
Administrative Autonomy in Structured Overlays
Praveen Yalagandula

HP Labs
Mike Dahlin

The University of Texas at Austin

Abstract
Large scale distributed applications spanning multiple do-
mains should satisfy administrative autonomy property —
allow users in a domain to control flow of information in to
and out of their domains. Though DHTs offer a scalable so-
lution for building distributed applications, they do not guar-
antee this property. We present a novel Autonomous DHT
(ADHT) that guarantees path locality and path convergence
in routing to satisfy autonomy property.

1 Introduction
In this paper, we explore administrative autonomy
property of distributed applications built on structured
overlays like Pastry, Chord, and CAN. For distributed
applications deployed in large scale networked systems
comprising several administrative domains1, adminis-
trative autonomy property allows users of a domain to
control the flow of information coming in and going
out of their domain and also ensures availability of the
data in the domain irrespective of the behavior of nodes
outside the domain. Though DHTs offer solution for
scalability with the nodes and the amount of informa-
tion, most of them do not guarantee the administrative
autonomy property.

Administrative autonomy is a key requirement for
many distributed applications for security, availability,
and efficiency. We further discuss this point with ref-
erence to Figure 1 where we present routing for a key
111XX in a bit-correcting DHT like Pastry [9].
Security: Consider a file location system on Pastry
in an enterprise network. While payroll files should
be locatable by employees of payroll department, they
should not be exposed to employees/machines outside
the department. Using scalable overlay networks such
as Chord, Pastry, etc. do not provide any control over
where the data is placed and do not provide any guaran-
tees that the queries for information in a domain are not
exposed outside that domain. In the example, queries
related to key 111XX in domain dep1 will be exposed

1Domain in our system is defined as a set of machines either ad-
ministered by a common authority or a logical group with in such
sets (e.g., set of machines sharing a switch). Note that these do-
mains does not necessarily correspond to the DNS domain hierar-
chy even though we use a similar notation.

key = 111XX

110XX

010XX
011XX

100XX

101XX

univ

dep1 dep2

Figure 1: Administrative autonomy violation in a bit-
correcting DHT.

outside that domain.
Availability: Domain disconnections or organizational
partitions are common in the Internet. Also a node in
a domain can behave maliciously either by respond-
ing lazily for messages from nodes outside the domain
or by dropping messages from nodes outside the do-
main. For example, for nodes in domain dep1, such
domain disconnections or malicious behavior of node
with key 110XX in another domain dep2 can poten-
tially decrease the availability for operations within the
domain.
Efficiency: Application like multicast systems and ag-
gregation systems use overlays for constructing trees.
Since domain-nearness also implies network proximity
in many cases, administrative autonomy results in effi-
cient trees in contrast to a bit-correcting DHT overlay
routing. Consider building multicast application on top
of a bit-correcting DHT. For a session corresponding to
key 111XX shown in Figure 1, note that two nodes with
ids 100XX and 101XX in domain dep1 connect to node
110XX in another domain for receiving multicast data.

To achieve administrative autonomy, a DHT routing
algorithm should satisfy two properties: (i)Path Lo-
cality: Routing paths should always be contained in the
smallest possible domain, and (ii)Path Convergence:
Routing paths for a key from two different nodes in a
domain should converge at a node in the same domain.
Existing DHTs either already support path locality [4]
or can support easily by setting the domain nearness
as the distance metric [2, 3]. But they do notguaran-
teepath convergence as those systems try to optimize
the path length to the root to reduce response latency.
As motivated above, we believe that guaranteeing path
convergence in overlay networks and satisfying admin-
istrative autonomy will enable the industry to embrace
the DHT work in real applications.

1

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

logical ID ring

leafset at
cs.utexas.edu level

leafset at
utexas.edu level

leafset at
edu level

Nodes in
cs.utexas.edu

Nodes in
utexas.edu

Nodes in
edu

begonia.cs.utexas.edu

Figure 2: Multiple leafsets maintained by the node
begonia.cs.utexas.edu (leafset size=4)

In a previous paper, we presented a brief descrip-
tion of initial design of a novel Autonomous DHT
(ADHT) that satisfies administrative autonomy. This
paper presents more details of the ADHT design that
builds on a bit-correcting DHT, Pastry [9], by main-
taining multiple leafsets at each node and using novel
join and key routing algorithms. We also present a new
Zipperingtechnique for maintaining consistent routing
with multiple leafsets in the face of node joins, node
leaves, and network partitions.

