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Abstract

Large scale distributed applications spanning mul-
tiple domains should satisfy administrative auton-
omy property — allow users in a domain to control
flow of information in to and out of their domains.
Though DHTs offer a scalable solution for build-
ing distributed applications, they do not guarantee
this property. We present a novel Autonomous DHT
(ADHT) that guarantees path locality and path con-
vergence in routing to satisfy autonomy property.

1 Introduction

In this paper, we explore administrative autonomy
property of distributed applications built on struc-
tured overlays like Pastry, Chord, and CAN. For
distributed applications deployed in large scale net-
worked systems comprising several administrative
domains1, administrative autonomy property allows
users of a domain to control the flow of informa-
tion coming in and going out of their domain and
also ensures availability of the data in the domain
irrespective of the behavior of nodes outside the do-
main. Though DHTs offer solution for scalability
with the nodes and the amount of information, most
of them do not guarantee the administrative auton-
omy property.

Administrative autonomy is a key requirement
for many distributed applications for security, avail-
ability, and efficiency. We further discuss this point
with reference to Figure 1 where we present rout-
ing for a key 111XX in a bit-correcting DHT like
Pastry [13].

1Domain in our system is defined as a set of machines ei-
ther administered by a common authority or a logical group
with in such sets (e.g., set of machines sharing a switch). Note
that these domains does not necessarily correspond to the DNS
domain hierarchy even though we use a similar notation.

Security: Consider a file location system on Pastry
in an enterprise network. While payroll files should
be locatable by employees of payroll department,
they should not be exposed to employees/machines
outside the department. Using scalable overlay net-
works such as Chord, Pastry, etc. do not provide any
control over where the data is placed and do not pro-
vide any guarantees that the queries for information
in a domain are not exposed outside that domain. In
the example, queries related to key 111XX in do-
main dep1 will be exposed outside that domain.
Availability: Domain disconnections or organiza-
tional partitions are common in the Internet. Also a
node in a domain can behave maliciously either by
responding lazily for messages from nodes outside
the domain or by dropping messages from nodes
outside the domain. For example, for nodes in do-
main dep1, such domain disconnections or mali-
cious behavior of node with key 110XX in another
domain dep2 can potentially decrease the availabil-
ity for operations within the domain.
Efficiency: Application like multicast systems and
aggregation systems use overlays for constructing
trees. Since domain-nearness also implies network
proximity in many cases, administrative autonomy
results in efficient trees in contrast to a bit-correcting
DHT overlay routing. Consider building multicast
application on top of a bit-correcting DHT. For a
session corresponding to key 111XX shown in Fig-
ure 1, note that two nodes with ids 100XX and
101XX in domain dep1 connect to node 110XX in
another domain for receiving multicast data.

To achieve administrative autonomy, a DHT rout-
ing algorithm should satisfy two properties: (i)Path
Locality : Routing paths should always be contained
in the smallest possible domain, and (ii)Path Con-
vergence: Routing paths for a key from two differ-
ent nodes in a domain should converge at a node
in the same domain. Existing DHTs either already
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Figure 1: Administrative autonomy violation in a bit-
correcting DHT.

support path locality [6] or can support easily by
setting the domain nearness as the distance met-
ric [2, 5]. But they do notguaranteepath con-
vergence as those systems try to optimize the path
length to the root to reduce response latency. As
motivated above, we believe that guaranteeing path
convergence in overlay networks and satisfying ad-
ministrative autonomy will enable the industry to
embrace the DHT work in real applications.

In this paper, wqe present a novel Autonomous
DHT (ADHT) that guarantees path locality and path
convergence in routing. ADHT builds on a bit-
correcting DHT, Pastry [13], by maintaining mul-
tiple leafsets at each node and using novel join and
key routing algorithms. We also present a newZip-
pering technique for maintaining consistent routing
with multiple leafsets in the face of node joins, node
leaves, and network partitions.

Our current ADHT design focuses on enhanc-
ing a bit-correcting DHT, Pastry [13], to satisfy ad-
ministrative autonomy. While we choose Pastry for
convenience—the availability of a public domain
implementation, we also believe that our techniques
could be applied to many existing DHT implemen-
tations to support path locality and path convergence
properties.

