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1 Introduction

The goal of this dissertation proposal is to design and build a Scalable Distributed Information Management
System (SDIMS) thataggregatesinformation about large-scale networked systems and that can serve as a
basic building block for a broad range of large-scale distributed applications. Monitoring, querying, and
reacting to changes in the state of a distributed system are core components of applications such as system
management [4, 13, 35, 41, 44, 45], service placement [12, 46], data sharing and caching [29, 33, 36, 40,
43, 47], sensor monitoring and control [20, 24], multicast tree formation [6, 7, 34, 38, 42], and naming
and request routing [8, 9]. We therefore speculate that an SDIMS in a networked system would provide a
“distributed operating systems backbone” and facilitate the development and deployment of new distributed
services.

For a large scale information system,hierarchical aggregationis a fundamental abstraction for scalability.
Rather than expose all information to all nodes, hierarchical aggregation allows a node to access detailed
views of nearby information and summary views of global information. In an SDIMS based on hierarchical
aggregation, different nodes can therefore receive different answers to the query “find a [nearby] node with at
least 1 GB of free memory” or “find a [nearby] copy of file foo.” A hierarchical system that aggregates infor-
mation through reduction trees [24, 34] allows nodes to access information they care about while maintaining
system scalability.

1.1 Requirements

To be used as a basic building block, an SDIMS should have four properties – (1)Scalabilitywith respect to
both nodes and attributes, (2)Flexibility to accommodate a broad range of applications, (3)Administrative
autonomy and isolation, and (4)Robustnessto reconfigurations.

Scalability The system should accommodate large numbers of participating nodes, and it should allow
applications to install and monitor large numbers of data attributes. Enterprise and global scale systems today
might have tens of thousands to millions of nodes and these numbers will increase as desktop machines
give way to larger numbers of smaller devices. Similarly, we hope to support many applications and each
application may track several attributes (e.g., the load and free memory of a system’s machines) or millions
of attributes (e.g., which files are stored on which machines).

Flexibility The system should have flexibility to accommodate a broad range of applications and attributes.
For example,read-dominatedattributes likenumCPUsrarely change in value, whilewrite-dominatedat-
tributes likenumProcesseschange quite often. An approach tuned for read-dominated attributes will suffer
from high bandwidth consumption when applied for write-dominated attributes. Conversely, an approach
tuned for write-dominated attributes may suffer from unnecessary query latency or imprecision for read-
dominated attributes. Therefore, an SDIMS should provide a flexible mechanism that can efficiently handle
different types of attributes, and leave the policy decision of tuning read and write propagation to the applica-
tion installing an attribute.

Autonomy and Isolation In a large computing platform, it is natural to arrange nodes in an organizational
or an administrative hierarchy (e.g., Figure 1). An SDIMS should support administrative autonomy so that, for
example, a system administrator can control what information flows out of her machines and what queries may
be installed on them. And, an SDIMS should provide isolation in which queries about a domain’s information
can be satisfied within the domain so that the system can operate during disconnections and so that an external
observer cannot monitor or affect intra-domain queries.
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Figure 1: Administrative hierarchy

Robustness The system must be robust to node failures and disconnections. An SDIMS should adapt to
reconfigurations in a timely fashion and should also provide mechanisms so that applications can exploit the
tradeoff between the cost of adaptation versus the consistency level in the aggregated results and the response
latency when reconfigurations occur.

1.2 Our Approach

We draw inspiration from two previous works:Astrolabe[34] andDistributed Hash Tables (DHTs).
Astrolabe [34] is a robust information management system. Astrolabe provides the abstraction of a sin-

gle logical aggregation tree that mirrors a system’s administrative hierarchy for autonomy and isolation. It
provides a general interface for installing new aggregation functions and provides eventual consistency on its
data. Astrolabe is highly robust due to its use of an unstructured gossip protocol for disseminating informa-
tion and its strategy of replicating all aggregated attribute values for a subtree to all nodes in the subtree. This
combination allows any communication pattern to yield eventual consistency and allows any node to answer
any query using local information. This high degree of replication, however, may limit the system’s ability
to accommodate large numbers of attributes. Also, although the approach works well for read-dominated
attributes, an update at one node can eventually affect the state at all nodes, which may limit the system’s
flexibility to support write-dominated attributes.

Recent research in peer-to-peer structured networks resulted in Distributed Hash Tables (DHTs) [1, 16,
17, 21, 23, 26, 27, 29, 32, 33, 36, 40, 47]—a data structure that scales with the number of nodes and that
distributes the read-write load for different queries among the participating nodes. It is interesting to note that
although these systems export a global hash table abstraction, many of them internally make use of what can
be viewed as a scalable system of aggregation trees to, for example, route a request for a given key to the
right DHT node. Indeed, rather than export a general DHT interface, Plaxton et al.’s [32] original application
makes use of hierarchical aggregation to allow nodes to locate nearby copies of objects. It seems appealing to
develop an SDIMS abstraction that exposes this internal functionality in a general way so that scalable trees
for aggregation can be considered a basic system building block alongside the distributed hash tables.

At first glance, it might appear obvious that simply combining DHTs with Astrolabe’s aggregation abstrac-
tion will result in an SDIMS. However, for such combination to meet the requirements of an SDIMS discussed
above, we need to address following new challenges.

Flexibility Both Astrolabe and DHT based systems provide only a single aggregate computation and prop-
agation policy – Astrolabe distributes aggregates to all nodes and DHT based systems typically aggregate till
root of the aggregation tree. Choosing either one of the strategies will make a combined approach unable
to provide flexibility to the applications. Our agenda is to provide a clean framework for flexible computa-
tion and propagation that provides several mechanisms and let applications choose a policy based on their
requirements. Our current system provides three flexible API:install, updateandprobethat lets applications

2



trade off update cost, read latency, bandwidth, replication, and staleness. As part of future work, we plan to
augment our system to dynamically self-tune the computation and propagation strategy for an attribute based
on the read and writes observed in the system for that attribute.

Scalability Instead of using Astrolabe’s single aggregation tree conforming with administrative hierarchy
and unstructured gossiping for propagation of aggregate values, leveraging DHTs to build multiple aggrega-
tion trees and propagating along those trees might improve scalability of the combined approach with respect
to the attributes as the computation load is spread across multiple nodes. But the combined approach will still
suffer from scalability issues because (i) the Astrolabe’s aggregation abstraction does not distinguish between
sparse attributes, attributes that are of interest to only few nodes, anddense attributes, attributes that are of
interest to all nodes; and propagates all aggregates to all nodes, (ii) the Astrolabe’s aggregation abstraction
associates an aggregation function with an attribute name thus for set of attributes that need to be aggregated
in same way, either a separate aggregation function for each attribute has to be maintained or a single com-
posite attribute representing the set of all attributes has to maintained; while the former approach is inefficient
in terms of communication and memory resources, the later effects scalability as the multiple DHT trees can
not be efficiently utilized, and (iii) aggregating attributes along different aggregation trees makes it difficult
to satisfy composite queries involving multiple attributes. In our current work, the flexible API addresses
the first issue while our new aggregation abstraction, through defining an attribute by a tuple〈attribute type,
attribute name〉 and associating an aggregation function with a particular attribute type, addresses the second
issue. We plan to tackle the composite queries as part of the future work.

Autonomy and Isolation While DHTs offer solution for scalability with the nodes and attributes, they do
not guarantee that the administrative autonomy is preserved in the aggregation trees. In our current system, we
augment an existing DHT algorithm, Pastry [36], in order to achieveadministrative autonomyandisolation.
As part of the future work, we plan to show that similar simple modifications to other DHT algorithms will
guarantee these properties.

Robustness The unstructured gossiping in the Astrolabe allows it to handle various types of failures; but,
applying the same strategy in a combined approach will affect the scalability and the flexibility. While DHT
based applications are shown to be robust, almost all of them depend on the ability to reach the root and does
not depend on the structure of the DHT. By exposing the structure of a DHT routing overlay, our system is
more prone to reconfigurations than those other previous applications. In our current system, We handle node
and network reconfigurations by (a) providing temporal replication through lazy reaggregation that guarantees
eventual consistency and (b) ensuring that our flexible API allows demanding applications gain additional
robustness by either using tunable spatial replication of data aggregates and/or performing fast on-demand
reaggregation to augment the underlying lazy reaggregation. While this solution is sufficient in scenarios
where all failures are permanent, it performs poorly in situations with frequent temporary failures. We propose
two approaches that we plan to further investigate and adopt in our system as part of this dissertation – K-way
hashing and Supernodes [25] that provide fault-tolerance to combat temporary failures.

1.3 Results

We have built a prototype of an SDIMS. Through simulations and micro-benchmark experiments on a number
of department machines and Planet-Lab [31] nodes, we observe that the prototype achieves scalability with
respect to the number of nodes and the number of attributes through use of its flexible API, inflicts an order of
magnitude less maximum node stress when compared to unstructured gossiping schemes, achieves autonomy
and isolation properties at the cost of modestly increased read latency compared to flat DHTs, and gracefully
handles node failures.
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1.4 Proposal Outline

In Section 2, we explain the hierarchical aggregation abstraction that an SDIMS provides to applications. In
Sections 3, 4, and 5, we describe the design of our system in achieving the flexibility and scalability while
conforming to administrative autonomy and isolation requirements of an SDIMS. In Section 6, we detail
the data structures and the behavior of a node in our system. Section 7 addresses the issue of adaptation
to the topological reconfigurations. In Section 8, we present the evaluation of our system through large-
scale simulations and microbenchmarks on real networks. Section 9 details the related work. In Section 10,
we lay out the future research directions and the time line of the dissertation. Section 11 summarizes our
contributions.

2 Aggregation Abstraction

Aggregation is a natural abstraction for a large-scale distributed information system because aggregation
provides scalability by allowing a node to view detailed information about the state near it and progressively
coarser-grained summaries about progressively larger subsets of a system’s data [34].