2 Our Approach
To ensure path convergence, a DHT routing must pro-
vide a single exit point in each domain for a key. And
for path locality, a DHT routing protocol should route
keys along intra-domain paths before routing them
along inter-domain paths. Below, we describe the fol-
lowing aspects of ADHT design – data structures main-
tained at each node, routing and join algorithms, and fi-
nally a novelZippering2 algorithm employed by ADHT
for maintaining consistency in data structures.

2.1 Data Structures

Similar to Pastry and other DHT algorithms, each node
in ADHT has a routing table to maintain pointers to
O(logN) other nodes in the system. In contrast to one
leafset in Pastry, each node in ADHT maintains a sep-
arate leaf set for each domain to which the node be-
longs. In Figure 2, we illustrate leafsets maintained by
a nodebegonia.cs.utexas.edu in the ADHT algo-
rithm. Note that the Pastry algorithm maintains just
one leafset – corresponding to the top domainedu level.
Maintaining a different leafset for each level increases
the number of neighbors that each node tracks to(2b)∗
lg2b n+c.l in ADHT compared to(2b)∗ lg2b n+c in un-
modified Pastry, whereb is the number of bits in a digit,
n is the number of nodes,c is the leafset size, andl is
the number of domain levels. But these extra leafsets

2Terminology from [10]

0

C

D

B (011XX)

(101XX)

(111XX)

A (010XX)

Figure 3: Key space assignment to nodes in Pastry (outer
split) and ADHT (inner split).

ensure path locality and convergence properties during
routing.

2.2 Routing in ADHT

The algorithm for populating the routing table is quite
similar to Pastry but with the following key difference:
ADHT uses hierarchical domain proximity as the pri-
mary proximity metric (two nodes that match ini levels
of domain hierarchy are more proximate than two nodes
that match in fewer thani levels in domain hierarchy)
and network distance as the secondary proximity metric
(if two pairs of nodes match in the same number of do-
main levels, then the pair whose separation by network
distance is smaller is considered more proximate).

ADHT uses a novel key space assignment to nodes
so that routing paths do not visit a node twice during
routing for any key — a property required so that we
can extract aggregation trees from the routing structure.
A key k is assigned to a node A such thatIDA matches
more prefix bits ofk than any other node’s ID. If IDs
of multiple nodes match keyk in the same number of
prefix bits, then we pick a node B from that set such that
dist(k, IDB)= MIN(|k− IDB|,2b−|k− IDB|) is smaller
than difference between keyk and any other node’s ID.
Note that Pastry only usesdist function to decide the
key space assignment. The key space split is shown for
ADHT and Pastry in Figure 3 for four nodes A, B, C,
and D. Below we first explain the routing algorithm and
then discuss how this key assignment ensures no loops
in ADHT key routing.

Routing Algorithm The routing algorithm we use
in routing for a key at node withnodeId is shown in
Algorithm 1. To route a keyk, a node A with ID
IDA first checks its routing table for another node that
matches the key in more digits than this node. We
call such bit correcting neighbor aflipNeighbor. If
no such node exists, then we consider leafsets start-
ing from the smallest domain. If aflipNeighborexists
and is in the node’s lowest domain, then we route the
key to theflipNeighbor. If a flipNeighborexists and is
not in the same domain as the node, then we consider
leafsets corresponding to the levels below the common