In the following section, we presen the design of
our system. In Section 3, we discuss the correctness
and performance properties of ADHT. We present
some experimental results quantifying the useful-
ness of ADHT algorithm in Section 4. In Section 5,
we detail the related work. Finally, we summarize
the paper and present open issues in Section 6.

2 Our Approach

To ensure path convergence, a DHT routing must
provide a single exit point in each domain for a
key. And for path locality, a DHT routing protocol
should route keys along intra-domain paths before
routing them along inter-domain paths.

We build a novel DHT called Autonomous DHT
(ADHT) that builds upon the Pastry algorithm in the
following ways.

1. Data structures: Instead of one leafset in the
Pastry algorithm, nodes in ADHT maintain a
separate leafset for each administrative hierar-
chy domain to which a node belongs. We spec-
ify a node’s position in the administrative hi-
erarchy using similar notation as the Domain
Name Service (DNS) [12].

2. Routing algorithm: ADHT uses a novel rout-
ing algorithm that ensures that the routing path
for a key reaches the root node in a domain be-
fore it jumps out of the domain; thus, achiev-
ing path convergence and path locality proper-
ties. ADHT also uses a novel key space assign-
ment to nodes so that routing paths do not visit
a node twice during routing for any key — a
property required so that we can extract aggre-
gation trees from the routing structure. We also
introduce a two level locality model that in-
corporates both administrative membership of
nodes and network distances between nodes.

3. Join algorithm: To correctly fill multiple leaf-
sets at a joining node, ADHT uses a join al-
gorithm similar to Pastry’s join algorithm but
uses an appropriate bootstrap node — a node
already in the system that is closest to the join-
ing node in terms of domain-nearness.

4. Zippering2 to maintain leafsets: ADHT em-
ploys a zippering mechanism to maintain con-
sistent leafsets at all domain levels at all nodes.

In the following sections, we describe our ADHT
algorithm in detail, mainly focusing on the four
points mentioned above.

2Terminology from [14]
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cs.utexas.edu level
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utexas.edu level
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cs.utexas.edu

Nodes in
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edu

begonia.cs.utexas.edu

Figure 2: Multiple leafsets maintained by the nodebegonia.cs.utexas.edu (leafset size=4)

2.1 Data Structures

Similar to Pastry and other DHT algorithms, each
node in ADHT has a routing table to maintain
pointers toO(logN) other nodes in the system.
In contrast to one leafset in Pastry, each node
in ADHT maintains a separate leaf set for each
domain to which the node belongs. In Fig-
ure 2, we illustrate leafsets maintained by a node
begonia.cs.utexas.edu in the ADHT algorithm.
Note that the Pastry algorithm maintains just one
leafset – corresponding to the top domainedu level.
Maintaining a different leafset for each level in-
creases the number of neighbors that each node
tracks to(2b) ∗ lg2b n+ c.l in ADHT compared to
(2b)∗ lg2b n+c in unmodified Pastry, whereb is the
number of bits in a digit,n is the number of nodes,
c is the leafset size, andl is the number of domain
levels. But these extra leafsets ensure path locality
and convergence properties during routing.

2.2 Routing in ADHT

The algorithm for populating the routing table is
quite similar to Pastry but with the following key
difference: ADHT uses hierarchical domain prox-
imity as the primary proximity metric (two nodes
that match ini levels of domain hierarchy are more

proximate than two nodes that match in fewer than
i levels in domain hierarchy) and network distance
as the secondary proximity metric (if two pairs of
nodes match in the same number of domain levels,
then the pair whose separation by network distance
is smaller is considered more proximate).

2.2.1 Key space assignment to nodes

ADHT uses a novel key space assignment to nodes
so that routing paths do not visit a node twice during
routing for any key — a property required so that
we can extract aggregation trees from the routing
structure. A keyk is assigned to a node A such that
IDA matches more prefix bits ofk than any other
node’s ID. If IDs of multiple nodes match keyk in
the same number of prefix bits, then we pick a node
B from that set such that

dist(k, IDB) = MIN(|k− IDB|,2b−|k− IDB|)

is smaller than difference between keyk and any
other node’s ID. Note that Pastry only usesdist
function to decide the key space assignment. The
key space split is shown for ADHT and Pastry in
Figure 3 for four nodes A, B, C, and D. Below we
first explain the routing algorithm and then discuss
how this key assignment ensures no loops in ADHT
key routing.
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Figure 3: Key space assignment to nodes in Pastry (outer
split) and ADHT (inner split).