Our aggregation abstraction is defined across a tree spanning all nodes in the system. Each physical node
in the system is a leaf and each subtree represents a logical group of nodes. Note that logical groups can
correspond to administrative domains (e.g., department or university) or groups of nodes within a domain
(e.g., 10 workstations on a LAN in the CS department). An internal non-leaf node of the aggregation tree is
simulated by one or more physical nodes that belong to the subtree for which the non-leaf node is the root.
We describe how to form such trees in a later section.

Each physical node haslocal data stored as a set of(attributeType,attributeName,value) tuples such
as (configuration, numCPUs, 16), (mcast membership, session foo, yes), or (file stored, foo, myIPaddress).
The system associates anaggregation functionftype with each attribute type, and for each level-i subtreeTi

in the system, the system defines anaggregate valueVi,type,name for each (attributeType, attributeName) pair
as follows. For a (physical) leaf nodeT0 at level0, V0,type,name is the locally stored value for the attribute
type and name or NULL if no matching tuple exists. Then the aggregate value for a level-i subtreeTi is the
aggregation function for the type computed across the aggregate values of each ofTi ’s k children:Vi,type,name=
ftype(V0

i−1,type,name,V
1
i−1,type,name, . . . ,V

k−1
i−1,type,name).

Although our system allows arbitrary aggregation functions, it is often desirable that aggregation functions
satisfy thehierarchical computationproperty [24]: f (v1, ...,vn)= f ( f (v1, ...,vs1), f (vs1+1, ...,vs2), ..., f (vsk+1, ...,vn)),
wherevi is the value of an attribute at nodei. For example, the average operation, defined asavg(v1, ...,vn) =
1/n.∑n

i=0vi , does not satisfy the property. Instead, if an attribute type stores values as tuples(sum,count)
and defines the aggregation function asavg(v1, ...,vn) = (∑n

i=0vi .sum,∑n
i=0vi .count), the attribute satisfies

the hierarchical computation property. Note that the applications then have to compute the average from the
aggregate sum and count values.

Though heavily inspired by the aggregation abstraction of Astrolabe [34], our abstraction differs in speci-
fying both an attribute type and attribute name and associating an aggregation function with a type rather than
just specifying an attribute name and associating a function with a name. Installing a single function that can
operate on many different named attributes matching a specific type enables our system to handle applications
that install a large number of attributes with same aggregation function. For example, to construct a file loca-
tion service, our interface allows us to install a single function that compute an aggregate value for any named
file (e.g., the aggregate value for the (function, name) pair for a subtree would be the ID of one node in the
subtree that stores the named file). Conversely, Astrolabe copes with sparse attributes by having aggregation
functions compute sets or lists and suggests that scalability can be improved by representing such sets with
Bloom filters [3]. Exposing sparse names within a type provides at least two advantages. First, when the value
associated with a name is updated, only the state associated with that name need be updated and (potentially)
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propagated to other nodes. Second, for the multiple-tree system we describe in Section 4, splitting values
associated with different names into different aggregation values allows our system to map different names
to different trees and thereby spread the function’s logical root node’s load and state across multiple physical
nodes.

Finally, note that for a large-scale system, it is difficult or impossible to insist that the aggregation value
returned by a probe corresponds to the function computed over the current values at the leaves at the instant of
the probe. Therefore our system provides only weak conistency guarantees – specifically eventual consistency
as defined in [34].

3 Flexible Computation and Propagation

A major innovation of our work is enabling flexible computation and propagation. The definition of the ag-
gregation abstraction allows considerable flexibility in how, when, and where aggregate values are computed.
While previous systems like Astrolabe [34], Ganglia [13], and DHT based systems [33, 36, 40, 47] choose to
implement a single static strategy, we make a requirement that an SDIMS should provideflexible computation
and propagationto be able to efficiently support wide variety of applications with diverse requirements. We
show that providing such flexibility is feasible by presenting three simple yet powerful API – install, update,
and probe – that expose flexible computation and propagation to the applications.

3.1 Motivation

The definition of the aggregation abstraction allows a continuous spectrum of computation and propagation
strategies ranging from lazy aggregate computation and propagation on reads to an aggressive immediate
computation and propagation on writes. In Figure 2, we illustrate both these extreme strategies and an inter-
mediate strategy. Under the lazyUpdate-Localcomputation and propagation strategy, an update (aka write)
only affects local state. Then, a probe (aka read) that reads a level-i aggregate value is sent up the tree to the
issuing node’s level-i ancestor and then down the tree to the leaves. The system then computes the desired
aggregate value at each layer up the tree until the level-i ancestor that holds the desired value. Finally, the
level-i ancestor sends the result down the tree to the issuing node. In the other extreme case of the aggressive
Update-Allimmediate computation and propagation on reads [34], when an update occurs, changes are aggre-
gated up the tree, and each new aggregate value is broadcast to all of a node’s descendants. In this case, each
level-i node not only maintains the aggregate values for the level-i subtree but also receives and locally stores
copies of all of its ancestors’ level-j ( j > i) aggregation values. Also, a leaf satisfies a probe for a level-i ag-
gregate using purely local data. In an intermediateUpdate-Upstrategy, the root of each subtree maintains the
subtree’s current aggregate value, and when an update occurs, the leaf node updates its local state and passes
the update to its parent, and then each successive enclosing subtree updates its aggregate value and passes the
new value to its parent. This strategy satisfies a leaf’s probe for a level-i aggregate value by sending the probe
up to the level-i ancestor of the leaf and then sending the aggregate value down to the leaf. Finally, notice
that other strategies also exist. In general, an Update-Upk-Downj strategy aggregates up to thek th level and
propagates the aggregate values of a node at levell (s.t. l ≤ k) downwards forj levels.

While such large design space exist for the aggregation computation, previous systems like Astrolabe [34],
Ganglia [13] and DHT based systems [33, 36, 40, 47] chose to implement a single static propagation mech-
anism. For example, Astrolabe implements an Update-All strategy for robustness while most DHT based
systems chose Update-Up for lower communication costs while maintaining a reasonable read latency.

Why should an SDIMS provide flexibility? An SDIMS must provide a wide range of flexible computation
and propagation strategies to applications for it to be a general abstraction. An application should be able to
choose a particular mechanism based on its read-to-write ratio that reduces the bandwidth consumption while
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Update Strategy On Update On Probe for Global Aggregate Value On Probe for Level-1 Aggregate Value

Update-Local

Update-Up

Update-All

Figure 2: Flexible API

Figure 3: Spatial heterogeneity - On update, send the aggregated value to only interested nodes

attaining the required responsiveness and precision. Note that the read-to-write ratio of the attributes that
applications install vary extensively. For example, aread-dominatedattribute likenumCPUsrarely change in
value, while awrite-dominatedattribute likenumProcesseschanges quite often. An aggregation strategy like
Update-All works well forread-dominatedattributes but suffers high bandwidth consumption when applied
for write-dominatedattributes. Conversely, an approach like Update-Local works well forwrite-dominated
attributes but suffers from unnecessary query latency or imprecision forread-dominatedattributes.

Also note that the abstraction allows the flexible computation and propagation to happen non-uniformly
across the aggregation tree – different up and down levels in different subtrees – so that the applications can
efficiently adapt with the spatial and temporal heterogeneity of the read and write operations. With respect
to spatial heterogeneity, access patterns may differ for different parts of the tree; hence, the need for different
propagation strategies for different parts of the tree depending on the workload (e.g., refer to Figure 3).
Similarly with respect to temporal heterogeneity, access patterns may change over time and hence the need
for different computation and propagation patterns over time.

3.2 Our Research Agenda

Our research agenda is to build a clean framework for flexible computation that provides several mechanisms
with different performance guarantees and enable applications to choose a policy based on their requirements.
In the following section, we describe the API through which we expose the flexibility to the applications.

3.2.1 Completed Work: Aggregation API

We provide the flexibility described above by splitting the aggregation API into three functions:Install()
installs an aggregation function that defines an operation on an attribute type and specifies the update strategy
that the function will use,Update() inserts or modifies a node’s local value for an attribute, andProbe()
obtains an aggregate value for a specified subtree. Install interface allows applications to specify thek andj
parameters of Update-Upk-Downj strategy along with the aggregation function. Update interface invokes the
aggregation of an attribute on the tree according to corresponding aggregation function’s aggregation strategy.
Probe interface not only allows the applications to obtain the aggregated value for a specified tree but also
allows probing node tocontinuouslyfetch the values for a specified time; thus enabling the applications to
adapt to spatial and temporal heterogeneity. The rest of the section describes these three interfaces in detail.
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parameter description optional

attrType Attribute Type
aggrfunc Aggregation Function
attrName Attribute Name X
domain Domain restriction (default: none) X
up How far upwards each update is

sent (default: all)
X

down How far downwards each aggre-
gate is sent (default: none)

X

expTime Expiry Time

Table 1: Arguments for the install operation

parameter description optional

attrType Attribute Type
attrName Attribute Name
val Value

Table 2: Arguments for the update operation

Install

The Install operation installs an aggregation function in the system. The arguments for this operation are
listed in Table 1. TheattrTypeargument denotes the type of attributes on which this aggregation function
is invoked. The optionalattrNameargument denotes that the aggregation function be applied only to the
particular attribute with nameattrName. An aggregation function installed with a specificattrNametakes
precedence over the aggregation function with matchingattrTypeand with noattrNamespecified for updates
whose name and type both match. Installed functions are soft state that must be periodically renewed or they
will be garbage collected atexpTime. Finally note that each domain specifies a security policy that restricts
the types of functions that can be installed by different entities based on the attributes they access and their
scope in time and space [34].

The optionaldomainargument, if present, indicates that the aggregation function should be installed on all
nodes belonging to the specified domain; if this argument is absent, then the function is to be installed on all
nodes in the system. This argument allows our system to provide the important administrative autonomy and
isolation properties; we will discuss more about this issue in Section 5.

The argumentsup anddownspecify the aggregate value computation and propagation strategyUpdate-
Upk-Downj , wherek = upandj = down. When an update occurs at a leaf, the system updates any changed
aggregate values for the level-0 (leaf) through level-up subtrees enclosing the updated leaf. After the root of
a level-i subtree (0 < i ≤ up) computes a new aggregate value, the system propagates and stores this value to
the subtree’s level-i to level-i−downroots. At the API level, these arguments can be regarded as hints, since
they suggest a computation strategy but do not affect the semantics of an aggregation function. In principle, it
would be possible, for example, for a system to dynamically adjust its up/down strategies for a function based
on measured read/write frequency. However, our implementation always simply follows these directives.