2

Algorithm 1 ADHTroute(key)
1: flipNeigh← checkRoutingTable(key) ;
2: l ← numDomainLevels ; /* node’s lowest level */
3: while (l >= 0) do
4: if (commonLevels(flipNeigh, node)== l) then
5: send the key to flipNeigh ;
6: return
7: else
8: leafNeigh← an entry in leafset[l] closer to

key than nodeId ;
9: if (leafNeigh != null) then

10: send the key to leafNeigh ;
11: return
12: end if
13: end if
14: l ← l −1; /* move to next higher domain */
15: end while
16: /* this node is the global root for this key */

domain between theflipNeighborand this node, start-
ing from the lowest domain leafset. For example, if
a nodebegonia.cs.utexas.edu finds aflipNeighbor
linux1.cs.cmu.edu, then the node considers the leaf-
sets at levelscs.utexas.edu andutexas.edu in that
order. If the node finds another node in its leafset that is
closer to the key than the node, then it forwards the key
to that node closer to the key. If no such node is found
in a leafset at a level, then this node is considered the
root node for keyk in that domain. If a node has noflip-
Neighborfor a keyk and has no neighbor in any leafset
at any level that is closer to the keyk than it is, then
such node is the global root for keyk. Note that by
routing at the lowest possible domain until the root of
that domain is reached, we ensure that all routing paths
starting in a domain converge within that domain, thus
achieving the Path Convergence property.

Discussion The key space assignment in ADHT en-
sures that no node is visited twice during routing – a
key requirement for many applications on DHTs that
extract trees from DHT routing such as for aggrega-
tion in SDIMS [12] and for spanning trees in multicast.
If we use the Pastry key assignment, then the routing
paths using the ADHT routing algorithm might touch
a node more than once. For example, consider rout-
ing for a keyk =000XX in a domain with four nodes
shown in Figure 3 and suppose the whole system has
several other nodes in other. In this domain, node D
is considered as the root for this key with Pastry’s key
assignment. If we start routing for keyk from node B,
node B will forward the route request to node D as that
is the root. But, when routing in the next domain level
from node D, the next hop goes back to node B as it is

joining node

cs.utexas.edu

utexas.edu

edu

Figure 4: Leafsets that a joining node receives in response to
its join request. Dark arrows denote the join request routing
path.

the nearest first bit-correcting node. Thus node B will
be visited twice and hence can create loops in the rout-
ing. The ADHT key space assignment assigns node B
as the root for this domain in this case and hence it is
not touched more than once.

2.3 Join Algorithm

Similar to Pastry join algorithm, a node joins an ex-
isting ADHT by contacting one or more user supplied
nodes. But, instead of bootstrapping from that node,
the joining node uses the contact node to search for an
appropriate bootstrap node that is closer to the joining
node in terms of the domain-nearness metric. This is to
ensure that leafsets at different domain levels are filled
in a correct manner. In the following paragraphs, we
will first describe how a node joins once an appropriate
bootstrap node is found and then describe how a joining
node finds such an appropriate bootstrap node.

Suppose node A is joining ADHT using a bootstrap
node B. Node A asks node B to route a specialjoin mes-
sage with keyk= IDA. ADHT then routes the join mes-
sage to an existing node R that is currently responsible
for keyk. Each intermediate node C on the routing path
from node B to node R sends its leafsets for each com-
mon domain between C and A for which node C is the
root node in that domain for keyk. Figure 4 illustrates
the leafsets that a joining node receives in response to
its join request in a three level deep domain hierarchy
case. Also the intermediate nodes send their routing ta-
ble to node A so that node A can initialize its routing
tables. Finally, node A informs all nodes that need to
be aware of its arrival by sending entries in its routing
or leafset tables. This procedure ensures that node A
initializes its state with appropriate values and that the
state in all other affected nodes is updated.

2.3.1 Finding a bootstrap node

A joining node needs to find a node already in
the ADHT that is closer to the joining node in
terms of domain-nearness. For example, node
begonia.cs.utexas.edu that wishes to join a ADHT

3

c d e f g h : nodes in utexas.edu

d c f g

− −

− −

g h e d

Leafsets at B

B

c

d e

f g

h

A

Leafsets at A

utexas.edu domain

cs.utexas.edu domain
A B : nodes in cs.utexas.edu

Figure 5: Concurrent joins leading to path convergence prop-
erty violations. Nodes A and B join concurrently leading to
incorrectcs.utexas.edu domain leafset tables.

