CS 391L Homework 1
September 9, 2010

Implementation Description

I implemented the EM algorithm based on Andrew Ng’s notes for GMMs and EM. My flow is:
generate some data, run EM and gather statistics, plot results. I defined 7 experiments, each
checking an aspect of the EM algorithm. All the experiment setups are documented in the top
of the .m file. Each experiment is defined by a combination of two sets of parameters that are
used: parameters for data generation, and parameters for EM initialization. I further specify on
the experiments in the Experiments section. Next, I will briefly describe each part of my flow.

In order to generate data, I used the prior cluster probabilities and mvnrnd to sample from the
two gaussians a complete set of points. Next, I initialize the EM parameters with guesses, which are
defined in each experiment specification. Based on these guesses I initialize the likelihood function.

Next, I run the EM algorithm. For the E-step, I construct using Bayes’s law, two vectors v;
and vy of posterior cluster probabilites, where v;[i] = p(z® = j|z®; ) where () is the ith point,
2 is a cluster index of the ith point, and 6 are the current parameters. In the M-Step, I use these
posterior vectors to maximize the likelihood of the parameters, based on the formulas, using only
matrix computations (no for loops). The stopping crieterion is whether the likelihood improvement
is smaller than some €. In addition, during the algorithm run, I track the progress of the parameters
estimations, and save them in arrays, to be plotted later.

What have I learned

By reading carefully the notes, I finally learned why EM works... Also, Andrew’s explanation about
viewing it as coordinate ascent, gave an interesting way to look at it. A few points that I learned
follows.

Initially, I didn’t understand what is being initialized. From some reason, I had the impression
that we initialize hard cluster assignments and then start the algorithm. Now I understand that
although this method could work, we usually only initialize the parameters, and let the E-step set
the “soft” cluster assignments.

I learned what is exactly the stopping criterion. I wasn’t sure whether it’s likelihood itself that
is being checked for convergence, or the lower bound on it that we keep building. Although both
of them could probably work, I used the real likelihood, as it was easier to compute (and is the
actual thing that we care about).

In addition, I saw that bad initialization can lead to very bad results. In contrast, many
not-so-good initializations works surprisingly well. More on that in the Experiments section.

I also learned that “clusterl” and “cluster2” are just arbitrary names, as many times ”red”
points were explained accurately by ”blue” classifications. Retrospectively, it makes sense...

Experiments

(I am % page beyond the limit because I ran some more experiments.)
In the experiments, I tested the effects of:

e Changing the mean initializations in the algorithm.

e Changing the distance between the two Gaussians.



CS 391L Homework 1
September 9, 2010

e Changing the probability distribution of the hidden variables, the one that controls from
which cluster to generate the next data point (¢ here).

Covariance guesses were always initialized to I, and ¢ guesses were always initialized to 0.5.

For each experiment, running on 1000 points, I check the number of iterations ran and the
percent of correctly assigned points. I also plot the generated points in red and blue ’x’s, according
to which Gaussian they come from, and again the same points in red and blue ’0’s to show how
they were classified. I also show in black the mean converging to its final value (a black 'x’), on the
same plot. For some experiments I ploted the convergence of the covariance parameters, and the
convergence of the cluster-choice probabilities (¢).

Changing the mean initializations (partially-overlapping Gaussians) Here, for two partially-
overlapping Gaussians, I ran three experiments, each initializing the means differently: on the
boundaries of the data, then close to the center but on two different points, and finally identically
on the same point on the center of data. The results are as follows (Please zoom-in to see the
details).

We see that when the means are initializing far from each other (left), or even close but not identi-
cally initialized (middle), and even though the Gaussians overlap, the results are pretty good: in the
left figure #iterations=28, accuracy=93.5% and in the middle #iterations=32, accuracy=91.3%.
However, on the right one, where the two means where initialized identically, all the points were
assigned to the same cluster, achieving a baseline (bad) accuracy of around 50% (already a local
maximum).

Far Gaussians: easy classification Here I tested the algorithm with two far Gaussians. Even-
though the means were initialized near each other, at the center, it took 6 iterations to achieve
perfect classification of 100% (Please zoom-in to see the details).




CS 391L Homework 1
September 9, 2010

Significantly overlapping Gaussians: classification depends on initialization Here I gen-
erated two highly overlapping Gaussians. In the first experiment I initialized the means far from
each other, on the boundaries of data, and in the second one I initialized both of them close to the
center of data at two different points (Please zoom-in to see the details).

We see that here, initializing the means far from each other (left figure) didn’t help to achieve
convergence: after 131 iterations it converged to 54% accuracy. On the other hand initializing the
means close to each other (right figure), which is also close to their real values, achieved impressive
results: 39 iterations and 79% accuracy on two highly overlapping Gaussians.

Other convergence results Finally I show some graphs for the other parameters’ convergence,
which were very similar for all runs.

The left figure shows the convergence of the 3 covariance matrix entries to their real values. The
other two figures shows the convergence of the ¢ values (the probabilities of choosing Gaussianl
or Gaussian2 while generating data) to their values, in case they are both 0.5 (middle) and in case
they are 0.3 and 0.7 (right).