Routing Algorithm The routing algorithm we
use in routing for a key at node withnodeId is
shown in Algorithm 1. To route a keyk, a node
A with ID IDA first checks its routing table for
another node that matches the key in more digits
than this node. We call such bit correcting neigh-
bor a flipNeighbor. If no such node exists, then
we consider leafsets starting from the smallest do-
main. If aflipNeighborexists and is in the node’s
lowest domain, then we route the key to theflip-
Neighbor. If a flipNeighborexists and is not in the
same domain as the node, then we consider leaf-
sets corresponding to the levels below the common
domain between theflipNeighbor and this node,
starting from the lowest domain leafset. For ex-
ample, if a nodebegonia.cs.utexas.edu finds a
flipNeighbor linux1.cs.cmu.edu , then the node
considers the leafsets at levelscs.utexas.edu and
utexas.edu in that order. If the node finds another
node in its leafset that is closer to the key than the
node, then it forwards the key to that node closer to
the key. If no such node is found in a leafset at a
level, then this node is considered theroot node for
key k in that domain. If a node has noflipNeigh-
bor for a keyk and has no neighbor in any leafset
at any level that is closer to the keyk than it is, then
such node is the global root for keyk. Note that by
routing at the lowest possible domain until the root
of that domain is reached, we ensure that all rout-
ing paths starting in a domain converge within that
domain, thus achieving the Path Convergence prop-

Algorithm 1 ADHTroute(key)
1: flipNeigh← checkRoutingTable(key) ;
2: l ← numDomainLevels ; /* number of levels

in this node’s hierarchical name. For exam-
ple, nodebegonia.cs.utexas.edu is 3 levels
down in the domain hierarchy */

3: while (l >= 0) do
4: /* commonLevels returns number of com-

mon levels between flipNeighbor and this
node; if flipNeighbor is null, it returns -1 */

5: if (commonLevels(flipNeigh, nodeName)
== l ) then

6: send the key to flipNeigh ;
7: return
8: else
9: leafNeigh← an entry in leafset[l ] closer

to key than nodeId ;
10: if (leafNeigh! = null) then
11: send the key to leafNeigh ;
12: return
13: else
14: /* this node is the root for this key in this

domain */
15: end if
16: end if
17: l ← l −1; /* move to next higher domain */
18: end while
19: /* this node is the global root for this key */

erty.

2.3 Discussion

The key space assignment in ADHT ensures that
no node is visited twice during routing – a key re-
quirement for many applications on DHTs that ex-
tract trees from DHT routing such as for aggregation
in SDIMS [15] and for spanning trees in multicast.
If we use the Pastry key assignment, then the rout-
ing paths using the ADHT routing algorithm might
touch a node more than once. For example, con-
sider routing for a keyk =000XX in a domain with
four nodes shown in Figure 3 and suppose the whole
system has several other nodes in other. In this do-
main, node D is considered as the root for this key
with Pastry’s key assignment. If we start routing for
key k from node B, node B will forward the route
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request to node D as that is the root. But, when
routing in the next domain level from node D, the
next hop goes back to node B as it is the nearest
first bit-correcting node. Thus node B will be vis-
ited twice and hence can create loops in the routing.
The ADHT key space assignment assigns node B as
the root for this domain in this case and hence it is
not touched more than once.

2.4 Join Algorithm

Similar to Pastry join algorithm, a node joins an ex-
isting ADHT by contacting one or more user sup-
plied nodes. But, instead of bootstrapping from
that node, the joining node uses the contact node
to search for an appropriate bootstrap node that is
closer to the joining node in terms of the domain-
nearness metric. This is to ensure that leafsets at
different domain levels are filled in a correct man-
ner. In the following paragraphs, we will first de-
scribe how a node joins once an appropriate boot-
strap node is found and then describe how a joining
node finds such an appropriate bootstrap node.

Suppose node A is joining ADHT using a boot-
strap node B. Node A asks node B to route a special
join message with keyk = IDA. ADHT then routes
the join message to an existing node R that is cur-
rently responsible for keyk. Each intermediate node
C on the routing path from node B to node R sends
its leafsets for each common domain between C and
A for which node C is the root node in that domain
for keyk. Figure 4 illustrates the leafsets that a join-
ing node receives in response to its join request in
a three level deep domain hierarchy case. Also the
intermediate nodes send their routing table to node
A so that node A can initialize its routing tables.
Finally, node A informs all nodes that need to be
aware of its arrival by sending entries in its routing
or leafset tables. This procedure ensures that node A
initializes its state with appropriate values and that
the state in all other affected nodes is updated.