Update

The update operation creates a new (attributeType, attributeName, value) tuple or updates the value of an
old tuple at a leaf node. The arguments for the update operation are shown in Table 2.

The update interface meshes with installed aggregate computation and propagation strategy to provide
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parameter description optional

attrType Attribute Type
attrName Attribute Name
origNode Originating Node
serNum Serial Number
mode Continuous or One-shot (default:

one-shot)
X

level Level at which aggregate is sought
(default: at all levels)

X

up How far up to go and re-fetch the
value (default: none)

X

down How far down to go and re-
aggregate (default: none)

X

expTime Expiry Time

Table 3: Arguments for the probe operation

flexibility. In particular, as outlined above and described in detail in Section 6, after a leaf applies an update
locally, the update may trigger re-computation of aggregate values up the tree and may also trigger propagation
of changed aggregate values down the tree. Notice that our abstraction allows an application to associate an
aggregation function with only anattrTypebut allows updates to specify anattrNamealong with theattrType.
This technique helps us in leveraging DHTs for achieving scalability with respect to nodes and attributes. We
elucidate this aspect in Section 4.

Probe

Whereas update propagates the aggregates in the system implementing the install time specified global
Update-Upk-Downj strategy, a probe operation collects the aggregated values at the application-queried levels
either continuously for a specified time or just once; and thus provides capability to adapt for spatial and
temporal heterogeneity. The complete argument set for the probe operation is shown in Table 3. Along with
theattrNameand theattrTypearguments, alevelargument specifies the level at which the answers are required
for an attribute.

The probes withmodeset tocontinuousand with finiteexpTimeenable applications to handle spatial and
temporal heterogeneity. In the continuous mode for a probe at levell by a nodeA, on any change in the
value at any leaf nodeB of the subtree rooted at levell ancestor of the nodeA, aggregation is performed at
all ancestors ofB till level l and the aggregated value is propagated down at least to the nodeA irrespective
of the install time specifiedup anddownparameters. Thus the probes in continuous mode from different
nodes for aggregate values at different levels handles spatial heterogeneity. For example, in Figure 3, the
attribute is configured asUpdate-Upand the interested nodes perform acontinuous modeprobe with a large
expTimethus receiving any updates of the aggregated value at the root node. By setting appropriateexpTime,
the applications extend the same technique to handle temporal heterogeneity.

Theup anddownarguments enable applications to perform on-demand fast re-aggregation during recon-
figurations. Whenup anddownarguments are specified in a probe, a forced re-aggregation is done for the
corresponding levels even if the aggregated value is available. When used, theup anddownarguments are
interpreted as described inInstall API. In Section 7, we explain how applications can exploit these arguments
during reconfigurations.
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3.2.2 Future Work

Self-tuning adaptation Instead of requiring applications to keep track of the exact read-to-write ratios,
which we expect to be dynamic, an SDIMS system should adapt to changing read-to-write ratios by dy-
namically adapting the computation and propagation modes to conserve computation and communication
resources. If applications indeed specify a computation and propagation strategy (for example, to reduce
response latency), then an SDIMS should adapt to only those strategies that subsume application specified
strategy.

Caching and Consistency While caching is employed effectively in DHT file location applications, further
research is needed to apply this concept in our general framework. Caching raises the issue of consistency
and both of these topics need to be handled together.

Probe Functions Our current probe API allows applications to specify only levels for fetching aggregated
values. While this interface is functionally enough, a more powerful interface would allow the applications to
specifyprobe functionsinstead of level numbers. The probe functions will be predicates defined on aggregated
values that are evaluated dynamically on aggregated values at a level to decide if the required answer is found.

4 Scalability

Our system accommodates a large numbers of participating nodes, and it allows applications to install and
monitor large numbers of data attributes. Our design achieves such scalability through (1) leveraging Dis-
tributed Hash Tables (DHT) to construct multiple aggregation trees for aggregating different attributes, (2)
exploiting the fact that not all nodes are interested in all attributes and by providing flexible API that enables
applications to control the propagation of attributes, (3) specifying attribute type and name and associating an
aggregation function with type instead of just specifying attribute name and associating a function with name,
and (4) augmenting existing DHTs to conform to the required administrative properties.

4.1 Motivation and Challenges

One of the key requirements of an SDIMS system is that it should be able to scale with both the number of
nodes and the number of attributes. Enterprise and global scale systems today might have tens of thousands to
millions of nodes and these numbers will increase as desktop machines give way to larger numbers of smaller
devices. Similarly, we hope to support many applications and each application may track several attributes
(e.g., the load and free memory of a system’s machines) or millions of attributes (e.g., which files are stored
on which machines).

A natural way to build an aggregation tree is based on the fully qualified domain names(FQDN) of the
machines [34]. Figure 1 depicts such an hierarchy. Such hierarchy construction scheme suffers from inherent
skew present in the domain name allocation at various levels of the DNS system; machines simulating non-
leaf nodes with large number of children incur high communication costs. For example, we plot the name
distribution within theutexas.edu domain in Figure 4. Even though a well balanced aggregation tree might
scale with the number of nodes, a single tree might not scale with the number of attributes as the machines
simulating the root has to perform a large number of aggregations linear with the number of attributes.

4.2 Our approach

Our design achieves scalability with respect to both nodes and attributes through four key ideas.
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First, while previous distributed information management systems like Astrolabe [34] and Ganglia [13]
choose to aggregate on a single aggregation hierarchy achieving scalability with nodes, we leverage Dis-
tributed Hash Tables to construct multiple aggregation trees for aggregating different attributes on different
trees to achieve scalability with both nodes and attributes. A single tree is unscalable with attributes as the
number of aggregations that the root has to perform grows linearly with the number of attributes. By aggregat-
ing different attributes along different trees, the load of aggregation is split across multiple nodes and hence
the scalability.

Second, our system exploits the fact that not all nodes are interested in all attributes and provides flexible
API that allows applications to control propagation of aggregation values to only those few nodes (possibly
using some few other nodes). Typically, the attribute set will consist of a small percentage ofdense attributes
that are of interest to all nodes at all times and a large percentage ofsparse attributesin which a small number
of nodes are interested at any time. For example, a file location application with one attribute per file name
will create a large number of sparse attributes. The attributes corresponding to system monitoring parameters
like cpuLoad, memoryAvailable, etc.,that are periodically updated by all nodes in the system are examples
of dense attributes. While Astrolabe, with single staticUpdate-Allstrategy, propagates the aggregate values
for all attributes to all nodes, our flexible API allows applications to control the propagation of updates to
only few nodes by setting appropriate propagation strategy and hence achieves scalability with the number of
attributes.

Third, in contrast to previous systems [13, 34], we define a new aggregation abstraction that specifies
both an attribute type and attribute name and associates an aggregation function with a type rather than just
specifying an attribute name and associating a function with a name. Installing a single function that can
operate on many different named attributes matching a specific type enables our system to efficiently handle
applications that install a large number of attributes with same aggregation function. For example, to construct
a file location service, our interface allows us to install a single function that computes an aggregate value
for any named file (e.g., the aggregate value for the (function, name) pair for a subtree would be the ID
of one node in the subtree that stores the named file). Conversely, Astrolabe copes with such attributes
by congregating them into a single set and having aggregation functions compute on such sets; and also
suggests that scalability can be improved by representing such sets with Bloom filters [3]. Exposing names
within a type provides at least two advantages. First, when the value associated with a name is updated,
only the state associated with that name need be updated and (potentially) propagated to other nodes. Second,
splitting values associated with different names into different aggregation values allows our system to leverage
Distributed Hash Tables(DHT) to map different names to different trees.

Fourth, our system employs simple modifications to DHTs to ensure the required autonomy and isolation
properties. while DHTs offer solution for scalability with the nodes and attributes, they do not guarantee that
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the administrative autonomy is preserved in the aggregation trees. We will elucidate this aspect in Section 5.
In the following section, we describe how DHTs are used to build multiple aggregation trees.

4.3 Completed Work: Building Aggregation Trees

We exploit the Distributed Hash Tables (DHT) to form multiple aggregation trees. Existing DHTs can be
viewed as a mesh of several trees. DHT systems assign an identity to each node (anodeId) that is drawn
randomly from a large space. Keys are also drawn from the same space and each key is assigned to a live
node in the system. Each node maintains a routing table with nodeIds and IP addresses of some other nodes.
The DHT protocols use these routing tables to route the packets for a keyk towards the node responsible for
that key. Suppose the node responsible for a keyk is rootk. The paths from all nodes for a key k form a tree
rooted at the noderootk — sayDHTtreek.

It is straightforward to make use of this internal structure for aggregation [32]. By aggregating an attribute
along the treeDHTtreek for k =hash(attribute type, attribute name), different attributes will be aggregated
along different trees. In comparison to a scheme where all attributes are aggregated along a single tree,
the DHT based aggregation along multiple trees incurs lower maximum node stress: whereas in a single
aggregation tree approach, the root and the intermediate nodes pass around more messages than the leaf
nodes, in a DHT-based multi-tree, each node acts as intermediate aggregation point for some attributes and as
leaf node for other attributes. Hence, this approach distributes the onus of aggregation across all nodes.

Example The pointers maintained at nodes in a 8-node DHT with 3-bit address space are tabulated in
Table 4. The DHT trees for key IDs 111 and 000 are shown in Figures 5 and 6 respectively along with the
corresponding aggregation tree they represent. The figures also illustrate which physical nodes simulate the
virtual nodes in the aggregation trees. Note how different sets of nodes simulate the virtual nodes in different
trees.

Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 101), (01X, 011), (000, 000)
010 (1XX, 110), (00X, 000), (011, 011)
011 (1XX, 111), (00X, 001), (010, 010)
100 (0XX, 000), (11X, 110), (101, 101)
101 (0XX, 001), (11X, 111), (100, 100)
110 (0XX, 010), (10X, 100), (111, 111)
111 (0XX, 011), (10X, 101), (110, 110)

Table 4: Example pointer table for a DHT comprising of 8 nodes and addresses drawn from a 3-bit ID space

011 111 001 101 000 100 110010

001 010100

000

011 101

111

110

Figure 5: The DHT tree corresponding to ID 111 (DHTtree111) and the corresponding aggregation tree.
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000

100 010 001

110 011 101

111
100 011000 111110 001010 101

Figure 6: The DHT tree corresponding to ID 000 (DHTtree000) and the corresponding aggregation tree.

4.3.1 Scalability with Attributes

In case of sparse attributes, DHTs provide scalability as each node in the system just needs to know about
and perform aggregation on only few attributes. Here, we estimate the average number of attributes for which
a node has to perform aggregations. In our DHT based aggregation tree building approach, each node is
assigned to act as the root for am/N fraction of attributes wherem is the number of attributes in the system of
N nodes. But each node acts as intermediate point of aggregation for many other attributes. Here we estimate
the fraction of attributes a node has to work on in our design assuming that the correction is done bit-by-bit
in DHT routing. Let the density factor of the attributes bed (0 <= d <= 1) – each node is interested in a
fractiond of all the attributes in the system. In a well formed DHT, a node will haveO(log2(N)) in-degree –
a small constant (about 1) number of children for each prefix. For a node A, letci be the number of nodes that
route to this node A for thei length prefix of A – the nodes in the subtree rooted at the leveli of A. A level i
child of the node A sends attributes which matches A’s ID in startingi bits. The average fraction of attributes
that children at leveli sends to node A are dependent on the number of nodes in the subtree rooted at leveli
and is1−(1−d)ci

2i . Hence, the average fraction of all attributesf that node A has to perform aggregation on is
given by following equation:

f =

[
1−

i=#bits

∏
i=0

(
1− 1− (1−d)ci

2i

)]
(1)

For small values ofd, (1−d)ci can be approximated to1− (ci ∗d)). Hence the fractionf simplifies to

f =

[
1−

i=#bits

∏
i=0

(
1− cid

2i

)]
(2)

Further approximating the value ofci to 2i and the number of bits toO(log2(N)), the equation reduces to

f =

[
1−

i=#bits

∏
i=0

(d)

]
= O(d log2(N)) (3)

We plot the Equation 1 for a million node network (#bits = 20) and with approximation ofci = 2i in Figure 7
along with the approximationO(d log2(N)).

4.4 Future Work: Handling Composite Queries

While aggregating different attributes along different trees provides scalability with respect to attributes, solv-
ing composite queries involving two or more attributes becomes hard. For example a probe likefind a nearest
machine with load less than 20 percent and has more than 2 GB of memory. If query compositions are known
in advance, then attributes can be grouped and can be aggregated along one tree. For example, load and mem-
ory of machines can be aggregated along one tree if queries as in the above example are very common. But by
grouping extensively, we lose the property of load balancing. This tradeoff presents a fundamental limitation
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Figure 7: Fraction of attributes dealt by a node in a million node network

of distributing attributes across trees. Ongoing efforts by other researchers to provide the relational database
abstraction on DHTs – PIER [19] and Gribble et al. [14] – will ease solving such composite queries.

Handling ad-hoc composite queries, whose compositions are unknown in advance, is more complicated.
Here we propose solutions for handling the queries with OR and AND operations: (1)a OR b: Walk along
trees corresponding to both attributesa andb. (2) a AND b: Guess the smaller of the trees corresponding
to a andb, and compute the predicate along the tree. Two approaches can be used to determine the size of
the trees: (a) Along with the computation of the aggregation function for an attribute, maintain a count of the
number of contributing nodes or (b) Use statistical sampling techniques – randomly choose a small percentage
of nodes and evaluate the attributes. For handling general logical expressions, convert the logical expressions
to their Disjunctive Normal Forms (DNF) and use above AND operation for each conjunctive term. We are
currently further investigating these different strategies.

5 Administrative Autonomy

While DHTs offer solution for scalability with the nodes and attributes, they do not guarantee that the ad-
ministrative autonomy is preserved in the aggregation trees. We present two properties – Path Locality and
Path Convergence – that a DHT routing should satisfy to guarantee the conformation to administrative au-
tonomy requirement. We also present simple modifications to a DHT algorithm, Pastry, that guarantee these
properties.

5.1 Motivation and Challenges

Having aggregation trees that conform with the administrative hierarchy helps an SDIMS provide important
autonomy, security, and isolation properties [34]. Security and autonomy are important in that a system
administrator must be able to control what information flows out of her machines and what queries may be
installed on them. The isolation property ensures that a malicious node in one domain cannot observe or affect
system behavior in another domain for computations relating only to the second domain.

To conform to administrative autonomy requirement, a DHT should satisfy two properties:

1. Path Locality : Search paths should always be contained in the smallest possible domain.

2. Path Convergence : Search paths for a key from two different nodes in a domain should converge at a
node in the same domain.
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Figure 8: Example shows how isolation property is violated with original Pastry. We also show the corre-
sponding aggregation tree.

Existing DHTs either already support path locality [17] or can support easily by setting the domain nearness
as the distance metric [5, 15]. But they do notguaranteepath convergence as those systems try to optimize
the search path to the root to reduce response latency.

In the rest of this section we explain how an existing DHT, Pastry [36], does not satisfy path convergence.

5.1.1 Pastry

In Pastry [36], each node maintains a leaf set and a routing table. The leaf set contains theL immediate
clockwise and counter-clockwise neighboring nodes in a circular nodeId space (ring). The routing table
supportsprefixrouting: each node’s routing table contains one row per hexadecimal digit in the nodeId space
and theith row contains a list of nodes whose nodeIds differ from the current node’s nodeId in theith digit
with one entry for each possible digit value. Notice that for a given row and entry (viz. digit and value) a
noden can choose the entry from many different alternative destination nodes, especially for smalli where
a destination node needs to matchn’s ID in only a few digits to be a candidate for inclusion inn’s routing
table. A system can choose any policy for selecting among the alternative nodes. A common policy is to
choose a nearby node according to aproximity metric[32] to minimize the network distance for routing a
key. Under this policy, the nodes in a routing table sharing a short prefix will tend to be nearby since there
are many such nodes spread roughly evenly throughout the system due to random nodeId assignment. Pastry
is self-organizing—nodes come and go at will. To maintain Pastry’s locality properties, a new node must join
with one that is nearby according to the proximity metric. Pastry provides a seed discovery protocol that finds
such a node given an arbitrary starting point.

Given a routing topology, to route to an arbitrary destination key, a node in Pastry forwards a packet to the
node with a nodeId prefix matching the key in at least one more digit than the current node. If such a node
is not known, the node forwards the packet to a node with an identical prefix but that is numerically closer to
the destination key in the nodeId space. This process continues until the destination node appears in the leaf
set, after which it is delivered directly. The expected number of routing steps islogN, where N is the number
of nodes.

Unfortunately, as illustrated in Figure 8, when Pastry uses network proximity as the locality metric, it does
not satisfy the desired SDIMS properties because (i) if two nodes with nodeIds match a key in same number
of bits, both of them can route to a third node outside the domain when routing for that key and (ii) if the
network proximity does not match the domain proximity then there is little chance that a tree will satisfy the
properties. The second problem can be addressed by simply changing the proximity metric to declare that any
two nodes that match ini levels of a hierarchical domain are always considered closer than two nodes that
match in fewer thani levels. However, this solution does not eliminate the first problem.
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Figure 9: Autonomous DHT satisfying the isolation property. Also the corresponding aggregation tree is
shown.

5.2 Our Approach

we describe a simple modification to Pastry that supports convergence by introducing a few additional routing
links and a two level locality model that incorporates both administrative membership of nodes and network
distances between nodes. We choose Pastry for convenience—the availability of a public domain implemen-
tation. We believe that similar simple modifications could be applied to many existing DHT implementations
to support path convergence.

5.2.1 Completed Work: Autonomous DHT

To provide autonomy properties to an aggregating autonomous DHT (ADHT), the system’s route table con-
struction algorithm must provide a single exit point in each domain for a key and its routing protocol should
route keys along intra-domain paths before routing them along inter-domain paths. Simple modifications to
Pastry’s route table construction and key-routing protocols achieve these goals. In Figure 9, our algorithm
routes towards the node with nodeId101XX for key 111XX. In Section 6, we explain more about the extra
virtual node that is created at node with id111XX to aggregate at level L2 in this special case.

In the ADHT, each node maintains a separate leaf set for each domain it is part of, unlike Pastry that
maintains a single leaf set for all the domains. Maintaining a different leafset for each level increases the
number of neighbors that each node tracks to(2b) ∗ lgbn+ c.l from (2b) ∗ lgbn+ c in unmodified Pastry,
whereb is the number of bits in a digit,n is the number of nodes,c is the leafset size, andl is the number of
domain levels.

Each node in the ADHT has a routing table. The algorithm for populating the routing table is similar to
Pastry with the following difference: it uses hierarchical domain proximity as the primary proximity metric
(two nodes that match ini levels of a hierarchical domain are more proximate than two nodes that match in
fewer thani levels of a domain) and network distance as the secondary proximity metric (if two pairs of nodes
match in the same number of domain levels, then the pair whose separation by network distance is smaller is
considered more proximate).

Similar to Pastry’s join algorithm [36], a node wishing to join ADHT routes a join request with target key
set to itsnodeId. In Pastry, the nodes in the intermediate path respond to the node’s request with the pertinent
routing table information and the current root node sends its leafset. In our algorithm, to enable the joining
node fill its leafsets at all levels, the following two modifications are done to Pastry’s join protocol: (1) a
joining node chooses a bootstrap node that is closest to it with respect to the hierarchical domain proximity
metric and (2) each intermediate node sends its leafsets for all domain levels in which it is the root node.
These simple modifications ensure that the joining node’s leafsets and route table are properly filled.

The routing algorithm we use in routing for a key at node withnodeIdis shown in the Algorithm 1. By
routing at the lowest possible domain till the root of that domain is reached, we ensure that the routing paths
conform to the Path Convergence property.

