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Abstract

Large scale distributed applications spanning multiple do
mains should satisfy administrative autonomy property —
allow users in a domain to control flow of information in to
and out of their domains. Though DHTs offer a scalable so-
lution for building distributed applications, they do natay- Figure 1: Administrative autonomy violation in a bit-
antee this property. We present a novel Autonomous DH-Eorrecting DHT.

(ADHT) that guarantees path locality and path convergence

in routing to satisfy autonomy property. outside that domain.

: Availability: Domain disconnections or organizational
1 Introduction partitions are common in the Internet. Also a node in
In this paper, we explore administrative autonomya domain can behave maliciously either by respond-
property of distributed applications built on structureding lazily for messages from nodes outside the domain
overlays like Pastry, Chord, and CAN. For distributedor by dropping messages from nodes outside the do-
applications deployed in large scale networked systemmain. For example, for nodes in domain depl, such
comprising several administrative domainadminis- domain disconnections or malicious behavior of node
trative autonomy property allows users of a domain tavith key 110XX in another domain dep2 can poten-
control the flow of information coming in and going tially decrease the availability for operations within the
out of their domain and also ensures availability of thedomain.
data in the domain irrespective of the behavior of nodegfficiency: Application like multicast systems and ag-
outside the domain. Though DHTSs offer solution forgregation systems use overlays for constructing trees.
scalability with the nodes and the amount of informa-Since domain-nearness also implies network proximity
tion, most of them do not guarantee the administrativén many cases, administrative autonomy results in effi-
autonomy property. cient trees in contrast to a bit-correcting DHT overlay
Administrative autonomy is a key requirement forrouting. Consider building multicast application on top
many distributed applications for security, availabijlity of a bit-correcting DHT. For a session corresponding to
and efficiency. We further discuss this point with ref-key 111XX shown in Figure 1, note that two nodes with
erence to Figure 1 where we present routing for a keids 100XX and 101XX in domain depl connect to node
111XX in a bit-correcting DHT like Pastry [9]. 110XX in another domain for receiving multicast data.
Security: Consider a file location system on Pastry To achieve administrative autonomy, a DHT routing
in an enterprise network. While payroll files shouldalgorithm should satisfy two properties: @Path Lo-
be locatable by employees of payroll department, theyality: Routing paths should always be contained in the
should not be exposed to employees/machines outsidenallest possible domain, and (#gath Convergence
the department. Using scalable overlay networks sucRouting paths for a key from two different nodes in a
as Chord, Pastry, etc. do not provide any control oveiomain should converge at a node in the same domain.
where the data is placed and do not provide any guaragexisting DHTSs either already support path locality [4]
tees that the queries for information in a domain are nagr can support easily by setting the domain nearness
exposed outside that domain. In the example, queriess the distance metric [2, 3]. But they do mptaran-
related to key 111XX in domain depl will be exposedtee path convergence as those systems try to optimize
the path length to the root to reduce response latency.
_ 1_Domain in our system is defi_ned as a set of machings e_ither ads motivated above, we believe that guaranteeing path
T o o s COMVergence i overiay networks and satistying admin-
mains does not necessarily correspond to the DNS domaiarhier iStrative autonomy will enable the industry to embrace
chy even though we use a similar notation. the DHT work in real applications.
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Figure 3: Key space assignment to nodes in Pastry (outer
split) and ADHT (inner split).

ensure path locality and convergence properties during

routing.
In a previous paper, we presented a brief descrips o

tion of initial design of a novel Autonomous DHT 2.2 Routing in ADHT
(ADHT) that satisfies administrative autonomy. ThisThe algorithm for populating the routing table is quite
paper presents more details of the ADHT design thaimilar to Pastry but with the following key difference:
builds on a bit-correcting DHT, Pastry [9], by main- ADHT uses hierarchical domain proximity as the pri-
taining multiple leafsets at each node and using novehary proximity metric (two nodes that matchiitevels
join and key routing algorithms. We also present a nevef domain hierarchy are more proximate than two nodes
Zipperingtechnique for maintaining consistent routingthat match in fewer thanlevels in domain hierarchy)
with multiple leafsets in the face of node joins, nodeand network distance as the secondary proximity metric
leaves, and network partitions. (if two pairs of nodes match in the same number of do-

main levels, then the pair whose separation by network
2 Our Approach distance is smaller is considered more proximate).