2.4.1 Finding a bootstrap node

A joining node needs to find a node already
in the ADHT that is closer to the joining node
in terms of domain-nearness. For example,
node begonia.cs.utexas.edu that wishes to

joining node

cs.utexas.edu

utexas.edu

edu

Figure 4: Leafsets that a joining node receives in re-
sponse to its join request. Dark arrows denote the join
request routing path.

join a ADHT searches for some other node in
cs.utexas.edu domain. If no such node exists,
then it looks for a node inutexas.edu domain, and
so on. The joining node uses such a near node as its
bootstrap node for joining the ADHT.

A solution is to provide such a bootstrap node
manually. An administrator installing ADHT on her
set of machines can manually specify the bootstrap
nodes. Though this approach is often reasonable in
an enterprise type setting where system administra-
tion is done through an IT department, it might be
infeasible in a university type setting where individ-
ual departments have their own system administra-
tors. In the latter case, different department admin-
istrators need to coordinate when setting up the first
machine in their respective domains. Otherwise, if
the first machines in all departments simultaneously
join the system and use a node outside the univer-
sity, then partitions can occur among the machines
in the university. Below, we describe how ADHT
leverages itsput andget operations to locate boot-
strap nodes.

Using DHT put and get operations: Each
node after joining the ADHT will perform aput
operation for keys corresponding to different do-
mains to which this node belongs. For exam-
ple, a nodebegonia.cs.utexas.edu will per-
form three put operations for keys corresponding
cs.utexas.edu , utexas.edu , and edu with its
own IP address as the value. Now, a new node,
say linux1.ece.utexas.edu that wishes to join
the DHT will use a supplied contact node to per-
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Figure 5: Concurrent joins leading to path convergence
property violations. Nodes A and B incs.utexas.edu
join concurrently using nodes inutexas.edu domain as
bootstrap nodes. Observe the incorrect leafset tables at
node A and B corresponding tocs.utexas.edu domain.

form a sequence ofget operations starting from the
lowest domainece.utexas.edu up to the highest
domainedu until it finds another node. If no node
is found, then it considers itself to be the first node
in theedu domain and uses a user-specified contact
node as the bootstrap node.

Note that, by default, a DHTput(key, value)
operation appends thevalue to other existing val-
ues stored for that key. This approach might be un-
scalable as the node responsible for the key corre-
sponding to a large domain has to store a large num-
ber of values. We do not need aget() operation to
return all IP addresses stored for a domain butany
or fewvalues will suffice. So, instead of storing all
values, we store only a few for each domain and use
a FIFO policy to purge the list as new IP addresses
are inserted.

2.5 Maintaining Consistent Leafsets

Note that although mechanisms described in the
previous section provide one way for rendezvous
between nodes in same domain, they do not guar-
antee that a new joining node always finds other
nodes in its domain. For example, if nodes in a
new domain concurrently join an existing ADHT,
they might not find each other during the join
phase and might use some node outside their do-
main as the bootstrap node, which can lead to
an incorrect leafset state. We illustrate this in
Figure 5(a) where two nodes A and B in do-
maincs.utexas.edu join concurrently using some

nodes outsidecs.utexas.edu as bootstrap nodes.
Hence, the leafset tables of these nodes end up in an
incorrect state leading to the violation of path con-
vergence.

In our system, we ensure path convergence and
path locality properties are met by using the follow-
ing mechanism — each node periodically searches
for other nodes in all domains that it is part of us-
ing DHT-based method, contacts those nodes, and
corrects any incorrect entries in its routing table or
leafset tables. In the following, we first describe the
Zipperingmechanism that is useful for any DHT to
handle partitions and then describe how we use this
to achieve leafset consistency in ADHT.

