise invalidations and all bodies to all nodes, andribute updates directly between any nodes but that re-
Self Tuningexploits PRACTI to replicate precise invali- quires full replication. All three systems are realized by
dations to all nodes and to have all nodes subscribe for almplementing different controller policies.
new bodies via the self-tuning mechanism. We use a syn- As summarized in Figure 9 our workload models a
thetic workload where the read:write ratio is 1:1, readsdepartment file system that supports mobility: an office
are Zipf distributed across files: (= 1.1), and writes are  server stores data for 100 users, a user's home machine
uniformly distributed across files. We use Dummynet toand laptop each store one user’s data, and a user’s palm-
vary the available network bandwidth from 0.75 to 5.0 top stores 1% of a user’s data. Note that due to resource
times the system’s average write throughput. limitations, we store only the “dirty data” on our test ma-
As Figure 8 shows, when spare bandwidth is availablechines, and we use desktop-class machines for all nodes.
self-tuning replication improves response time by up toWe control the network bandwidth of each scenario using
a factor of 20 compared tbemand-Fetch A key chal-  a library that throttles transmission.
lenge, however, is preventing prefetching from overload- Figure 10 shows the time to synchronize dirty data
ing the system. Whereas our self-tuning approach adap&mong machines in three scenarios: Régne the user
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Fig. 11: Execution time for the WAN-Experiment benchmark Fig. 12: Execution time for the WAN-Experiment benchmark
on 50 distributed nodes with a remote server. on 50 cluster nodes plus a remote server.

is on a plane with no Internet connection, tjtel: the file; not only does this approach minimize transfer la-
user’s laptop has a 50Kb/s modem connection to the Intency, it effectively forms a multicast tree when multiple
ternet, and (cHome the user's home machine has a concurrent reads of a file occur [1, 35].
1Mb/s connection to the Internet. The user carries her We examine a 3-phase benchmark that represents run-
laptop and palmtop to each of these locations and coning an experiment: in phasellisseminateeach node
located machines communicate via wireless network afetches 10MB of new executables and input data from
speeds indicated in Figure 9. For each location, we meathe user’s home node; in phaseP2ocess each node
sure time for machines to exchange updates: (1P  writes 10 files each of 100KB and then reads 10 files
the palmtop and laptop exchange updates, (2H?  from randomly selected peers; in phaséP8st-process
the palmtop and home machine exchange updates, (¥ach node writes a 1MB output file and the home node
L—H: the laptop sends updates to the home machinereads all of these output files. We compare PLFS to
(4) O—All: the office server sends updates to all nodes. three systems: a client-server system, client-server with
In comparing the PRACTI system to a client-servercooperative caching of read-only data [1], and server-
system, topology independence has significant gaingeplication [26]. All 4 systems are implemented via
when the machines that need to synchronize are near oiRRACTI using different controllers.
another but far from the server: in the isolatdnelo- The figures show performance for an experiment run-
cation, the palmtop and laptop can not synchronize ating on 50 distributed nodes each with a 5.6Mb/s con-
all in a client-server system; in thdotel location, di- nection to the Internet (we emulate this case by throt-
rect synchronization between these two co-located detling bandwidth) and 50 cluster nodes at the University
vices is an order of magnitude faster than synchronizingf Texas with a switched 100Mb/s network among them
via the server (1.7s v. 66s); and in tHemelocation, di-  and a shared path via Internet2 to the origin server at the
rectly synchronizing co-located devices is between 3 andUniversity of Utah.
20 times faster than synchronization via the server. The speedups range from 1.5 to 9.2, demonstrating the
significant advantages enabled by the PRACTI architec-
WAN-FS for Researchers. Figures 11 and 12 evaluate ture. Compared to client/server, it is faster in both the
a wide-area-network file system called PLFS designedissemination and Process phases due to its multicast
for PlanetLab and Grid researchers. The controller fordissemination and direct peer-to-peer data transfer. Com-
PLFS is simple: for invalidations, PLFS forms a mul- pared to full replication, it is faster in the Process and
ticast tree to distribute all precise invalidations to all Post-process phases because it only sends the required
nodes. And, when aiNVALID file is read, PLFS uses data. And compared to cooperative caching of read only
a DHT-based system [38] to find the nearest copy of thelata, it is faster in the Process phase because data is trans-
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ferred directly between nodes.