. ADHT uses a novel key space assignment to nodes
To ensure path convergence, a DHT routing must pro- . e . .
. X N . so that routing paths do not visit a node twice during
vide a single exit point in each domain for a key. And

for path locality, a DHT routing protocol should route routing for any key —a property requwed_ SO that we
can extract aggregation trees from the routing structure.

keys along intra-domain paths before routing the . .
along inter-domain paths. Below, we describe the forl?s‘ key ks assigned to a node A such th&X, matches

lowing aspects of ADHT design — data structures maing}or;euI?irﬁgxnzlézsﬂégiﬂ Egg i(r:t?&r ggriizsnluDrﬁlifeer;‘
tained at each node, routing and join algorithms, and fi- P

nally a novelZippering algorithm employed by ADHT prefix bits, then we pick a node B from that set such that

for maintaining consistency in data structures dist(k, IDg) = MIN (|k—1Dg|, 2’ —|k—1Dg) is smaller
9 y ' than difference between kéyand any other node’s ID.

Note that Pastry only usatdist function to decide the

- _ key space assignment. The key space split is shown for
Similar to Pastry and other DHT algorithms, each nOd%DHT and Pastry in Figure 3 for four nodes A, B, C

in ADHT has a routing table to maintain pointers ©and D. Below we first explain the routing algorithm and

O(IOQN_) other nodes in the system. In co_ntrgst t0 ON§hen discuss how this key assignment ensures no loops
leafset in Pastry, each node in ADHT maintains a Seft, ADHT key routing.

arate leaf set for each domain to which the node be- . _ )

longs. In Figure 2, we illustrate leafsets maintained byRouting Algorithm  The routing algorithm we use
rithm. Note that the Pastry algorithm maintains just?lgorithm 1. To route a key, a node A with ID
one leafset — corresponding to the top doneainlevel. ID 4 first checks its routing table for another node that
Maintaining a different leafset for each level increasegnaiches the key in more digits than this node. We
the number of neighbors that each node track@tp«  Call such bit correcting neighbor gipNeighbor If
Ig,»n+c.| in ADHT compared tq2°) «lg»n+cinun- N0 such node exists, then we consider leafsets start-

modified Pastry, whereis the number of bits in a digit, ing from the smallest domain. If #@ipNeighborexists
n is the number of nodes;, is the leafset size, aridis ~ and is in the node’s lowest domain, then we route the

the number of domain levels. But these extra leafsetéey to theflipNeighbor If a flipNeighborexists and is
not in the same domain as the node, then we consider
leafsets corresponding to the levels below the common

2.1 Data Structures

2Terminology from [10]



Algorithm 1 ADHTroute(key)
1: flipNeigh < checkRoutingTable(key) ;
2: | «— numDomainLevels ; /* node’s lowest level */
3: while (I >=0)do

4: if (commonLevels(flipNeigh, node}= 1) then
5: send the key to flipNeigh ; =
6: return fining node
7. else
8: leafNeigh < an entry in leafsel] closerto

key than nodeld ; Figure 4: Leafsets that a joining node receives in respanse t
9: if (leafNeigh != null) then its join request. Dark arrows denote the join request rgutin
10: send the key to leafNeigh ; path.
E enﬁ? m the r_1e_arest f_irst bit-correcting node. Thus n(_)de B will
13 endif _be visited twice and hence can create Ioops in the rout-
14: | —1—1; /* move to next higher domain */ ing. The ADHT k_ey spaqe gssgnment assigns nod'e'B
15: end while as the root for this domain in this case and hence it is