searches for some other node incs.utexas.edu do-
main. If no such node exists, then it looks for a node
in utexas.edu domain, and so on. The joining node
uses such a near node as its bootstrap node for joining
the ADHT. While such appropriate bootstrap node can
be provided to a joining node manually in small scale
systems, it will be infeasible for large scale systems in
practice. Below, we describe how ADHT leverages its
put andgetoperations to locate bootstrap nodes.
Using DHT put and get operations: Each node
after joining the ADHT will perform aput op-
eration for keys corresponding to different do-
mains to which this node belongs. For ex-
ample, a nodebegonia.cs.utexas.edu will per-
form three put operations for keys corresponding
cs.utexas.edu, utexas.edu, andedu with its own
IP address as the value. Now, a new node, say
linux1.ece.utexas.edu that wishes to join the DHT
will use a supplied contact node to perform a sequence
of get operations starting from the lowest domain
ece.utexas.edu up to the highest domainedu until it
finds another node. If no node is found, then it consid-
ers itself to be the first node in theedu domain and uses
a user-specified contact node as the bootstrap node.

Note that storing IP addresses of all nodes in a do-
main is unnecessary and might be infeasible for large
domains. We do not need aget() operation to return
all IP addresses stored for a domain butanyor fewval-
ues will suffice. So, instead of storing all values, we
store only a few for each domain and use a FIFO policy
to purge the list as new IP addresses are inserted.

2.4 Maintaining Consistent Leafsets

Note that although mechanisms described in the previ-
ous section provide one way for rendezvous between
nodes in same domain, they do not guarantee that a
new joining node always finds other nodes in its do-
main. For example, if nodes in a new domain con-
currently join an existing ADHT, they might not find
each other during the join phase and might use some
node outside their domain as the bootstrap node, which

can leaf to incorrect leafset state. We illustrate this
in Figure 5(a) where two nodes A and B in domain
cs.utexas.edu join concurrently using some nodes
outsidecs.utexas.edu as bootstrap nodes. Hence, the
leafset tables of these nodes end up in an incorrect state
leading to the violation of path convergence. In our
system, we ensure path convergence and path locality
properties are met by using the following mechanism
— each node periodically searches for other nodes in
all domains that it is part of using DHT-based method,
contacts those nodes, and corrects any incorrect entries
in its routing table or leafset tables. In the following, we
first describe theZipperingmechanism that is useful for
any DHT to handle partitions and then describe how we
use this to achieve leafset consistency in ADHT.
Zippering for Mending Partitions Several DHT sys-
tems, like SkipNet [5] and Willow [10], provide a way
to merge partitioned components. In Pastry, nodes peri-
odically perform a leafset maintenance task where each
node checks for the liveness of its leafset table entries
and broadcasts its current leafset to members of that
leafset if it finds any dead entries. Though this mainte-
nance protocol is appropriate to mend machine crash
failures, it fails during network partitions, leading to
possible partitions in the DHT. Even after the network
heals, Pastry does not have a mechanism where these
different partitions can merge back together.

To mend partitions in a DHT, we need a way to ren-
dezvous between nodes in those partitions and a way to
merge a partition with another after a node in a parti-
tion discovers a node in the second partition. In ADHT,
nodes keep a log of dead nodes and occasionally ping
them to check if they became alive. The entries in the
log expire after a certain timeout period,TdeadNodePurge.
Also we provide an interface for manually initiated ren-
dezvous.

We describe the zippering mechanism with an ex-
ample illustrated in Figure 6. We show the partitions
as two different circles corresponding to the logical ID
space and show nodes in different partitions on those
two different circles. In this figure, node A with say
IDA initially discovers node B and starts a join proce-
dure using node B as the bootstrap node (message 1 in
the figure). Node B forwards the message using ADHT
routing towards the root for keyIDA, which is routed
to node R that is currently responsible for keyIDA in
the partition to which node B belongs. If there is no
partition, then the join request will be routed to node
A and the procedure stops. In case of a partition, node
R returns response for join request to node A and node
A gathers that R is in a different partition. Then, Node
A contacts and exchanges leafsets with node R so that
both of them are in the same partition. Thus the logical

4

B

R

A
1

2

3

B

R

A

4

B

R

A 5

5

B

R

A

(a) (b) (c) (d)

Figure 6: Zippering steps: (a) Node A starts a join procedureusing node B as the bootstrap node. Node B routes that request
towards node R which is the current root forIDA in B’s partition. (b) Node A and Node R detect the partitions and exchange
their leafsets. (c) Node A and Node R propagate the information about partitions during their periodic leafset exchanges with
neighbors. (d) Eventually, the partitions are merged together.