4.3 Arbitrary consistency

This subsection examines the costs of PRACTI's gen
erality. As Section 3.3 describes, our protocol ensure
that requests pay only the latency and availability cost
of the consistency they require. But, distributing suffi-

to accumulate large numbers of updates into imprecise
invalidations. We show two cases: thi® Localityline
shows the worst case scenario, with no locality across
writes, and théurst=10line shows the case when a write
is ten times more likely to hit the same interest set as the
previous write than to hit a new interest set.

When there is significant locality for writes, the cost of
distributing imprecise invalidations is small: imprecise
invalidations to support consistency never add more than
20% to the bandwidth cost of supporting only coherence.
When there is no locality, the cost is higher, but in the
worst case imprecise invalidations add under 50 bytes per
precise invalidation received. Overall, the difference in
invalidation cost is likely to be small relative to the total
bandwidth consumed by the system to distribute bodies.

Related work
Replication is fundamentally difficult. As noted in Sec-

cient bookkeeping information to support a wide rangetion 3.3, the CAP dilemma [9, 31] and performance/ con-
of per-request semantics does impose a bandwidth costistency dilemma [22] describe fundamental trade-offs.
If all applications in a system only care about coherence®s aresult, systemsustmake compromises or optimize
guarantees, a customized protocol for that system coulfPr specific workloads. Unfortunately, these workload-
omit imprecise invalidations and thereby reduce networkSPecific compromises are often reflected in system mech-

overheads.
Three features of our protocol minimize this cost.

anisms, not just their policies.
In particular, state of the art mechanisms allow a de-

First, transmitting invalidations separately from bodiesSigner to retain full flexibility along at most two of the
allows nodes to maintain a consistent view of data with-thrée dimensions of replication, consistency, or topology
out receiving all bodies. Second, transmitting imprecisePolicy. Section 2 examines existing PR-AC [15, 18, 25],

invalidations in place of some precise invalidations al-
lows nodes to maintain a consistent view of data with-

out receiving all precise invalidations. Third, self-tuning

AC-TI [10, 17, 19, 26, 37, 39], and PR-TI [11, 29] ap-
proaches. These systems can be seen as special case
“projections” of the more general PRACTI mechanisms.

prefetch of bodies allows a node to maximize the amount Some recent work extends server replication systems

of local, valid data in a checkpoint for a given bandwidth

towards supporting partial replication. Holliday et al.’s

budget. In an extended technical report [3], we quan{rotocol allows nodes to store subsets of data but still re-
tify how these features can greatly reduce the cost of enquires all nodes to receive updates for all objects [14].
forcing a given level of consistency compared to existingPublished descriptions of Shapiro et al’s consistency

server replication protocols.

constraint framework focus on full replication, but the

Figure 13 quantifies the remaining cost to distribute@uthors have sketched an approach for generalizing the

both precise and imprecise invalidations (in order to sup
port consistency) versus the cost to distribute only pre

algorithms to support partial replication [30].
- Like PRACTI, the Deceit file system [31] provides a

cise invalidations for the subset of data of interest andlexible substrate that subsumes a range of replication

omitting the imprecise invalidations (and thus only sup-

systems. Deceit, however, focuses on replication across a

porting coherence.) We vary the fraction of data of inter-handful of well-connected servers, and it therefore makes
est to a node on the x axis and show the invalidation byte¥ery different design decisions than PRACTI. For exam-
received per write on the y axis. Our workload is a seriesle, each Deceit server maintains a list of all files and of
of writes by remote nodes in which all objects are equallyall nodes replicating each file, and all nodes replicating a

likely to be written. Note that the cost of imprecise in-
validations depends on the workload’s locality: if there
is no locality and writers tend to alternate between writ-

file receive all bodies for all writes to the file.
A description of PRACTI was first published in an ear-
lier technical report [7], and an extended technical re-

ing objects of interest and objects not of interest, then théort [3] describes the current system in more detail.
imprecise invalidations between the precise invalidations

will cover relatively few updates and save relatively little

Conclusion

overhead. Conversely, if writes to different interest setdn this paper, we introduce the PRACTI paradigm for
arrive in bursts, then the system will generally be ablereplication in large scale systems and we describe the



first system to simultaneously provide all three PRACTI[19] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high

properties.

Evaluation of our prototype suggests that
by disentangling mechanism from policy, PRACTI repli- ,

0]

cation enables significantly better trade-offs for system

designers than possible with existing mechanisig.

(21]

subsuming existing approaches and enabling new ones,

we speculate that PRACTI may serve as the basis for

unified replication architecturéhat simplifies the design

and deployment of large-scale replication systems.
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