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lllusions, perception and

Bayes

Wilson S. Geisler and Daniel Kersten

A new model shows that a range of visual illusions in humans can
be explained as rational inferences about the odds that a motion
stimulus on the retina results from a particular real-world source.

Artists can create powerful illusions of
distance, size, shape and orientation by
mimicking on canvas the images that
would be formed on the retina by per-
spective projection from a three-dimen-
sional environment. These perceptual
errors seem to reveal a rational (but
automatic) perceptual system designed
to correctly interpret the retinal images
evoked by the world. This appealing
explanation of visual illusions is often
viewed as insufficient, however, because
many idiosyncratic illusions seem unlike
the rational solution to any problem.

One such class of illusions concerns
the effect of luminance contrast and
shape on the perception of motion veloc-
ity. Surprisingly, the apparent speed and
direction of a moving pattern often
changes substantially as the contrast and
shape of the pattern is varied. Such illu-
sions are typically interpreted as the
errors or epiphenomena of some impre-
cise neural mechanism that is attempt-
ing to compute one of the quantities
relevant for motion perception. Howev-
er, using the tools and logic of Bayesian
statistical decision theory, in this issue
Weiss et al.! show that many of these
seemingly idiosyncratic motion illusions,
in fact, may be exactly what one would
expect from a rational perceptual system.
Their results suggest that the human
visual system may be closer to optimal
than once believed.
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This study is an excellent example of
how Bayesian concepts are transforming
perception research by providing a rigor-
ous mathematical framework for repre-
senting the physical and statistical
properties of the environment, describing
the tasks that perceptual systems are trying
to perform, and deriving appropriate com-
putational theories of how to perform those
tasks, given the properties of the environ-
ment and the costs and benefits associated
with different perceptual decisions.

The Bayesian framework had its
beginnings in Helmholtz’s notion of
‘unconscious inference’—the idea that
the visual system incorporates implicit
knowledge of the environment and
image formation, and uses this knowl-
edge to infer, automatically and uncon-
sciously, object properties from the
ambiguous images they form on the
retina (see also refs. 2—4). As Helmholtz
knew, retinal images are ambiguous
because of natural variations in view-
point and lighting: very different objects
can give rise to similar retinal images,
and the same object can give rise to very
different retinal images. For example, a
circle and an ellipse can produce exact-
ly the same retinal image if the circle is
slanted appropriately in depth, and the
same circle slanted in depth by different
amounts can produce many different
images. Thus, the ambiguous stimulus
in Fig. 1 can be seen as an ellipse in the
frontal plane or as a circle on a slanted
plane. Bayesian statistical decision the-
ory prescribes a framework for opti-
mally interpreting such ambiguous
retinal images.

Theoretical devices that use Bayesian
statistical decision theory to make opti-
mal interpretations are called ‘ideal
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Visual Behavior (eds. Ingle, D. J., Goodale,
M. A. & Mansfield, R. J. W.) 549-586 (MIT
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observers. As one might guess intuitive-
ly, the primary objective of an ideal
observer is to compute the probability of
each possible true state of the environ-
ment given the stimulus on the retina
(the ‘posterior probability distribution’).
According to Bayes’ theorem, the poste-
rior probability is proportional to the
product of the probability of each possi-
ble state of the environment before
receiving the stimulus (the prior proba-
bility) and the probability of the stimu-
lus given each possible state of the
environment (the likelihood). Thus,
when an ideal observer (Fig. 1) receives
a stimulus, it computes the likelihood
and then multiplies by the prior proba-
bility distribution to obtain the posterior
probability distribution. In many appli-
cations, prior probability distributions
over the space of possible objects, events
and/or lightings represent the ideal
observer’s knowledge of the environ-
ment, and likelihood distributions rep-
resent the ideal observer’s knowledge of
projective geometry and the space of pos-
sible viewpoints. Once the posterior
probability distribution is determined,
an ideal observer convolves the posteri-
or distribution with a utility function (or
loss function), which specifies the costs
and benefits associated with the differ-
ent possible errors in the perceptual deci-
sion. The result of this operation is the
expected utility (or Bayes’ risk) associat-
ed with each possible interpretation of
the stimulus. Finally, the ideal observer
picks the interpretation that has the max-
imum expected utility.