Zippering for Mending Partitions Several DHT
systems, like SkipNet [7] and Willow [14], provide
a way to merge partitioned components. In Pastry,
nodes periodically perform a leafset maintenance
task where each node checks for the liveness of its
leafset table entries and broadcasts its current leaf-
set to members of that leafset if it finds any dead
entries. Though this maintenance protocol is appro-
priate to mend machine crash failures, it fails during
network partitions, leading to possible partitions in
the DHT. Even after the network heals, Pastry does
not have a mechanism where these different parti-
tions can merge back together.

To mend partitions in a DHT, we need a way to
rendezvous between nodes in those partitions and a
way to merge a partition with another after a node in
a partition discovers a node in the second partition.
In ADHT, nodes keep a log of dead nodes and oc-
casionally ping them to check if they became alive.
The entries in the log expire after a certain timeout
period,TdeadNodePurge. Also we provide an interface
for manually initiated rendezvous. This mechanism
will ensure the rendezvous between nodes in differ-
ent partitions after network failures lasting shorter
thanTdeadNodePurge. For longer network failures, we
provide an interface for an administrator to initiate
the rendezvous. This interface also allows adminis-
trators to merge two separately formed DHTs into a
single DHT.

We describe the zippering mechanism with an ex-
ample illustrated in Figure 6. We show the partitions
as two different circles corresponding to the logical

6



B

R

A
1

2

3

B

R

A

4

(a) (b)

B

R

A 5

5

B

R

A

(c) (d)

Figure 6: Zippering steps: Node A in a partition discovers node B and starts the zippering procedure. (a) Node A with
ID IDA starts a join procedure using node B as the bootstrap node. Node B routes that request towards node D which is
the current root forIDA in B’s partition. (b) Node A and Node D detect the partitions and exchange their leafsets. (c)
Node A and Node D propagate the information about partitions during their periodic leafset exchanges with neighbors
in their leafsets. (d) Finally, the partition information spreads around the whole ID space and the partitions are merged
together.

ID space and show nodes in different partitions on
those two different circles. In this figure, node A
with say IDA initially discovers node B and starts
a join procedure using node B as the bootstrap node
(message 1 in the figure). Node B forwards the mes-
sage using ADHT routing towards the root for key
IDA, which is routed to node R that is currently re-
sponsible for keyIDA in the partition to which node
B belongs. If there is no partition, then the join re-
quest will be routed to node A and the procedure

stops. In case of a partition, node R returns response
for join request to node A and node A gathers that
R is in a different partition. Then, Node A contacts
and exchanges leafsets with node R so that both of
them are in the same partition. Thus the logical ID
space near node A and node R is mended (depicted
in the figure as node A and node R participating in
both rings). As node A and node R perform their
periodic leafset exchanges with neighbors in their
leafsets, the mending of logical ID space spreads
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around the ring (shown in Figure 6(c)) and eventu-
ally the partitions are zippered together (depicted in
the Figure 6(d)).

Fast Zippering The method for zippering in the
last few paragraphs can takeO(N) time steps be-
fore two partitions withN nodes are merged to-
gether. Note that the healing of the partitions is
spread around the ID ring linearly in time. To has-
ten the zippering process, we propose the follow-
ing scheme. Upon detecting partitions and mend-
ing leafsets, a node picks a constant number of ran-
dom nodes in its current partition (from its previous
leafsets and routing table) and informs them about
the nodes in the other partition (new entries in the
leafset). These nodes then start zippering proce-
dure to mend their leafsets. With each node inform-
ing a constant number of other nodes after it com-
pletes zippering, all nodes will get to know of parti-
tions inO(logN) such rounds with high probability.
Overall, all nodes will complete performing zipper-
ing step byO(log2N) time steps. This procedure
will incur O(N logN) messages as each node might
perform the zippering step in contrast toO(N) mes-
sages in slow zippering procedure described previ-
ously.

Leafset Maintenance using Zippering In
ADHT, we also use the above zippering mechanism
to correctly maintain leafsets at different levels.
Periodically each node looks for other nodes in
each domain it is part of using the DHT-based
method described in the previous section. Once it
finds such nodes, it uses the zippering mechanism
to mend any possible partitions. An important
question is how frequently should ADHT nodes
perform this discovery step. If all nodes perform
such operation quite frequently, then few chosen
representatives for a large domain will be inundated
with a large number of join requests. To avoid
such hot spots, the frequency for discovery step
at a node in a domain is set to be proportional to
the estimated number of nodes in the domain. To
estimate the size, we leverage the following result
from Viceroy [9] and Symphony [10]: IfXs denote
the sum of segment lengths (length of logical ID
space) managed by any set ofs nodes, thens

Xs
is an

unbiased estimator for the number of nodes.