not touched more than once.
2.3 Join Algorithm

domain between th#tipNeighborand this node, start- Similar to Pastry join algorithm, a node joins an ex-
ing from the lowest domain leafset. For example, ifisting ADHT by contacting one or more user supplied
a nodebegoni a. cs. ut exas. edu finds aflipNeighbor nodes. But, instead of bootstrapping from that node,
| i nux1. cs. cnu. edu, then the node considers the leaf-the joining node uses the contact node to search for an
sets at levelss. ut exas. edu andut exas. edu in that  appropriate bootstrap node that is closer to the joining
order. If the node finds another node in its leafset that igode in terms of the domain-nearness metric. This is to
closer to the key than the node, then it forwards the kegnsure that leafsets at different domain levels are filled
to that node closer to the key. If no such node is foundn a correct manner. In the following paragraphs, we
in a leafset at a level, then this node is considered theill first describe how a node joins once an appropriate
root node for keyk in that domain. If a node has fiilip-  bootstrap node is found and then describe how a joining
Neighborfor a keyk and has no neighbor in any leafsetnode finds such an appropriate bootstrap node.
at any level that is closer to the kéythan it is, then Suppose node A is joining ADHT using a bootstrap
such node is the global root for kdy Note that by node B. Node A asks node B to route a spejcisl mes-
routing at the lowest possible domain until the root ofsage with kex=IDa. ADHT then routes the join mes-
that domain is reached, we ensure that all routing patrgage to an existing node R that is currently responsible
starting in a domain converge within that domain, thugor keyk. Each intermediate node C on the routing path
achieving the Path Convergence property. from node B to node R sends its leafsets for each com-
mon domain between C and A for which node C is the
Discussion The key space assignment in ADHT en-root node in that domain for kel Figure 4 illustrates
sures that no node is visited twice during routing — ahe leafsets that a joining node receives in response to
key requirement for many applications on DHTs thaliis join request in a three level deep domain hierarchy
extract trees from DHT routing such as for aggregacase. Also the intermediate nodes send their routing ta-
tion in SDIMS [12] and for spanning trees in multicast.ple to node A so that node A can initialize its routing
If we use the Pastry key assignment, then the routinghples. Finally, node A informs all nodes that need to
paths using the ADHT routing algorithm might touch e aware of its arrival by sending entries in its routing
a node more than once. For example, consider rougyr |eafset tables. This procedure ensures that node A
ing for a keyk =000XX in a domain with four nodes injtializes its state with appropriate values and that the

shown in Figure 3 and suppose the whole system hagate in all other affected nodes is updated.
several other nodes in other. In this domain, node D

is considered as the root for this key with Pastry's key?-3-1 Finding a bootstrap node

assignment. If we start routing for kéyfrom node B, A joining node needs to find a node already in
node B will forward the route request to node D as thathe ADHT that is closer to the joining node in
is the root. But, when routing in the next domain levelterms of domain-nearness. For example, node
from node D, the next hop goes back to node B as it iBegoni a. ¢s. ut exas. edu that wishes to join a ADHT

16: /* this node is the global root for this key */

3



can leaf to incorrect leafset state. We illustrate this

¢ in Figure 5(a) where two nodes A and B in domain
B cs. ut exas. edu join concurrently using some nodes
Leafsets at £ outsidecs. ut exas. edu as bootstrap nodes. Hence, the
A J g hled] leafset tables of these nodes end up in an incorrect state
Leafsets at A . . = =] leading to the violation of path convergence. In our
[d c [ f U Jutexas.edu domain AB : nodes in cs.utexas.e system, we ensure path convergence and path locality
[ = | = Jcs.utexas.edu domain cdefgh:nodes in utexas.ed properties are met by using the foIIowing mechanism

Figure 5: Concurrentjoins leading to path convergence—prop_ each node periodically searches for other nodes in
erty violations. Nodes A and B join concurrently leading toaII domains that it is part of using DHT-based method,