Weiss et al.! derived such an ideal
observer and showed that it displays
many of the same ‘illusions’ perceived by
human observers. Their analysis was
based on the plausible assumptions that
low velocities are more likely than high
velocities, and that there is more vari-
ability at low contrasts (that is, retinal
images are less reliable). Motion illusions
can be understood as optimal adapta-
tions rather than mistakes in other cases
as well; for example, a Bayesian analysis
predicts correctly that changing the
motion of a shadow alone can change the
apparent three-dimensional motion of
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an object®. However, the examples of
Weiss et al.! are particularly interesting
because they seemed unlikely to be opti-
mal adaptations before the Bayesian
analysis was done. For example, this
analysis explains the odd combination of
facts that a thin horizontally moving
rhombus appears to move diagonally at
low contrasts and horizontally at high
contrasts, whereas a fat rhombus appears
to move horizontally at all contrasts.

The Bayesian approach has advan-
tages over other approaches in percep-
tion research. To begin with, it prescribes
a principled method for determining
optimal performance in a given percep-
tual task. This can be a very useful exer-
cise because it forces one to consider
carefully the various constraints that
apply in the perceptual task, and the
Bayesian ideal observer provides an
appropriate benchmark against which to
compare human performance. Further-
more, ideal observers are often easily
modified by incorporating anatomical,
physiological and other constraints, mak-
ing them an excellent starting point for
developing testable models®”.

Another advantage of the Bayesian
approach is that it divides perceptual tasks
into convenient and intuitive pieces that
can be considered singly and then com-
bined to understand the whole. For exam-
ple, the Bayesian approach naturally
partitions the ‘generative model’ for reti-
nal images into a prior probability distri-
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Fig. 1. Bayesian ideal observers for tasks involving the perception
of objects or events that differ along two physical dimensions, such
as aspect ratio and slant, size and distance, or speed and direction
of motion. When a stimulus is received, the ideal observer com-
putes the likelihood of receiving that stimulus for each possible pair
of dimension values (that is, for each possible interpretation). It
then multiplies this likelihood distribution by the prior probability
distribution for each pair of values to obtain the posterior probabil-
ity distribution—the probability of each possible pair of values
given the stimulus. Finally, the posterior probability distribution is
convolved with a utility function, representing the costs and bene-
fits of different levels of perceptual accuracy, to obtain the expected
utility associated with each possible interpretation. The ideal
observer picks the interpretation that maximizes the expected util-
ity. (Black dots and curves indicate the maxima in each of the plots.)
As a tutorial example, the figure was constructed with a specific
task in mind; namely, determining the aspect ratio and slant of a
tilted ellipse from a measurement of the aspect ratio (x) of the
image on the retina. The black curve in the likelihood plot shows
the ridge of maximum likelihood corresponding to the combina-
tions of slant and aspect ratio that are exactly consistent with x; the
other non-zero likelihoods occur because of noise in the image and
in the measurement of x. The prior probability distribution corre-
sponds to the assumption that surface patches tend to be slanted
away at the top and have aspect ratios closer to |.0. The asymmet-
ric utility function corresponds to the assumption that it is more

Aspect ratio

important to have an accurate estimate of slant than aspect ratio.

bution on object shapes and materials, a
prior probability distribution on lighting,
and a stimulus likelihood distribution
that incorporates the interactions between
objects and lighting, and the effects of
perspective projection and viewpoint.
This Bayesian generative model has
recently motivated a number of novel and
testable hypotheses. To give just one
example, Bloj et al.® demonstrated that
perceived surface color can depend upon
the perceived three-dimensional surface
configuration in a perceptually bistable
image, even when the retinal images never
change. They predicted this effect from a
Bayesian ideal observer that understands
the effects of mutual surface illumination.