3 Properties

In this section, we discuss the correctness and per-
formance properties of the ADHT algorithm.

3.1 Correctness

We discuss correctness of ADHT from the per-
spective of three properties — (1) Consistent Rout-
ing [1]: A lookup operation for a key always ends at
the current root node responsible for the key in the
system, (2) Path Convergence, and (3) Path Local-
ity.

Lemma 1 Consistent leafsets at all nodes guaran-
tee consistent routing, path convergence, and path
locality.

Note that the key assignment we use in ADHT
always ensures that each key is assigned to either the
nearest node on the left or the nearest node on the
right side on the logical ID ring. This implies that
to achieve consistent routing we just need to ensure
that each node correctly knows its current left and
right neighbor on the logical ID ring corresponding
to the global domain. Hence, consistent leafsets at
all nodes guarantee the consistent routing property.

The ADHT routing procedure shown in Algo-
rithm 1 works from the lowest domain level of a
node and gives preference to a node found in the
leafset at a lower domain level that is closer to the
key over a node found in the routing table in a higher
domain. Effectively, the routing table entries are
used as shortcuts but the leafset entries are used to
ensure that a node closest to the key in a domain
is reached before the route jump outs of a domain.
Hence, with correct leafsets at all nodes, path con-
vergence and path locality properties are satisfied.

In the context of the aggregation framework, we
mainly care about eventual path convergence guar-
antees in the DHT routing layer. Note that dis-
connected components do not violate administrative
isolation — domain restriction option in the install
and the probe API allows users and applications to
restrict the propagation of queries and updates to de-
sired domains. But during the time when path con-
vergence guarantee is not met, nodes in a domain
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may not be able to aggregate information aboutall
nodes in that domain. But once the property is met
in a domain, the aggregate will reflect the values at
all nodes in the domain.

Lemma 2 If the global leafset at all nodes is con-
sistent and after the system becomes stable (no fur-
ther node and network failures), eventually all leaf-
sets at different domain levels at all nodes become
consistent.

Even when global leafset is consistent, other do-
main level leafsets can be inconsistent due to par-
titions in the domain (example in Figure 5. But in
ADHT, each node looks for other nodes in the same
domain periodically and performs a zippering step.
When the global leafset is consistent and the system
is stable, if we have a partition in nodes of a domain,
then at least one node in one of the partitions will
discover a node in another partition. The zipper-
ing step following such discovery attaches those two
partitions into one and the periodic leafset exchange
procedure ensures that the leafset corresponding to
this domain on all nodes in those both partitions be-
come consistent.

Lemma 3 If all network partitions and node fail-
ures are of duration less thanTdeadNodePurge(the
timeout period after which a dead node is removed
from the list of dead nodes at a node in ADHT) and
after the system becomes stable, the global leafset
becomes consistent eventually.

In ADHT, nodes keep track of recently failed
nodes and ping them periodically to check their live-
ness. If found to be alive, they perform zipper-
ing step to include those nodes in the DHT. Hence,
when all network partitions and node failures are of
a finite duration less than the timeout period used
for purging a node from the dead node list on each
node,TdeadNodePurge, and after the system becomes
stable, we will have a correct global leafset table in
a finite time.

Theorem 1 If all network partitions and node fail-
ures are of duration less thanTdeadNodePurgeand af-
ter the system is stable, eventually consistent rout-
ing, path convergence, and path locality properties
are met.
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Figure 7: Average path length to root in Pastry versus
ADHT for different branching factors. All Pastry lines
overlap as the branching factor does not effect the Pastry
routing procedure.

3.2 Performance

Increased Path Length in ADHT In contrast to
Pastry routing, ADHT routes to a domain root node
before jumping out of the domain to ensure path
convergence. In Pastry routing, when an entry is
found in teh routing table that is closer to the key
than the current node, then the request is forwarded
to that node. In ADHT, entries in a domain leafset
are given priority over a routing table entry when
the routing table entry corresponds to a node outside
the domain. This routing procedure leads to an in-
crease in the hop count for reaching a root node for
a key from any node in the system. This path length
increases toO(logN + l) from O(logN) in Pastry,
whereN is the number of nodes in the system and
l is the number of levels in the administrative hi-
erarchy, which in practice will grow no faster than
logN.