The routing algorithm guarantees that as long as the leafset membership is correct, we meet path conver-
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Algorithm 1 ADHTroute(key)
1: flipNeigh← checkRoutingTable(key) ;
2: l ← numDomainLevels - 1 ;
3: while (l >= 0) do
4: if (commLevels(flipNeigh, nodeId)== l ) then
5: send the key to flipNeigh ; return ;
6: else
7: leafNeigh← an entry in leafset[l ] closer to key than nodeId ;
8: if (leafNeigh! = null) then
9: send the key to leafNeigh ; return ;

10: end if
11: end if
12: l ← l −1;
13: end while
14: this node is the root for this key

API

API

update
install
probe

Applications

Aggregation Management Layer (AML)

failedChild
newChild 
newParent

ADHT Layer

Figure 10: Layered SDIMS prototype design and interfaces.

gence property. We use the Pastry leaf set maintenance algorithm for maintaining leafsets at all levels. Being
the crux for the correct operation of Pastry, this leaf set maintenance algorithm repairs the different leafsets
in our algorithm correctly after reconfigurations. Note that the modifications proposed for the Pastry still
preserves the fault-tolerance properties of the original algorithm; rather, they enhance the fault-tolerance of
the algorithm but at the cost of extra maintenance overhead.

6 Prototype Details

This section describes the internal design of our SDIMS prototype. As illustrated in Figure 10, the design
comprises two layers: the Aggregation Management Layer (AML) stores attribute tuples and calculates and
stores aggregate values and the Autonomous DHT (ADHT) layer manages the internal topology of the system.
Given the ADHT topology described in Section 5, each node implements an Aggregation Management Layer
(AML) to support the flexible API described in Section 3. In this section, we describe the internal state and
operation of the AML layer of a node in the system. We defer the discussion on how an SDIMS handles
network and node reconfigurations to Section 7.

We refer to a tuple store of (attribute type, attribute name, value) tuples as a Management Information Base
or MIB, following the terminology from Astrolabe [34] (originally used in the context of SNMP [39]). We
refer to the pair (attribute type, attribute name) as anattribute key.

Each physical node in the system acts as several virtual nodes in the AML(e.g., Figure 11): a node acts as
leaf for all attribute keys, as a level-1 subtree root for keys whose hash matches the node’s ID inb prefix bits
(whereb is the number of bits corrected in each step of the ADHT’s routing scheme), as a level-i subtree root
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Figure 11: Example illustrating the datastructures and the organization of them at a node.

for attribute keys whose hash matches the node’s ID in initiali ∗b bits, and as the system’s global root for
for attribute keys whose hash matches the node’s ID in more prefix bits than any other node (in case of a tie,
the first non-matching bit is ignored and the comparison is continued [47]). A node might be a level-i subtree
root for keys matching the node’s ID in only initial(i−1)∗b bits in some special cases as illustrated by node
101XX in Figure 9.

As Figure 11 illustrates, to support hierarchical aggregation, each logical node corresponding to a level-i
subtree root for some attribute keys maintains several MIBs that store (1)child MIBscontaining raw aggre-
gate values gathered from children, (2) areduction MIBcontaining locally aggregated values across this raw
information, and (3)ancestor MIBscontaining aggregate values scattereddown from ancestors. This basic
strategy of maintaining child, reduction, and ancestor MIBs is based on Astrolabe [34], but our structured
propagation strategy channels information that flows up according to its attribute key and our flexible prop-
agation strategy only sends child updatesup and ancestor aggregate resultsdownas far as specified by the
attribute key’s aggregation function. Note that in the discussion below, for ease of explanation, we assume
that the routing protocol is correcting single bit at a time (b = 1) in contrast to default Pastry scheme where
the routing protocol tries to correct up to four bits in each step (b = 4). Our system, built upon Pastry, does
handle multi-bit correcting and is a simple extension to the scheme described here.

For a given virtual nodeni at level i, eachchild MIB contains the subset of a child’s reduction MIB that
contains tuples that matchni ’s node ID ini bits and whoseupaggregation function attribute is at leasti. These
local copies make it easy for a node to recompute a level-i aggregate value when one child’s inputs changes.
Nodes maintain their child MIBs in stable storage and use a simplified version of the Bayou protocol (sans
conflict detection and resolution) for synchronization after disconnections [30].

Virtual nodeni at level i maintains areduction MIBof tuples with a tuple for each key present in any
child MIB containing the attribute type, attribute name, and output of the attribute type’s aggregate functions
applied to the children’s tuples.

A virtual nodeni at leveli also maintains anancestor MIBto store the tuples containing attribute key and
a list of aggregate values at different levels scattered down from ancestors. Note that the list for a key might
contain multiple aggregate values for a same level but aggregated at different nodes (refer to Figure 9). So,
the aggregate values are tagged not only with the level information, but are also tagged with the information
of the node that performed the aggregation.

Note that level-0 differs slightly from other levels. Each level-0 leaf node maintains alocal MIB rather than
maintaining child MIBs and a reduction MIB. This local MIB stores information about the local node’s state
inserted by local applications viaupdate()calls.
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Along with these MIBs, a virtual node maintains two other tables—an aggregation function table and an
outstanding probes table. An aggregation function table contains the aggregation function and installation
arguments (see Table 1) associated with an attribute type or an attribute type and name. Note that a function
that matches an attribute key in type and name has precedence over a function that matches an attribute key in
type only. Each aggregate function is installed on all nodes in a domain’s subtree, so the aggregate function
table can be thought of as a special case of the ancestor MIB with domain functions always installedup
to a root within a specified domain anddown to all nodes within the domain. Note that the virtual nodes
hosted on a node can share a single aggregation function table; hence, we optimize memory requirements
by maintaining only one single aggregation function table per physical node. The outstanding probes table
maintains temporary information regarding information gathered and outstanding requests for in-progress
probes.

Given these data structures, it is simple to support the three API functions described in Section 3.2.1.

Install The Install operation (see Table 1) installs on a domain an aggregation function that acts on a spec-
ified attribute type. Execution of an install functionaggrFuncon attribute typeattrTypeand (optionally)
attribute nameattrNameproceeds in two phases: first the install request is passed up the ADHT tree with the
key (attrType, attrName)until reaching the root for that key within the specified domain. Then, the request is
flooded down the tree and installed on all intermediate and leaf nodes.

Before installing an aggregation function, a node checks it against its per-domain access control list [34],
and after installing an aggregation function, a node sets a timer to uninstall the function when it expires.

The aggregation function is provided with one argument: a vector of tuples of form〈child,value〉, one
tuple for each child. Thechild field of a tuple contains the child’s name and nodeId; thevaluefield is the
valueof the corresponding child for the attribute key (null if it is not present). The first entry in the vector
corresponds to the aggregated value computed at the one level below the current level at the local node. For
example, in Figure 11, the first entry of the vector at the virtual node corresponding to 10XX would be the
aggregated value computed in the virtual node corresponding to 1XXX. The aggregation function is expected
to return a single aggregatedvalue, which is stored and then propagated according the installed propagation
strategy.

Update The Updateoperation (see Table 2) creates a new (attributeType, attributeName, value) tuple or
updates the value of an old tuple at a leaf. Then, subject to the update propagation policy specified in theup
anddownparameters of the aggregation function associated with the update’s attribute key, the update triggers
a two-phase propagation protocol as Figure 2 illustrates. An update operation invoked at a leaf always updates
the local MIB. Then, if the update changes the local value and if the aggregate function for the attribute key
was installed withup > 0 and if the leaf’s parent for the attribute key is within the domain to which the
installed aggregation function is restricted, the leaf passes the new value up to the appropriate parent based
on the attribute key. Leveli behaves similarly when it receives a changed attribute from leveli−1 below: it
first recomputes the level-i aggregate value for the specified key, stores that value in the level-i reduction table
and then, subject to the function’sup anddomainparameters, passes the updated value to the appropriate
level-i +1 parent based on the attribute key. After a level-i (i ≥ 1) virtual node has updated its reduction MIB,
if the aggregation functiondownargument indicates that the aggregate values be sent down toj ≥ 1 levels,
the node sends the updated value down to all of its children marked as the level-i aggregate for the specified
attribute key. Upon receipt of such a level-i aggregate value message from a parent, a virtual nodenk at level
k stores the value in its ancestor MIB and, ifk≥ i− j, forwards this level-i aggregate value to its children.

Probe A Probeoperation collects and returns the aggregate value for a specified attribute key for a specified
level of the tree. As Figure 2 illustrates, the system satisfies a probe for a level-i aggregate value using a four-
phase protocol that may be short-circuited when updates have previously propagated either results or partial
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Algorithm 2 ffileLocation(childTupleSet)
1: if ∃c∈ childTupleSet s.t.c.value6= NULL then
2: returnc.value
3: else
4: return NULL
5: end if

results up or down the tree. In phase 1, theroute probe phase, the system routes the probe up the attribute
key’s tree to either the root of the level-i subtree or to a node that stores the requested value in its ancestor
MIB. In the former case, the system proceeds to phase 2 and in the latter it skips to phase 4. In phase 2, the
probe scatter phase, each node that receives a probe request sends it to all of its children unless the node is a
leaf or the node’s reduction MIB already has a value that matches the probe’s attribute key, in which case the
node initiates phase 3 on behalf of its subtree by forwarding its local MIB or reduction MIB value up to the
appropriate parent for the attribute key. In phase 3, theprobe aggregation phase, when a node receives input
values for the specified key from each of its children, it executes the aggregate function across these values
and either (a) forwards the result to its parent (if its level is less thani) or (b) initiates phase 4 by forwarding
the result to the child that requested it (if it is at leveli). Finally, in phase 4, theaggregate routing phase
the aggregate value is routed down to the node that requested it. Note that in the extreme case of a function
installed withup= down= 0, a level-i probe can touch all nodes in a level-i subtree while in the opposite
extreme case of a function installed withup= down= ALL, probe is a completely local operation at a leaf.
Also, in our system, instead of returning only the level-i aggregate for a probe from a node requesting level-i
aggregated value, we choose to return the aggregated values at all ancestors of the node at levels till level-i as
these values are readily available after collecting the value at level-i ancestor.