Finally, the Bayesian approach allows
one to understand precisely how the reli-
ability of different sources of information,
including prior knowledge, should be
combined by a perceptual system. Differ-
ent sources of information do not always
keep the same relative reliability, and
hence a rational perceptual system should
adjust the weights that it assigns to dif-
ferent information sources contingent
upon their current relative reliabilities.
This sort of weight adjustment is at the
heart of the account of motion illusions
from Weiss et al.!. When contrast is low,
retinal image information becomes less
reliable, and so the Bayesian ideal observ-
er shifts more weight to the prior proba-
bility distribution on motion velocity; this
shift in relative weight alters the optimal
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estimate of speed and direction. Several
other recent applications of Bayesian
analysis show that the human visual sys-
tem can dynamically adjust weights on
different information sources, often in a
near-optimal way®~!1,

Although the Bayesian model
proposed by Weiss et al.! makes the cor-
rect qualitative predictions for many
motion illusions, the quantitative pre-
dictions are not perfect. This is not sur-
prising for a nearly parameter-free
model, but the potential reasons for less-
than-perfect quantitative predictions are
worth considering. First, the predictions
depend on the exact shape of the prior
probability and likelihood distributions.
The assumption that low velocities are
more probable than high velocities is
likely to be correct qualitatively, but the
specific prior probability distribution that
Weiss et al. assumed is still just an edu-
cated guess. Undoubtedly, the prior prob-
ability and likelihood distributions
incorporated implicitly into the visual
system arise through a combination of
evolution and perceptual learning, and
thus it would be appropriate to estimate
these distributions by measuring and
analyzing natural scene statistics. Prior
probability and likelihood distributions
measured in the natural environment
may lead to more accurate predictions of
perceptual performance. For example, a
Bayesian model derived from co-occur-
rence statistics for the geometrical rela-
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tionships between edges in natural scenes
quantitatively predicts human ability to
detect contours on complex backgrounds,
under a range of conditions!2.

Second, Weiss et al.! used the standard
utility function that corresponds to pick-
ing the interpretation with the maximum
posterior probability (Fig. 1, black dot in
lower middle panel). The choice of utili-
ty function should have a minor effect in
their situation, but the choice can be
important in some situations!®!4, For
example, if smaller errors have greater
utility than larger errors, and if the pos-
terior probability distribution contains a
tall narrow peak and a short wide peak,
then the maximum expected utility may
be at the short peak rather than the tall
peak. Also, the most appropriate utility
function when considering biological
vision is arguably one based on fitness!>.

Third, as Weiss et al.! point out, their
Bayesian model does not consider certain
fundamental biological constraints, such as
the limited dynamic range and limited
speed of neural responses. Such constraints
undoubtedly arise (ultimately) from bio-
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Wnt signals lead cells down the caudal path

During development, progenitor cells along the rostrocaudal axis of the neural tube are instructed to become forebrain, midbrain,
hindbrain or spinal cord. Cells of the caudal brain are believed to arise through reprogramming (‘caudalization’) of cells that initially

show characteristics of rostral brain. On page 525 of this issue, Thomas Edlund and
colleagues now report that Wnt signals from the posterior mesoderm are required for
caudalization. FGF and retinoic acid also contribute to the induction of midbrain,
hindbrain and spinal cord, but previous studies showed that these factors were not
sufficient on their own. Despite earlier indications that Wnt signals were involved in
specifying caudal brain character, because they have a variety of other functions in
development, it was unclear whether their role in caudalization was direct or
indirect. Therefore, the present work provides a crucial additional piece in this
developmental puzzle.

To examine the role of Wnt signaling, the authors used explant cultures of chick
neural plate along with immunohistochemical labeling for expression of a
combination of transcription factors which selectivity delineate the various brain
regions (yellow, rostral forebrain; red/green, rostral and caudal midbrain; light/dark
blue, rostral hindbrain). When explants of caudal neural plate were taken from a
stage at which the cells still exhibited primarily rostral characteristics and were co-
cultured with caudal mesoderm, cells expressed markers for caudal brain regions. If
Whnt signaling was inhibited, however, the cells retained their rostral character. If the
authors then cultured neural plate explants from a later stage when cells were
already specified to eventually make rostral, middle and caudal brain regions, they
found that Wnt signaling was still directly necessary for the induction of caudal
character. Finally, when explants from the eventual rostral forebrain region of the
neural plate were cultured in the presence of FGF and varying concentrations of
Wnt conditioned medium, the authors found that increasing concentrations of Wnt

resulted in expression of progressively more caudal brain markers. Therefore, the new results firmly establish a direct role for a
graded Wnt signal in directing the caudalization of neural plate cells during early neural tube development.

Brian Fiske
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