incorrectcs. ut exas. edu domain leafset tables. contacts those nodes, and corrects any incorrect entries
in its routing table or leafset tables. In the following, we
searches for some other nodecis ut exas. edu do- first describe th&ipperingmechanism that is useful for
main. If no such node exists, then it looks for a nodeany DHT to handle partitions and then describe how we
in ut exas. edu domain, and so on. The joining node use this to achieve leafset consistency in ADHT.
uses such a near node as its bootstrap node for joinirgjppering for Mending Partitions Several DHT sys-
the ADHT. While such appropriate bootstrap node camems, like SkipNet [5] and Willow [10], provide a way
be provided to a joining node manually in small scaleco merge partitioned components. In Pastry, nodes peri-
systems, it will be infeasible for large scale systems imdically perform a leafset maintenance task where each
practice. Below, we describe how ADHT leverages itmode checks for the liveness of its leafset table entries
putandgetoperations to locate bootstrap nodes. and broadcasts its current leafset to members of that
Using DHT put and get operations: Each node leafset if it finds any dead entries. Though this mainte-
after joining the ADHT will perform aput op- nance protocol is appropriate to mend machine crash
eration for keys corresponding to different do-failures, it fails during network partitions, leading to
mains to which this node belongs. For ex-possible partitions in the DHT. Even after the network
ample, a nodebegoni a. cs. utexas. edu will per- heals, Pastry does not have a mechanism where these
form three put operations for keys correspondinglifferent partitions can merge back together.
cs. ut exas. edu, utexas. edu, andedu with its own To mend partitions in a DHT, we need a way to ren-
IP address as the value. Now, a new node, sayezvous between nodes in those partitions and a way to
l'i nux1. ece. ut exas. edu that wishes to join the DHT merge a partition with another after a node in a parti-
will use a supplied contact node to perform a sequendgon discovers a node in the second partition. In ADHT,
of get operations starting from the lowest domainnodes keep a log of dead nodes and occasionally ping
ece. ut exas. edu up to the highest domaigdu until it them to check if they became alive. The entries in the
finds another node. If no node is found, then it considiog expire after a certain timeout perioBieadnodepurge
ers itself to be the first node in tleelu domain and uses Also we provide an interface for manually initiated ren-
a user-specified contact node as the bootstrap node. dezvous.

Note that storing IP addresses of all nodes in a do- We describe the zippering mechanism with an ex-
main is unnecessary and might be infeasible for largample illustrated in Figure 6. We show the partitions
domains. We do not needgat () operation to return as two different circles corresponding to the logical 1D
all IP addresses stored for a domain éoyor fewval-  space and show nodes in different partitions on those
ues will suffice. So, instead of storing all values, wetwo different circles. In this figure, node A with say
store only a few for each domain and use a FIFO policyD , initially discovers node B and starts a join proce-
to purge the list as new IP addresses are inserted.  dure using node B as the bootstrap node (message 1 in
the figure). Node B forwards the message using ADHT
routing towards the root for keyD 5, which is routed
Note that although mechanisms described in the previe node R that is currently responsible for ki€ya in
ous section provide one way for rendezvous betweethe partition to which node B belongs. If there is no
nodes in same domain, they do not guarantee thatpartition, then the join request will be routed to node
new joining node always finds other nodes in its doA and the procedure stops. In case of a partition, node
main. For example, if nodes in a new domain conR returns response for join request to node A and node
currently join an existing ADHT, they might not find A gathers that R is in a different partition. Then, Node
each other during the join phase and might use som& contacts and exchanges leafsets with node R so that
node outside their domain as the bootstrap node, whidboth of them are in the same partition. Thus the logical

2.4 Maintaining Consistent Leafsets
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(b)
Figure 6: Zippering steps: (a) Node A starts a join procedsieg node B as the bootstrap node. Node B routes that request
towards node R which is the current root f@ra in B’s partition. (b) Node A and Node R detect the partitiond @xchange
their leafsets. (c) Node A and Node R propagate the infoanatbout partitions during their periodic leafset exchangih
neighbors. (d) Eventually, the partitions are merged togret

(d)

ID space near node A and node R is mended (depictesit to be proportional to the estimated number of nodes
in the figure as node A and node R patrticipating in bothn the domain. To estimate the size, we leverage the fol-
rings). As node A and node R perform their periodiclowing result from Viceroy [7]: IfXs denote the sum of
leafset exchanges with neighbors in their leafsets, theegment lengths (length of logical ID space) managed
mending of logical ID space spreads around the ringpy any set o nodes, ther;f—s is an unbiased estimator
(shown in Figure 6(c)) and eventually the partitions ardor the number of nodes.

zippered together (depicted in the Figure 6(d)).