For probes that include phases 2 (probe scatter) and 3 (probe aggregation), an issue is determining when a
node should stop waiting for its children to respond and send up its current aggregate value. A node at level
i stops waiting for its children when one of three conditions occurs: (1) all children have responded, (2) the
ADHT layer signals one or more reconfiguration events that marks all children that have not yet responded as
unreachable, or (3) a watchdog timer for the request fires. The last case accounts for nodes that participate in
the ADHT protocol but that fail at the AML level.

6.1 System Usage

In this section, we describe the usage of our SDIMS system through some examples.

File Location The aggregation function for the file location applicationffileLocation is shown in Algo-
rithm 2. This function is installed withUpdate-Upstrategy (up= ALL anddown= 0). Nodes that have a
file, sayfoo, will invoke update with following arguments –(fileLocation , foo, IPaddr)denoting that the
file foo is available at machine with IP addressIPaddr. Upon such update at a leaf, the aggregate value for
the parent virtual node is computed by invoking functionffileLocation with fooand the children’s tuple set as
arguments. The children’s tuple set is a vector of tuples of form (child, value), where value isNULL when the
corresponding child does not have any tuple corresponding to the attribute type and name. The pseudocode
for this aggregation function is shown in Algorithm 2. The aggregation is performed at all ancestor nodes of
the leaf that generated the update. Any node wishing to locate filefoo performs a probe for the aggregated
values at the root by specifyinglevel= MAX LEVELand thus gets aggregated value at all ancestors. Then
the node can extract the nearest node hosting that file by choosing the lowest level ancestor with non-null
value.

Note that the aggregation functionffileLocation can also choose a particular child’s value on the basis of
different metrics like computing capacity, bandwidth available, etc., The aggregation function that considers
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Algorithm 3 ffileLocationBW(childTupleSet)
1: A ⇐ {c : c∈ childTupleSet∧ c.value6= NULL}
2: maxBW← 0
3: maxBWValue← NULL
4: for all c∈ A do
5: if c.value.BW > maxBWthen
6: maxBW← c.value.BW
7: maxBWValue← c.value
8: end if
9: end for

10: return maxBWValue

Algorithm 4 fmulticast(childTupleSet)
1: A ⇐ {c : c∈ childTupleSet∧ c.value6= NULL}
2: childRepList←Φ
3: for all c∈ A do
4: childRepList← childRepList

S {c.value.rep}
5: end for
6: if childRepList= Φ then
7: return NULL
8: else
9: rep⇐ chooseRep(childRepList)

10: return(rep, childRepList)
11: end if

the bandwidth is shown in Algorithm 3. Instead of having onlyIPaddr in the value field of the attribute set
tuple, the nodes insert(IPaddr, BW)tuple as values, whereBWrepresents the bandwidth available at the node.
The same technique can be used for building a more general resource or service location application.

For fault-tolerance, the file location aggregation function can also be installed withUpdate-UpRoot-Downj
with j set to a small value greater than zero. The files stored at a node does not change that often and hence
such strategy provides robustness to the application.

Multicast Tree Formation A multicast tree forming aggregation functionfmulticast is shown in Algo-
rithm 4. This function is also installed withUpdate-Upaggregation and propagation strategy. A node A
subscribes to a multicast session, saysessOne, installs the tuple(multicast , sessOne, (IPaddrA, [IPaddrA])
in its attribute set. The value field is a tuple of two parameters (rep, childRepList) denoting the chosen rep-
resentative at that level and the list of representatives at the children. The subscribed nodes also perform
continuousprobes for the aggregate values at the root node(level= MAX LEVEL).

A node wishing to send a multicast message invokes themulticastRoutineshown in Algorithm 5 locally
(with the node’s IP address, localIPAddr, passed asfromIPAddr argument). The multicast application on
any node executes the same routine upon receiving a multicast message. This routine ensures that only nodes
subscribed to a multicast session are involved in the forwarding process of a message for the multicast session.

In Algorithm 4, a representative is chosen from the childRepList by invoking thechooseReproutine. Sim-
ilar to enhancedffileLocationBW shown in the Algorithm 3, nodes can provide the locally available bandwidth
in the value field of the tuples and then letchooseReproutine pick a representative with the highest bandwidth
available from the childRepList.
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Algorithm 5 multicastRoutine(sessName, message, fromIPAddr)
1: for level= 0 to maxLeveldo
2: (rep, childRepList)⇐ getAggregateValue(multicast , sessName, level)
3: if localIPAddr= repthen
4: send message to all nodes in childRepList
5: else
6: if fromNode6= repthen
7: send message to rep
8: end if
9: break

10: end if
11: end for
12: deliver message locally

Distributed DoS Detection A small amount of traffic from a large number of machines to a particular
target machine hosting a service might results in a denial of service (DDoS). Consider a Planetlab [31] type of
environment where a single login can access multiple machines spread over the Internet. A simple aggregation
function summating the traffic from each node for an IP address can detect DDoS attacks launched from such
environments. The aggregation function will be installed withUpdate-UPstrategy and the nodes sending
messages to an IP address also install continuous probes to monitor the net bandwidth directed towards that
IP address. Notice that DDoS detection requires that the aggregation system be capable of handling potentially
a large number of attributes.

Obtaining Domain Based Aggregation Information Notice that the levels in our system does not corre-
spond to the administrative levels in the system. Here we explain different options provided by our system to
facilitate the applications, administrators or users in attaining the aggregate values for a domain. First, thein-
stall API described in Section 3 allows applications to install an aggregation function to be installed on nodes
belonging to only a certain domain. For example, an application wishing to obtain to the aggregate value for
nodes in the departmentdepof an universityuniv can install with domain argument set todep.univ.edu. Sec-
ond, the aggregation function and the syntax of the values can be defined such that the aggregated values at all
domain levels is maintained in the values. For example, nodenode.dep.univ.eduinstalls value as a vector of
tuples((node.dep.univ.edu,value), (dep.univ.edu,value), (univ.edu,value), (edu,value)) representing the
aggregated values at different domain levels as known at this level. The aggregation function at a virtual node
also outputs the value similar to this vector of tuples; for each domain level, it considers the children who are
part of that domain and performs aggregation on them and forms a tuple. Now the applications can get the
aggregated values at all levels by probing for the aggregate value at the root. As the SDIMS trees conform
to administrative and autonomy properties, an application on a node can easily extract the aggregate value at
different domain levels of the node using the list of aggregate values it obtained for the probe.

Probe Functions The file location and multicast examples discussed above could be made more efficient if
we provide applications with a capability to define a probe function in theProbeAPI. In file location example,
nodes probing for a file just need one non-null aggregate value; hence the probe need not be done for the root
level aggregate but can be stopped at a level when a non-null aggregate value is observed. Similarly in the
multicast example, a node just needs to obtain the aggregate values only for those levels at which the node is
chosen as the representative and the value at next one higher level. While implementation of such powerful
probe function capability is obvious for aUpdate-UPstrategy, the implementation is not so straightforward
in other propagation strategies and for continuous mode probes. We are currently further exploring this issue.
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7 Robustness

In large scale systems, reconfigurations are a norm. Our two main principles for robustness are to guarantee
(i) read availability – probes complete in a finite time, and (ii) eventual consistency – updates by a live node
will be reflected in the answers of the probes in a finite time. During reconfigurations, a probe might return a
stale value due to two reasons. First, reconfigurations lead to incorrectness in the previous aggregate values.
Second, the nodes needed for aggregation to answer the probe become unreachable. Our system also provides
two hooks for end-to-end applications to be robust in the presence of reconfigurations: (1) On-demand re-
aggregation, and (2) application controlled replication.

Our system handles reconfigurations at two levels – adaptation at the ADHT layer to ensure connectivity
and adaptation at the Aggregation Management Layer (AML) (Refer to Figure 10) to ensure access to the data
in an SDIMS.

7.1 ADHT Adaptation

Our ADHT layer adaptation algorithm is same as Pastry’s adaptation algorithm [36] — the leaf sets are
repaired as soon as a reconfiguration is detected and the routing table is repaired lazily. Due to redundancy in
the leaf sets and the routing table, the updates can be routed towards their root nodes successfully even during
failures. Also note that the autonomy and isolation properties satisfied by our ADHT algorithm ensure that
the reconfigurations in a domainD1 do not affect the probes in a sibling domainD2 as long as the probes are
for such levels whose roots fall within the domainD2.

7.2 AML Adaptation

Broadly, we use two types of strategies for AML adaptations in the face of reconfigurations: (1) Replication
in time, and (2) Replication in space. We first examine replication in time as this is more basic strategy than
the latter. Replication in space is a performance optimization strategy and depends on replication in time
when the system runs out of replicas. We provide two mechanisms as part of replication in time. First, a lazy
re-aggregation is performed where already received updates are propagated to the new children or new parents
in a lazy fashion over time. Second, applications can reduce the probability of probe response staleness during
such repairs through our flexible API with appropriate setting of thedownknob.

7.2.1 Replication in Time

Lazy Re-aggregation The DHT layer informs the AML layer about the detected reconfigurations in the
network using three API shown in Figure 10. Here we explain the behavior of AML layer on the invocation
of the API.

OnnewParent(parent, prefix): If there are any probes in the outstanding-probes table that correspond to this
prefix, then send them to this new parent. Then start transferring aggregation functions and already existing
data lazily in the background. Any new updates, installs and probes for this prefix are sent to the parent
immediately.

Note that it might be possible for a node to get an update or probe message for an attribute key for which
it does not yet have any aggregation function installed on it as it might have just joined the system and is still
lazily getting the data and functions from its children. Upon receiving such a probe or update, AML returns
an error if invoked by a local application. And if the operation is from a child or a parent, then an explicit
request is made for the aggregation function from that sender.

On failedChild(child, prefix): The AML layer notes the child as inactive and any probes in the outstanding-
probes table that are waiting for data from this child are re-evaluated.