4 Experimental Evaluation

Though the routing protocol of ADHT might lead to
an increased number of hops to reach the root for a
key as compared to the original Pastry, the algorithm
conforms to the path convergence and locality prop-
erties and thus provides administrative isolation. In
Figure 7, we quantify the increased path length by
comparisons with unmodified Pastry for different
sized networks with differentbranching factorsof
the administrative hierarchy. The branching factor
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Figure 8: Percentage of probe pairs whose paths to the
root did not conform to the path convergence property in
Pastry. We do not show lines for ADHT as paths of all
probe pairs conform to the path convergence property in
ADHT.

denote the maximum degree of each internal node
in the hierarchy. Note that the number of levels in
the administrative hierarchy for anN node system
with a branching factorb is logbN. All lines corre-
sponding to the Pastry overlap as the branching fac-
tor does not affect the performance of the original
Pastry. Observe that the difference between average
path length in ADHT compared to the path length
in Pastry increases with decreasing branching factor
because the depth of the administrative hierarchy in-
creases with decreasing branching factor.

To quantify the performance of Pastry and ADHT
with respect to the path convergence property, we
perform simulations with a large number of probe
pairs — each pair probing for a random key starting
from two randomly chosen nodes. In Figure 8, we
plot the percentage of probe pairs that did not con-
form to the path convergence property. When the
branching factor is low, the domain hierarchy tree is
deeper and hence a large difference between Pastry
and ADHT in the average path length; but it is at
these small domain sizes that the path convergence
fails more often with the original Pastry.

4.1 Zippering

For demonstrating the performance of ADHT Zip-
pering, we build a DHT ensuring that nodes in the
DHT get partitioned into two equal sized partitions.
Then we inform some nodes of a partition about a

node in the second partition (simulating the node
discovery mechanism mentioned in Section 2.5),
which starts the zippering activity. In Figure 9, we
plot performance results for fast zippering described
in Section 2.5 and compare it with slow linear zip-
pering. We measure performance as time taken in
terms of simulation steps and number of messages
incurred during zippering. We plot for two cases
where in one case only one node discovers a node
in the other partition and in another case where ran-
domly chosen 1% nodes in a partition discover a
node in the other partition. As described earlier,
fast zippering mends partitions inO(log2N) steps
in contrast to slow zippering which can takeO(N)
steps; in terms of the number of messages, fast zip-
pering incursO(N logN) messages in contrast to
O(N) messages in slow zippering. Note that in
ADHT, all nodes actively search for nodes in other
partitions. Hence, more than one node might dis-
cover the partition and start the mending process.
In the same figure, we also plot the metrics com-
paring fast and slow zippering when the mending
is initiated by one percent of the nodes in the sys-
tem. Note that when anf fraction of nodes start
the zippering process, then mending of partitions
takesO(1/ f ) simulation steps in slow zippering and
O(log2(1/ f )) in fast zippering.

5 Related Work

Internal DHT trees typically do not satisfy domain
locality properties required in our system. Castro
et al. [2] and Gummadi et al. [5] point out the im-
portance of path convergence from the perspective
of achieving efficiency and investigate the perfor-
mance of Pastry and other DHT algorithms, respec-
tively. In the later study, domains of size 256 or
more nodes are considered and their studies show
that path convergence is satisfied with high proba-
bility. In SDIMS, we expect the size of adminis-
trative domains at lower levels to be much less than
256 and it is at these small sizes that the path conver-
gence fails more often (Refer to Graph 8 — smaller
branching factors incur higher percentage of viola-
tions).

SkipNet [6] provides domain restricted routing
where a key search can be limited to a specified
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Figure 9: Performance of ADHT in merging two equal sized partitions in two cases — when only one node of a
partition discovers a node in another partition and when 1% of nodes in a partition discover a node in another partition.
We compare performance in case of both fast and slow zippering mechanisms described in Section 2.5. (a) Time taken
(in terms of number of simulation time steps) to achieve leafset consistency. (b) Communication cost incurred for
leafset consistency.

domain. This interface can be used to ensure path
convergence by searching in the lowest domain and
moving up to the next domain when the search
reaches the root in the current domain. Although
this strategy guarantees path convergence, it loses
the aggregation tree abstraction property of DHTs
as the domain constrained routing might touch a
node more than once (as it searches forward and
then backward to stay within a domain). Also the
search can be quite inefficient as it searches lin-
early through the nodes in a domain once the search
reaches a node in the required domain.