Fast Zippering The method for zippering in the last 3 Propertles

few paragraphs can take(N) time steps before two Correctness: We explore the correctness of ADHT
partitions with N nodes are merged together. Notefrom the perspective of three properties — (1) Consis-
that the healing of the partitions is spread around theéent Routing [1]: A lookup operation for a key always
ID ring linearly in time. To hasten the zippering pro- ends at the current root node responsible for the key
cess, we propose the following scheme. Upon detecin the system, (2) Path Convergence, and (3) Path Lo-
ing partitions and mending leafsets, a node picks a comality. For brevity, in the following, we only present
stant number of random nodes in its current partitiolemma and theorem statements. Please refer to our ex-
(from its previous leafsets and routing table) and intended report [11] for more details.

forms them about the nodes in the other partition (newemma 1 Consistent leafsets at all nodes guarantee
entries in the leafset). These nodes then start zippegonsistent routing, path convergence, and path locality.
ing procedure to mend their leafsets. With each nodgemma 2 If the global leafset at all nodes is consistent
informing a constant number of other nodes after igng after the system becomes stable (no further node
completes zippering, all nodes will get to know of par-and network failures), eventually all leafsets at différen
titions in O(logN) such rounds with high probability. gomain levels at all nodes become consistent.

Overall, all nodes will complete performing zippering Theorem 1 If all network partitions and node fail-
step byO(IogZN) time steps. This procedgre will in- " res are of duration less tharyFanodepurgeand after

cur Q(NIogN) messages as each node mlgh'_f perforng,e system is stable, eventually consistent routing, path
the zippering step in contrast @N) messages in slow ¢onyergence, and path locality properties are met.
zippering procedure described previously. Increased Path Length in ADHT: In contrast to Pas-
Leafset Maintenance using Zipperingln ADHT, we  try routing, ADHT routes to a domain root node before
also use the above zippering mechanism to correctlypgmping out of the domain to ensure path convergence.
maintain leafsets at different levels. Periodically eachn Pastry routing, when an entry is found in the rout-
node looks for other nodes in each domain it is part oing table that is closer to the key than the current node,
using the DHT-based method described in the previouhen the request is forwarded to that node. In ADHT,
section. Once it finds such nodes, it uses the zipperingntries in a domain leafset are given priority over a rout-
mechanism to mend any possible partitions. An iming table entry when the routing table entry corresponds
portant question is how frequently should ADHT nodedo a node outside the domain. This routing procedure
perform this discovery step. If all nodes perform sucHeads to an increase in the hop count for reaching a root
operation quite frequently, then few chosen representaode for a key from any node in the system. This path
tives for a large domain will be inundated with a largelength increases t@(logN + 1) from O(logN) in Pas-
number of join requests. To avoid such hot spots, thery, whereN is the number of nodes in the system &nd
frequency for discovery step at a node in a domain iss the number of levels in the administrative hierarchy,
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Zippering are proposed for handling organizational dis-
connects in SkipNet [5] and for merging two separately
formed DHTSs in Willow [10].
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6 Summary and Open Issues

Administrative autonomy is an important requirement

T e v b ™ 1o satisfy in any distributed system spanning multiple

_ (@) _ _ _( ) _ administrative domains for security, availability, effi-
Figure 7: Fast vs slow zippering mechanisms (a) Time takegjency. Path Locality and Path Convergence are two
(number of S|mul_at|0_n steps) to achieve leafset Cons'ytencproperties that a DHT should guarantee for satisfying
and (b) Communication costs. autonomy. Current DHT algorithms can achieve path
locality but do not guarantee path convergence. In this
paper, we have described a novel Autonomous DHT

4 Simulation Results that guarantees both properties. .

) ) An open question for discussion is how to achieve

For demonstrating the performance of ADHT Zipper-agministrative Autonomy in other DHT systems. We
ing, we build a DHT ensuring that nodes in the DHTpejieve our techniques are applicable in other bit-
get partitioned into two equal sized patrtitions. Therborrecting DHTSs like SkipNet and logical ring based
we inform the nodes of a partition about a node in theyyTs |ike Chord. For example, we can achieve path
second partition (simulating the node discovery mechggnyergence in Chord by maintaining multiple leafsets

anism mentioned in Section 2.4), which starts the Zipang yse a routing algorithm similar to ADHT routing
pering activity. In Figure 7, we plot performance resultsy|gorithm — route to a node in the lowest domain closer

for fast zippering and compare it with slow linear zip-q the key before jumping out of the domain.
pering. We measure performance as time taken in ter
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