OnnewChild(child, prefix): The AML layer creates space in its data structures for this child.
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Figure 12: Default lazy data re-aggregation timeline

Figure 12 shows the timeline for the default lazy re-aggregation upon reconfiguration. The probes that
initiate between points 1 and 2 and that got affected by the reconfigurations are rescheduled by AML upon
detecting the reconfiguration. Probes that complete or start between points 2 and 8 may return stale answers.

On-demand Re-aggregation The default lazy aggregation scheme lazily propagates the old updates in the
system. By usingupanddownknobs in the Probe API, applications can force on-demand fast re-aggregation
of the updates to avoid staleness in the face of reconfigurations. Note that this strategy will be useful only
after the DHT adaptation is completed (Point 6 on the timeline in Figure 12).

7.2.2 Replication in Space

Replication in space is more challenging in our system than a DHT file location application because replication
in space can be achieved easily in the latter by just replicating the root nodes’ contents as the information is
not location dependent. In our system, however, the information at a node is location dependent – depends on
the set of leaves of the subtree for which this node is the root. Hence, spatial replication similar to DHT file
location services is not as useful.

In our system, applications can control replication using theup anddownknobs in the Install API; ap-
plications can reduce the latencies and possibly the probability of stale values by replicating the aggregates.
The probability of staleness is reduced only if the replicated value is still valid after the reconfiguration. For
example, in a file location application, an aggregated value is valid as long the node hosting the file is active,
irrespective of the status of other nodes in the system. Whereas, an application that counts the number of
machines in a system will suffer from staleness irrespective of replication. However, if reconfigurations are
only transient (like a node temporarily not responding due to a burst of load), the replicated aggregate closely
or correctly resembles the current state.

7.3 Future Work: Supernodes and K-way Hashing

An SDIMS exposes DHT trees for aggregation; hence, any change in the structure directly effects the aggre-
gated values in the system and initiates the bandwidth expensive reaggregation procedure. Since temporary
failures are very common in such a large distributed network due to temporary network and host failures,
detecting and reconfiguring DHT on every such failure might result in AML incurring huge bandwidth costs
just for reaggregations. A solution is to choose a long timeout in detection procedure to circumvent detecting
such temporary failures. But this will effect availability as the response times of probes will increase. Here
we propose two approaches – K-way hashing and Supernodes [25] that provide fault-tolerance to combat
unavailability in such scenarios.

7.3.1 K-way Hashing

In k-way hashing, each attribute key is aggregated along k different trees corresponding to DHT trees formed
from using k different hash functions, that are chosen a priori, on the attribute key. Updates and probes are
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sent along all of the k trees for an attribute. This approach masks unavailability for probes at all stages of the
reconstruction in the face of reconfigurations.

7.3.2 Supernodes

The key idea is that a single nodeId is simulated by multiple nodes. All nodes that are part of a supernode
replicate the behavior of a single node in normal DHT. Two approaches are possible in forming supernodes:
(1) Shadowing: Each node selectsk shadow nodes to form a supernode with nodeId equal to the node’s nodeId
and (2) Clustering: Few nodes group together to form a supernode.

Shadowing: In Shadowing technique, the number of supernodes in the system are same as the number
of nodes. As long as one of the shadows of a node is up, the node’s failure and recovery does not effect
the system. If a shadow of a node fails, the node creates a new shadow. Based on the information that is
shadowed, we have two variants: (A) shadow only DHT connectivity information: Since the structure is
maintained, queries can be answered by aggregating the data and (B) shadow both connectivity information
and aggregation data: this is full behavioral replication at both DHT layer and the SDIMS layer and hence
applications does not perceive any difference during a node failure. While approach A masks DHT repair time,
the data still needs to be reaggregated. Approach B masks both unavailability and reduce reconfiguration costs
but at the expense of extra communication cost for data shadowing during normal operation.

Clustering In Clustering technique, few nodes cluster together to form a supernode. When the number of
nodes increases ahigh thresholdmark, the cluster is split into two smaller clusters. Similarly, when the number
decreases below alow thresholdmark, the cluster is merged with some other cluster. Thehigh thresholdmark
should be greater than twice thelow thresholdmark for splitting to be possible and should be much more to
avoid frequent splits and merges.

Issues in supernodes (i) How many replicas to choose? A larger k implies stronger robustness properties
but at the cost of higher bandwidth requirements. (ii) How to choose the replicas? Choosing nearby nodes
reduces the communication costs while making the scheme vulnerable to domain failures. (iii) How to perform
reconstruction transparently? During reconstructions both old and new supernodes have to be maintained.
(iv) How to maintain consistency between the replicas? One solution is to use gossiping between replicas that
guarantees eventual consistency.

7.3.3 Analytic comparison

Assumep be the probability of a node failure andl be the path length from a node to the root for an attribute.
The probability of an access failure at the node in case of k-way hashing,Phash, is

Phash = (one path fails)k

= (1− (1− p)l )k

and in case of k-way shadowing,Pshadow, is

Pshadow = 1− (atleast one node does not fail)l

= 1− (1− pk)l

For k-way clustering, the probability of an access failure is similar toPshadowwith l replaced byl − lgk in the
exponent.

These functions are compared in Figure 13 forl = 10 andk = 4. Clearly, supernode approach is more
robust than K-way hashing.
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Figure 13: K-way hashing vs supernode approach

7.3.4 Discussion

While K-way hashing is simpler than supernodes, the probability of an access failure is greater than in su-
pernode approach for same values of replication. The DHT maintenance overheads in K-way hashing during
normal operation are none but reconstruction of the DHT is needed during reconfigurations. In Supernodes,
reconstructions can be delayed and hence no overhead during reconfigurations but requires more overhead
for normal DHT maintenance as each node needs to keep track about the connectivity information of k other
nodes.

Shadowing v. Clustering: In Shadowing, a node has the flexibility to choose any other node as its shadow.
This enables us to handle heterogeneity – by choosing more stable nodes as a shadows, by choosing more
capable nodes as a shadows, etc., This is not possible in Clustering where each node can only backupk−1
other nodes.

8 Evaluation

We have implemented a prototype of SDIMS in Java using FreePastry framework [36] and performed large-
scale simulation experiments and micro-benchmark experiments on two real networks: 187 machines in the
department, and 69 machines on the Planet-Lab [31] testbed. The results from the evaluation of our prototype
substantiate (i) the flexibility provided by the API of our system, (ii) the scalability with respect to both nodes
and attributes achieved due to aggregating along multiple DHT trees and with the power of a flexible API, (iii)
the isolation properties provided by the ADHT algorithms, and (iv) the system robustness to reconfigurations.

8.1 Simulation Experiments

Flexibility and Scalability A major innovation of our system is its ability to provide flexible computation
and propagation of aggregates. In Figure 14, we demonstrate the flexibility exposed by the aggregation API
explained in Section 3. We simulate a system with 4096 nodes arranged in a domain hierarchy with branching
factor (bf) of 16 and install several attributes with differentup anddownparameters. We plot the average
number of messages per operation incurred by different attributes for a wide range of read-to-write ratios of the
operations. We also simulate with other sizes of network with different branching factors and observe similar
results. This graph clearly demonstrates the need for a wide range of computation and propagation strategies.
While having a lower UP value will be efficient for attributes with low read-to-write ratios (write dominated
applications), the probe latency, when reads do occur, will be high since the probe needs to aggregate the data
from all the nodes that did not send their aggregate upwards. Conversely, applications that need to improve
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probe latencies increase their UP and DOWN propagation at a potential cost of increase in the overheads of
writes.

Observe that the average number of messages per operation in case of the Update-UP strategy doubles when
read-to-write ratio moves from write-dominated operations to read-dominated operations. In this strategy,
probes incur twice the message cost in comparison to update cost as the responses for a probe back trace the
forward path. While such backtracking aids in caching results at the intermediate nodes, optimizations are
possible such that responses can be sent directly from the root node to the probing node.

Compared to existing Update-all single aggregation tree approaches [34], scalability in an SDIMS comes
from (1) leveraging DHTs to form multiple aggregation trees that split the load across nodes, and (2) flexible
propagation that avoids propagation of all updates to all nodes. We demonstrate the SDIMS’s scalability with
nodes and attributes in Figure 15. For this experiment, we build a simulator to simulate both Astrolabe [34] (a
gossiping, Update-All approach) and our system for an increasing number ofsparseattributes. Each attribute
corresponds to the membership in a multicast session with a small number of participants. For this experiment,
the session size is set to 8, the branching factor is set to 16 and the propagation mode for SDIMS is Update-Up
and the participant nodes perform continuous probes for the global aggregate value. We plot the maximum
node stress (in terms of messages) observed in both schemes for different sized networks with increasing
number of sessions, when the participant of each session performs an update operation. Clearly, the DHT
based scheme is more scalable with respect to attributes than an Update-all gossiping scheme. Observe that,
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as the number of nodes increase in the system, the maximum node stress increases in the gossiping approach,
while it decreases in our approach as the load of aggregation is spread across more nodes.

For the same experimental setup, Figure 16 plots the measured number ofrounds[34] for which an update
by a randomly chosen node is not observed by a probe of another randomly chosen node. In aroundin ADHT,
each node receives at most one message from its children and sends at most one message to its parent. This
result shows that our approach performs similarly or better than the gossiping approach in terms of correctness
or consistency of responses to the probes.

Administrative Hierarchy and Robustness While, the routing protocol of ADHT might lead to an in-
creased number of hops to reach the root for a key as compared to original Pastry, the algorithm conforms
to the path convergence and locality properties and thus provides autonomy and isolation properties. In Fig-
ure 17, we quantify the increased path length by comparisons with unmodified Pastry for different sized
networks with different branching factors of the domain hierarchy tree. To quantify the path convergence
property, we perform simulations with a large number of probe pairs – each pair probing for a random key
starting from two randomly chosen nodes. In Figure 18, we plot the percentage of probe pairs that did not
conform to the path convergence property. When the branching factor is low, the domain hierarchy tree is
deeper and hence a large difference between Pastry and ADHT in the average path length; but it is at these
small domain sizes, that the path convergence fails more often with the original Pastry.