ID space near node A and node R is mended (depicted
in the figure as node A and node R participating in both
rings). As node A and node R perform their periodic
leafset exchanges with neighbors in their leafsets, the
mending of logical ID space spreads around the ring
(shown in Figure 6(c)) and eventually the partitions are
zippered together (depicted in the Figure 6(d)).

Fast Zippering The method for zippering in the last
few paragraphs can takeO(N) time steps before two
partitions with N nodes are merged together. Note
that the healing of the partitions is spread around the
ID ring linearly in time. To hasten the zippering pro-
cess, we propose the following scheme. Upon detect-
ing partitions and mending leafsets, a node picks a con-
stant number of random nodes in its current partition
(from its previous leafsets and routing table) and in-
forms them about the nodes in the other partition (new
entries in the leafset). These nodes then start zipper-
ing procedure to mend their leafsets. With each node
informing a constant number of other nodes after it
completes zippering, all nodes will get to know of par-
titions in O(logN) such rounds with high probability.
Overall, all nodes will complete performing zippering
step byO(log2 N) time steps. This procedure will in-
cur O(N logN) messages as each node might perform
the zippering step in contrast toO(N) messages in slow
zippering procedure described previously.

Leafset Maintenance using ZipperingIn ADHT, we
also use the above zippering mechanism to correctly
maintain leafsets at different levels. Periodically each
node looks for other nodes in each domain it is part of
using the DHT-based method described in the previous
section. Once it finds such nodes, it uses the zippering
mechanism to mend any possible partitions. An im-
portant question is how frequently should ADHT nodes
perform this discovery step. If all nodes perform such
operation quite frequently, then few chosen representa-
tives for a large domain will be inundated with a large
number of join requests. To avoid such hot spots, the
frequency for discovery step at a node in a domain is

set to be proportional to the estimated number of nodes
in the domain. To estimate the size, we leverage the fol-
lowing result from Viceroy [7]: IfXs denote the sum of
segment lengths (length of logical ID space) managed
by any set ofs nodes, thens

Xs
is an unbiased estimator

for the number of nodes.

3 Properties
Correctness: We explore the correctness of ADHT
from the perspective of three properties — (1) Consis-
tent Routing [1]: A lookup operation for a key always
ends at the current root node responsible for the key
in the system, (2) Path Convergence, and (3) Path Lo-
cality. For brevity, in the following, we only present
lemma and theorem statements. Please refer to our ex-
tended report [11] for more details.
Lemma 1 Consistent leafsets at all nodes guarantee
consistent routing, path convergence, and path locality.
Lemma 2 If the global leafset at all nodes is consistent
and after the system becomes stable (no further node
and network failures), eventually all leafsets at different
domain levels at all nodes become consistent.
Theorem 1 If all network partitions and node fail-
ures are of duration less than TdeadNodePurgeand after
the system is stable, eventually consistent routing, path
convergence, and path locality properties are met.
Increased Path Length in ADHT: In contrast to Pas-
try routing, ADHT routes to a domain root node before
jumping out of the domain to ensure path convergence.
In Pastry routing, when an entry is found in the rout-
ing table that is closer to the key than the current node,
then the request is forwarded to that node. In ADHT,
entries in a domain leafset are given priority over a rout-
ing table entry when the routing table entry corresponds
to a node outside the domain. This routing procedure
leads to an increase in the hop count for reaching a root
node for a key from any node in the system. This path
length increases toO(logN + l) from O(logN) in Pas-
try, whereN is the number of nodes in the system andl
is the number of levels in the administrative hierarchy,

5

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

N
um

be
r

of
 r

ou
nd

s

Number of nodes

Fast
Linear

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

no
de

Number of nodes

Fast
Linear

(a) (b)

Figure 7: Fast vs slow zippering mechanisms (a) Time taken
(number of simulation steps) to achieve leafset consistency
and (b) Communication costs.

which in practice will grow no faster than logN.

