Gaussian Mixure Models and Expectation
Maximization

1 Introduction

The goal of the assignment is to use the Expectation Maximization (EM)
algorithm to estimate the parameters of a two-component Guassian Mixture
in two dimensions. This involves estimating the mean vector u; and covari-
ance matrix X for both distributions as well as the mixing coefficients (or
prior probabilities) 7, for each component k. EM works by first choosing an
arbitrary parameter set. In my implementation, I sampled the initial means
from a zero-mean unit variance normal distribution, and the covariance ma-
trices were initially set to the identity. I set m; to a random value between
zero and one and set mo = 1 — 7.

EM proceeds by estimating the "responsibilities” of each component for
each data point in the E-step. The means, covariance, and mixing coefficients
for both components are then re-estimated using the data weighted by the
responsibility values in the M-step. This process alternates until a halting
criterion is reached. I used the change in the log likelihood as my halting
criterion and ran the algorithm until the change in log likelihood was less
than e = 0.005.

2 Experiments

In order to assess the performance of EM on parameter evaluation for two-
component Gaussian mixtures, I ran the algorithm 100 times, each time on a
new set of 1000 points of randomly sampled data, and compared the results
to the parameters of the Gaussian mixture from which the data was sampled.
To keep the distributions relatively separable, I placed the means at (2,2)
and (—2,—2) and allowed the covariances to vary randomly. The covariance
matrices were created by multiplying a normally distributed random matrix
by its transpose to get a symmetric positive semi-definite matrix. This alone

Merror | Terror | Misclass rate
KM | 1.89 | 0.001 0.16
EM | 0.49 | 0.022 0.06

Table 1: Comparison of k-means and EM averaged over 100 trials

produced many covariance matrices with relatively large off-diagonal terms
(very long and skinny distributions), so I added an identity matrix to each >
to make the distributions wider. I recorded the mean error, mixing coefficient
error-both averaged across the two components-and the misclassification rate.
As the covariance is not accounted for in k-means and a scalar error value
for a matrix is not very informative without context, I did not report the
covariance error. All measurements were averaged over all runs. The same
values were measured for Matlab’s default implementation of k-means (KM)
as a benchmark for comparison with EM. Table 1 shows the results from this
experiment.

Figure 1 shows the parameters of the Gaussian mixture converge on the
solution over 120 iterations of EM for a particular run of the algorithm.

t =120

Figure 1: Progression of EM algorithm over 120 iterations

Figure 2 compares the correctly labeled distribution to the classification
given by EM in the case where there is significant overlap between the two
distributions.

3 Discussion and Conclusions

As may be expected, EM outperforms k-means in both mean error and classi-
fication rate. What is interesting was that I found that k-means consistently
estimated the mixing coefficients better than EM in the few times I was able

Figure 2: A shows the correctly labeled data from each component. B shows
the labels given by the EM solution

to run the whole experiment. EM still performs qualitatively well, getting
within 0.022 of the mixing coefficients, but it is surprising that with the naive
assumptions of k-means (which don’t take prior probabilities into account)
that k-means would perform better on estimating the mixing coefficients.

Figure 1 shows a situation where EM nearly gets stuck in a local minimum
and slowly climbs the likelihood surface. Most runs of EM on the random
data sets took around 20 to 50 iterations to converge; this run took signif-
icantly longer. In situations like these randomized restarts or initialization
using k-means might aid in getting to the solution more quickly.

Figure2 shows the limitations of EM when the two Gaussian distributions
overlap. When categorizing a point there is a decision-theoretically optimal
threshold which creates the hard cutoff in labeling where there is crossover
in the original image.

For future work I would be interested in situations where it is not known
how many Gaussians are in the mixture, or similarly, the data is not truly gen-
erated from a Gaussian mixture. Here model selection would be important
and a method for scanning the solutions with different numbers of Gaussian
components and choosing the simplest model that explains the data would
likely be the crux of the problem. This could likely be approached using
regularization or from a Bayesian perspective.

