
Machine Learning: Assignment 1

1 Overview

I implemented the Expectation-Maximization (EM) algorithm for two-dimensional Gaussian mixture models.
Specifically, the implementation is for data that is generated by exactly two Gaussian functions. The goal
of the EM algorithm is to find the optimal values for six parameters (the Gaussian k ∈ {1, 2}): P (k), the
relative frequency of generating the data, and (µk, σ

2
k), the mean and variance for the Gaussian. The EM

algorithm contains two steps that iterate until the parameters converge. The first step uses estimates of the
parameters to determine the likelihood that a group of data points was generated by one Gaussian versus
the other. The second step uses these probabilities to re-estimate all of the parameters.

2 Experiments

Each experiment was run for 100 trials, randomly generating new data for each trial. Additionally, for each
experiment, I ran the K-Means clustering algorithm on the same data. Each following section describes those
results as well. Diagrams were left off the “above and beyond” experiments for brevity.

2.1 Experiment 1: High Overlap

The first experiment I ran evaluated the EM algorithm on a mixture model of two Gaussians that have
relatively close means. I chose this setup because I wanted to see how well the algorithm would handle
situations where the data points were heavily co-mingled spatially, but with dissimilar variance.

My experimental setup used two predefined Gaussian functions (µ, σ2): Gaussian A was defined as

(
(
−1
0

)
,

(
1.9 0.4
0.4 1.2

)
) and the second was defined as (

(
0
2

)
,

(
1.0 0.1
0.1 5.0

)
). Additionally, I set the

prior weights P so that 60% of the data would come from Gaussian A and 40% from Gaussian B. For the
data, I randomly generated 50 groupings of data points with 10 points in each group. Of course, all of the
points in a single group were generated by the same Gaussian.

The average accuracy after 100 tri-
als was an excellent 97.9%. One such
test run is exemplified by the follow-
ing diagrams. The first graph in the
figure showed the correct classification
along with correct means. The subse-
quent graphs show iterations 1-5 of the
EM algorithm where yellow dots show
“blue Gaussian” points incorrectly la-
belled as “red” and cyan dots show
“red Gaussian” points incorrectly la-
belled as “blue”. The algorithm starts
by randomly picking two points to
serve as the means, using the identity
matrix as the variance matrices, as as-
suming that half the data was gener-
ated by each Gaussian. In the first it-
eration (cell 2), you can see one of the
means is quite far from its final posi-
tion and, as a result, many of the data points are mislabelled. However, after re-estimation, the “red” mean
is much closer to its target and more of the points are labelled correctly. By the third iteration, all the points
are labelled correctly and for the rest of the algorithm, the means simply make minor adjustments to get
closer to the true values.

1



2.1.1 Comparison to K-Means

The K-Means algorithm yielded a substantially lower 78.2% accuracy. This difference can be attributed to
the fundamental differences between EM and K-Means. I designed this experiment to specifically target this
distinction. The K-Means algorithm is very bad at handling overlapping data points. This is because it is
only able to classify a point based on its distance from the estimated means. When the data overlaps, there
is no clear line that can be drawn to separate those points that are closest to one mean versus those points
that are closest to another.

On the other hand, EM does much better on the overlapping data. This is because the strength of EM
lies in the fact that it is able to incorporate underlying assumptions about how the data was generated.
The algorithm as implemented assumes that the data was generated by exactly two Gaussians. Using this
knowledge, it can make a better guess as to the likely source of the data because it can look at the trends
among the points in a single grouping. The fact that the data is overlapping is only of minimal significance
because it only affects how far the points are from the means of the Gaussians.

It is also worth noting that both EM and K-Means seemed to do better on the same data sets and worse
on the same data sets indicating that the difficultly of optimizing the parameters might be intrinsic to the
data in such as a way that both techniques are either helped or hurt.