In Figure 19, we plot the increase in path length to reach the global root node when node failures occur.
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Figure 20: Average latency of probes for aggregate at global root level with three different modes of aggregate
propagation on (a) 187 department machines, and (b) 69 Planet-Lab machines

In this experiment with 4096 nodes, we measure the number of hops to reach the root node before and after
repairs with increasing percentage of failed nodes. The plot shows that the average path length increase is
minimal even when 10% of nodes fail. On further analysis of the probes, we observe that all probes are able
to reach the correct root node even after 25% failures. We present some robustness results of our prototype
on a real network testbed in the next section. Further study is required to define workloads appropriate to this
system and analyze the impact of failures on the system.
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8.2 Testbed experiments

We run our prototype on 187 department machines and also on 69 machines of the Planet-Lab [31] testbed. We
measure the performance of our system with two micro-benchmarks. In the first micro-benchmark, we install
three aggregation functions of types Update-Local, Update-Up, and Update-All, perform update operation
on all nodes for all three aggregation functions, and measure the latencies incurred by probes for the global
aggregate from all nodes in the system. Figure 20 shows the observed latencies for both testbeds. Notice
that the latency in Update-Local is very high in comparison to the Update-UP policy. This is because latency
in Update-Local is affected by the presence of even a single slow machine or a single machine with a high
latency connectivity in the network.

In the second benchmark, we install one aggregation function of type Update-Up that performs sum opera-
tion on an integer valued attribute. Each node is updated with a value of 10 for the attribute. Then we monitor
the latencies and results returned on the probe operation for global aggregate on one chosen node, while we
kill some nodes after every few probes. Figure 21 shows the results on the departmental testbed. The dip
in the observed values at around 49th second is due to the termination of the root node for the aggregation
tree and subsequent reconfigurations. Due to the nature of the testbed (machines in a department), there is
not much change in the latencies even in the face of reconfigurations. In Figure 22, we present the results
of the experiment on Planet-Lab testbed. The root node of the aggregation tree is terminated after about 275
seconds. There is a 5X increase in the latencies after the death of the initial root node as a more distant node
becomes the root node after repairs. In both experiments, the values returned on probes start reflecting the
correct situation within a small amount of time after the failures.

From both the testbed benchmark experiments and the simulation experiments on flexibility and scala-
bility, we conclude that (1) the flexibility provided by the SDIMS allows applications to tradeoff read-write
overheads, staleness, read latency and sensitivity to slow machines, (2) a good default aggregation strategy
is Update-Upwhich has moderate overheads on both reads and writes, moderate read latencies and stale-
ness values, and is scalable with respect to both nodes and attributes, and (3) the small domain sizes are
the cases where DHT algorithms does not provide path convergence more often and an SDIMS ensures path
convergence with only a moderate increase in path lengths.
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Figure 22: Probe performance during failures on 69 machines of Planet-Lab testbed

9 Related Work

The aggregation abstraction we use in our work is heavily influenced by the Astrolabe [34] project. Astrolabe
adopts Propagate-All and unstructured gossiping techniques to attain robustness [2]. However, any gossiping
scheme requires aggressive replication of the aggregates. While such aggressive replication is efficient for
read-dominatedattributes, it incurs high message cost for attributes with a small read-to-write ratio. Our
approach provides flexible API for applications to set propagation rules according to their read-to-write ratios.
Such flexibility is attainable in our system because of our design choice to aggregate on the structure rather
than through gossiping.

Several academic [13, 24, 45] and commercial [44] distributed monitoring systems have been designed to
monitor the status of large networked systems. Some of them are centralized where all the monitoring data is
collected and analyzed at a single central host. Ganglia [13, 28] uses a hierarchical system where the attributes
are replicated within clusters using multicast and then cluster aggregates are further aggregated along a single
tree. Sophia [45] is a distributed monitoring system, currently deployed on Planet-Lab [31], and is designed
around a declarative logic programming model where the location of query execution is both explicit in the
language and can be calculated in the course of evaluation. This research is complementary to our work; the
programming model can be exploited in our system too. TAG [24] collects information from a large number
of sensors along a single tree.

The observation that DHTs internally provide a scalable forest of reduction trees is not new. Plaxton
et al.’s [32] original paper describes not a DHT, but a system for hierarchically aggregating and querying
object location data in order to route requests to nearby copies of objects. Many systems—building upon
both Plaxton’s bit-correcting strategy [36, 47] and upon other strategies [29, 33, 40]—have chosen to hide
this power and export a simple and general distributed hash table abstraction as a useful building block for
a broad range of distributed applications. Some of these systems internally make use of the reduction forest
not only for routing but also for caching [36], but for simplicity, these systems do not generally export this
powerful functionality in their external interface. Our goal is to develop and expose the internal reduction
forest of DHTs as a similarly general and useful abstraction and building block. Dabek et al [11] propose
common APIs (KBR) for structured peer-to-peer overlays that facilitate the application development to be
independent from the underlying overlay. While KBR facilitates the deployment of our abstraction on any
DHT implementation that supports KBR API, it does not provide any interface to access the list of children
for different prefixes.

While search application is a predominant target application for DHTs, several other applications like
multicast [6, 7, 38, 42], file storage [10, 22, 37], and DNS [9] are also built using DHTs. All of these
applications implicitly perform aggregation on some attribute, and each one of them must be designed to
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handle any reconfigurations in the underlying DHT. With the aggregation abstraction provided by our system,
designing and building of such applications becomes easier.

Internal DHT trees typically do not satisfy domain locality properties required in our system. Castro et
al. [5] and Gummadi et al. [15] point out the importance of path convergence from the perspective of achieving
efficiency and investigate the performance of Pastry and other DHT algorithms respectively. In the later study,
domains of size 256 or more nodes is considered. In an SDIMS, we expect the size of administrative at lower
levels to be much less than 256 and it is at these sizes that the convergence fails more often(Refer to Graph 18).
SkipNet [17, 18] provides domain restricted routing where a key search is limited to the specified domain.
This interface can be used to ensure path convergence by searching in the lowest domain and move up to
the next domain when the search reaches the root in the current domain. While this strategy guarantees path
convergence, we loose the aggregation tree abstraction property of DHTs as the domain constrained routing
might touch a node more than once (as it searches forward and then backward to stay within a domain).

There are some ongoing efforts to provide the relational database abstraction on DHTs: PIER [19] and
Gribble et al. [14]. This research mainly focuses on supporting “Join” operation for tables stored on the nodes
in a network. We consider this research to be complementary to our work; the approaches can be used in our
system to handle composite probes – e.g.,find a nearest machine with file “foo” and has more than 2 GB of
memory.

10 Dissertation Plan

The goal of this dissertation is to build a scalable distributed information system. Our current system is still
in a nascent state but the initial work does provide evidence that we can achieve an SDIMS by leveraging
Astrolabe’s aggregation abstraction and DHTs. Our work also opens up many research issues in different
fronts that need to be solved. Below we present some future research directions.

10.1 Extensions to Robustness

Supernodes In our current system, reconfigurations are costly. Though we can hide costs by lazy reag-
gregation schemes and enabling applications to control costs or enable them to adapt, reconfigurations are
still expensive, particularly with machines fluctuating between reachable and unreachable state (machine ups
and downs) being a common reconfiguration than nodes leaving permanently. We are currently exploring the
Supernodes approach to alleviate these problems as explained in Section 7.

10.2 Extensions to Flexibility

Self-tuning adaptation The read-to-write ratios for applications are dynamic. An SDIMS system should
adapt to changing read-to-write ratios by dynamically modifying the compuatation and propagation modes to
conserve bandwidth while still conforming to the application specified propagation strategy.

Caching While caching is employed effectively in DHT file location applications, further research is needed
to apply this concept in our general framework. Caching raises the issue of consistency and both of these
topics need to be handled together.

Probe Functions Our current probe API allows applications to specify only levels for fetching aggregated
values. While this interface is functionally enough, a more powerful interface would allow the applications
to specify probe functions that decide the level of the aggregated values sought by evaluating the aggregated
values as explained in Section 6.1.
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Attribute feeding functions: Instead of a applications creating a new separate attribute for each aggregation
function, we should have a way so that applications can specify single attribute and multiple aggregation func-
tions that aggregate on that single attribute. Applications should be able to install some base case functions,
which we callattribute feeding functions, that feed the reduction MIB from local attribute set.

10.3 Extensions to Scalability

Handling Composite Queries: Queries involving multiple attributes pose an issue in our system as different
attributes are aggregated along different trees. We outline some techniques we are pursuing to tackle this issue
in Section 4.4.

10.4 Timeline

Spring 2004 The crucial requirement for the success and the wide adoption of our system is to efficiently
combat failures and reconfigurations. While current system implements different techniques, as mentioned in
previous section and in Section 7 our design is far from efficient in this aspect. Hence, our top priority is to
fully investigate the proposed approaches for robustness (Section 7) and build a robust SDIMS.

We also plan to build three applications mentioned in Section 6.1 on top of our SDIMS system and evaluate
their performance on two real network testbeds – the department machines and the PlanetLab testbed. We
estimate to complete above tasks by the end of this semester (Spring 2004) and submit a paper for the OSDI
conference.

Fall 2004 & Spring 2005 We plan to implement dynamic self-tuning adaptation to reduce bandwidth, the
capability to support probe functions and the attribute feeding functions in the next academic year 2004-2005.
We also aim at investigating and building caching facility and ability to handle the composite queries in our
system during the same time. The goal is to defend and submit the final thesis by the end of next Spring
semester (May 2005).

11 Conclusions

We present a Scalable Distributed Information Management System (SDIMS) that aggregates information in
large-scale networked systems and that can serve as a basic building block for a broad range of applications.
For large scale systems,hierarchical aggregationis a fundamental abstraction for scalability. We build our
system by picking and extending ideas from Astrolabe and DHTs to achieve (i) scalability with respect to
both nodes and attributes through exposure of DHT’s internal trees as an aggregation abstraction, (ii) flex-
ibility through a simple API that lets applications control propagation of reads and writes, (iii) autonomy
and isolation properties through simple augmentations of current DHT algorithms, and (iv) robustness to
node and network reconfigurations through lazy reaggregation, on-demand reaggregation, and tunable spatial
replication.
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