An alternative solution to achieve administrative
autonomy is through splitting id space among do-
mains [16], but this approach needs an estimate of
the size of the domains before the id space can be
split which will be hard to obtain accurately in prac-

tice.

Mislove et al. build multiple rings [11] to pro-
vide administrative control and autonomy in struc-
tured peer-to-peer networks. Nodes in a administra-
tive domain form a ring and few nodes of a domain
act as gateways for that domain and participate in a
ring corresponding to the next higher domain. Each
ring is assigned an ID and lookups involve both a
key and a ring ID. To enable locating a gateway re-
sponsible for a ring ID, gateways of a ring advertise
the corresponding ring ID in higher level rings using
standard DHTput interface. In contrast to ADHT,
this requires that a node, say acting as gateway at all
levels, participate inO(l) separate DHTs implying a
maintenance overhead ofO(l . logN), wherel is the
number of levels in the administrative hierarchy and
N is the number of nodes in the system.

11



An extension of Chord considers multiple virtual
rings [8] focusing on efficiently supporting multiple
subgroups using an existing Chord ring. Their ideas
might be applicable to achieve administrative isola-
tion for a two-level administrative hierarchy but it
might be inefficient for multi-level hierarchy.

Coral [3, 4] is a peer-to-peer content distribu-
tion network which uses a decentralized hierarchi-
cal clustering algorithm by which nodes can find
each other and form clusters of varying network di-
ameters. Coral then builds different DHTs at each
level in the hierarchical clustering tree. In contrast
to ADHT’s focus on supporting administrative iso-
lation, Coral focuses on finding a nearby node in
terms of network locality. They consider shallow
hierarchies (three-level hierarchy) and mainly focus
on automatically building such hierarchies based on
observed round-trip times between nodes.

Similar mechanisms to Zippering are proposed
for handling organizational disconnects in Skip-
Net [7] and for merging two separately formed
DHTs in Willow [14].

6 Summary and Open Issues

Administrative isolation is an important require-
ment to satisfy in an information management sys-
tem for security, availability, efficiency. We present
two properties — Path Locality and Path Conver-
gence — that a DHT should satisfy so that the ag-
gregation trees extracted from such DHT satisfy the
administrative isolation property. Current DHT al-
gorithms can achieve path locality but do not guar-
antee path convergence. In this chapter, we have
described a novel Autonomous DHT (ADHT) that
satisfies both path convergence and path locality.

ADHT builds upon and augments an existing
DHT, Pastry, to achieve administrative isolation
through the following four key ideas: (i) Each node
in ADHT has multiple leafsets corresponding to lev-
els of administrative hierarchy in which that node
participates, (ii) ADHT employs a novel key space
assignment and a novel routing algorithm that en-
sure search paths from nodes in a domain for key
converge at a node within that domain, (iii) A node
joining ADHT locates a nearest node in terms of
domain nearness and uses that node as the boot-

strap node to join ADHT, and (iv) Each node in
ADHT periodically tests for partitions in each do-
main it participates and uses aZipperingmechanism
to mend partitions.

We evaluate the performance of ADHT through
simulation experiments. We observe that whereas
ADHT satisfies path convergence property, Pastry
can incur up to 16% violations in probe pairs. In
terms of path length to the root, note that ADHT
path lengths areO(logN + l) compared to Pastry’s
O(logN) whereN is the number of nodes in the net-
work andl is the number of levels in the adminis-
trative hierarchy. In simulations we observe that the
path lengths in ADHT are modestly higher than in
Pastry and they are higher when the depth of ad-
ministrative hierarchy is deeper and this is precisely
the case where Pastry incurs more path convergence
property violations.

An open question for discussion is how to
achieve Administrative Autonomy in other DHT
systems. We believe our techniques are applica-
ble in other bit-correcting DHTs like SkipNet and
logical ring based DHTs like Chord. For example,
we can achieve path convergence in Chord by main-
taining multiple leafsets and use a routing algorithm
similar to ADHT routing algorithm – route to a node
in the lowest domain closer to the key before jump-
ing out of the domain.
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