2.2 Experiment 2: Increased distance between means

This experiment moved the means to [−4;−2] and [4; 2], respectively, without chang-
ing the variances. Putting additional distance between the Gaussians makes the
problem easier because the distributions are less similar and, therefore, it is easier
to determine from which distribution a particular point was generated. Indeed the
EM algorithm takes advantage of this and is able to achieve 100% accuracy on all
trial runs.

2.2.1 Comparison to K-Means

This experiment was designed to “level the playing field” with K-Means. Since K-
Means is appropriate for data that can be grouped by distance, putting more space between the clusters
means a clearer distance-based demarcation. As is shown in the diagram, there are very few points in the
“overlap” region. As a result, the K-Means algorithm achieves 99.6% average accuracy.

2.3 Experiment 3: Close means, close yet predictable Gaussians

This experiment was used to gauge how well EM performs when the parameters of
the Gaussians are nearly identical, but very predictable. The parameters used to

generate the data were (
(
−0.1

0

)
,
(

0, 001 0
0 1

)
) and (

(
0.1
0

)
,
(

0.001 0
0 1

)
).

As is shown in the diagram, this generates two parallel almost-perfectly-vertical bars
with almost-overlapping means. The idea here is that even though the points of both
Gaussians are very close together spatially, since the variances are so extremely
predictable, it should be easy for the EM algorithm to find them. In fact, the
accuracy for the EM algorithm was a perfect 100% for all trials.

2.3.1 Comparison to K-Means

Since the K-Means algorithm cannot take the Gaussian trends into consideration, it must cluster using only
distance. Since the distances are so close, this is very difficult. As a result, K-Means achieves only 50.1%
accuracy.

2



3 Experiment 4: Fixing a correct answer

This experiment addressed the question of what would happen if one of the Gaussians’ parameters were
known to the algorithm. For this set I hacked my implementation to hard-code the correct answer for
one of the Gaussians. My hypothesis was that performance would increase because there would be more
valuable information. However, what I actually saw was accuracy decrease to a much lower 85.9% using the
same parameters as Experiment 1. The reason for this drop is that, based on the random start of the second
Gaussian’s mean, the algorithm can become confused about which set of parameters applied to which points.
Since the algorithm doesn’t know a priori which region of points applies to which Gaussian, it relies on the
ability to shift the parameters when necessary. When the non-fixed mean is on the “wrong side” of the fixed
one initially, then the algorithm tries in vain to move it to the Gaussian it is actually closest to. This issue
could be easily overcome by running a few iterations of the algorithm with the “floating” mean starting on
different sides of the fixed one. The trial that resulted in the floating mean moving the most would likely be
correct.

Of course, if the correct parameters are fixed for both Gaussians, the accuracy increases; the average in
my trials was 99.5%.

4 Code

My code is split among several files, but the script that should be executed to run a test is called main.m. At
the top of the file you will find a second containing settings that serve as the parameters for the experiment.

4.1 Known Deficiencies

Since this was my first time using Matlab, I struggled a bit to get the hang of vectorization. You will notice
that for-loops are prevalent in my code. After running all of my experiments I went back to try to vectorize
things, but ended up completely botching the code to the point where it was doing the complete wrong
thing: as it iterated, the accuracy goes up and then all of a sudden starts diving.

The code I’m submitting also fails to update the prior weights, P . When I added this part in I again
got the “goes up, then crashes and burns” effect. So this version just assumes that the priors are 50/50 and
doesn’t adjust. It works ok on my 60/40 split, but might not work on something more extreme.

Finally, the code I’m submitting doesn’t use the weight estimations when adjusting the means and
variances: it simply makes a hard decision as to which cluster the group belongs to and adjusts the parameters
based on that. This has the unfortunate side effect that if all the groups are assigned to the same cluster,
then the program crashes trying to estimate the parameters. In such a case, I just re-initialize the parameters
to random starting points and loop back around. Again, tried to fix ⇒ crash and burn.

If you’re interested in seeing my attempt to fix these issues, I’d be happy to provide you the code. But
I figured you’d want whatever you received to match the output described in this document, so that’s why
I’ve included the older-but-still-working version.

3