4 Simulation Results
For demonstrating the performance of ADHT Zipper-
ing, we build a DHT ensuring that nodes in the DHT
get partitioned into two equal sized partitions. Then
we inform the nodes of a partition about a node in the
second partition (simulating the node discovery mech-
anism mentioned in Section 2.4), which starts the zip-
pering activity. In Figure 7, we plot performance results
for fast zippering and compare it with slow linear zip-
pering. We measure performance as time taken in terms
of simulation steps and number of messages incurred
during zippering. As expected, fast zippering mends
partitions quickly while incurring a modest increase in
the number of messages.

5 Related Work
SkipNet [4] provides domain restricted routing where a
key search can be limited to a specified domain. This
interface can be used to ensure path convergence by
searching in the lowest domain and moving up to the
next domain when the search reaches the root in the
current domain. Although this strategy guarantees path
convergence, this routing might touch a node more
than once (as it searches forward and then backward
to stay within a domain) and hence renders it unsuit-
able for applications extracting trees from DHT routing
(e.g.,overlay multicast).

An alternative solution to achieve administrative
autonomy is through splitting id space among do-
mains [13], but this approach needs an estimate of the
size of the domains before the id space can be split
which will be hard to obtain accurately in practice. Mis-
love et al. propose multiple DHT rings [8] for admin-
istrative control and autonomy in Pastry. Each domain
has a separate DHT ring and a chosen gateway node
from each domain form next higher level DHT ring. An
extension of Chord considers multiple virtual rings [6]
focusing on efficiently supporting multiple subgroups
using an existing Chord ring. Similar mechanisms to

Zippering are proposed for handling organizational dis-
connects in SkipNet [5] and for merging two separately
formed DHTs in Willow [10].

6 Summary and Open Issues
Administrative autonomy is an important requirement
to satisfy in any distributed system spanning multiple
administrative domains for security, availability, effi-
ciency. Path Locality and Path Convergence are two
properties that a DHT should guarantee for satisfying
autonomy. Current DHT algorithms can achieve path
locality but do not guarantee path convergence. In this
paper, we have described a novel Autonomous DHT
that guarantees both properties.

An open question for discussion is how to achieve
Administrative Autonomy in other DHT systems. We
believe our techniques are applicable in other bit-
correcting DHTs like SkipNet and logical ring based
DHTs like Chord. For example, we can achieve path
convergence in Chord by maintaining multiple leafsets
and use a routing algorithm similar to ADHT routing
algorithm – route to a node in the lowest domain closer
to the key before jumping out of the domain.

References
[1] M. Castro, M. Costa, and A. Rowstron. Performance and De-

pendability of structured peer-to-peer overlays. Technical Re-
port MSR-TR-2003-94, MSR Cambridge, UK, 2003.

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploit-
ing Network Proximity in Peer-to-Peer Overlay Networks.
Technical Report MSR-TR-2002-82, MSR.

[3] K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The Impact of DHT Routing Ge-
ometry on Resilience and Proximity. InSIGCOMM, 2003.

[4] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with Prac-
tical Locality Properties. InUSITS, March 2003.

[5] N. J. A. Harvey, M. B. Jones, M. Theimer, and A. Wolman.
Efficient Recovery From Organizational Disconnect in Skip-
Net. In IPTPS, 2003.

[6] D. R. Karger and M. Ruhl. Diminished Chord: A Protocol
for Heterogeneous Subgroup Formation in Peer-to-Peer Net-
works. InIPTPS, 2004.

[7] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. InPODC, 2002.

[8] A. Mislove and P. Druschel. Providing Administrative Con-
trol and Autonomy in Peer-to-Peer Overlays. InIPTPS, 2004.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. InMiddleware, 2001.

[10] R. VanRenesse and A. Bozdog. Willow: DHT, Aggregation,
and Publish/Subscribe in One Protocol. InIPTPS, 2004.

[11] P. Yalagandula and M. Dahlin. Admin-
istrative Autonomy in Structured Overlays.
http://www.cs.utexas.edu/users/dahlin/projects/sdims/.

[12] P. Yalagandula and M. Dahlin. A scalable distributed infor-
mation management system. InProc SIGCOMM, Aug. 2004.

[13] S. Zhou, G. Ganger, and P. Steenkiste. Balancing Locality
and Randomness in DHTs. Technical Report CMU-CS-03-
203, CMU, 2003.

6

