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Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning—Language acquisition; I.2.0 [Arti-
ficial Intelligence]: General—Cognitive simulation; H.5.2 [Information interfaces and representation]: User
Interfaces—Theory and methods
q �	
$�	�+��hb1�	�����InJr����7�
4iB�!,���'���I;$j(d6�Q�	��������
���#�����'

W5���$� �����'
$��Bs��	>M���'���$�-�
$�et("$�+�������n&kR�$� �������6�$����������
$��
�3$;����$� �������6�$�����
����	�+�!,�����'
g;�!	�'3'
$� ��� :��.������O
�	����
$3

1. INTRODUCTION

The next generation of computers is expected to interact and communicate with users in
a cooperative and natural manner while users engage in everyday activities. By being
situated in users’ environments, intelligent computers should have basic perceptual abili-
ties, such as understanding what people are talking about (speech recognition), what they
are looking at (visual object recognition) and what they are doing (action recognition).
Furthermore, similar to human counterparts, computers should acquire and then use the
knowledge of associations between different perceptual inputs. For instance, spoken words
of object names (sensed from auditory perception) are naturally correlated with visual ap-
pearances of the corresponding objects obtained from visual perception. Once machines
have that knowledge and those abilities, they can demonstrate many human-like behaviors
and perform many helpful acts. In the scenario of making a peanut-butter sandwich, for
example, when a user asks for a piece of bread verbally, a computer can understand that
the spoken word “bread” refers to some flat square piece on the kitchen table. Therefore,
with an actuator such as a robotic arm, the machine can first locate the position of the
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bread, then grasp and deliver it to the user. In another context, a computer may detect the
user’s attention and notice that the attentional object is a peanut butter jar, it can then utter
the object name and provide information related to peanut butter by speech, such as a set
of recipes or nutritional values. In a third example, a computer may be able to recognize
what the user is doing and verbally describe what it sees. The ability to generate verbal de-
scriptions of user’s behaviors is a precursor to making computers communicate with users
naturally. In this way, computers will seamlessly integrate into our everyday lives, and
work as intelligent observers and human-like assistants.

To progress toward the goal of anthropomorphic interfaces, computers need to not only
recognize the sound patterns of spoken words but also associate them with their percep-
tually grounded meanings. Two research fields are closely related to this topic: speech
recognition and multimodal human-computer interfaces. Unfortunately, both of them only
address some parts of the problem. They cannot provide a solution to the whole issue.

Most existing speech recognition systems can not achieve the goal because they purely
rely on statistical models of speech and language, such as hidden Markov models [Rabiner
and Juang 1989] and hybrid connectionist models [Lippmann 1989]. Typically, an auto-
matic speech recognition system consists of a set of modules: acoustic feature extraction,
acoustic modeling, word modeling and language modeling. The parameters of acoustic
models are estimated using training speech data. Word models and a language model are
trained using text corpora. After training, the system can decode speech signals into rec-
ognized word sequences using acoustic models, language models and word network. This
kind of systems has two inherent disadvantages. First, they require a training phase in
which large amounts of spoken utterances paired with manually labeled transcriptions are
needed to train the model parameters. This training procedure is time-consuming and needs
human expertise to label spoken data. Second, these systems transform acoustic signals to
symbolic representations (texts) without regard to their perceptually grounded meanings.
Humans need to interpret the meanings of these symbols based on our own knowledge. For
instance, a speech recognition system can map the sound pattern “jar” to the string “jar”,
but it does not know its meaning.

In multimodal human-computer interface studies, researchers mainly focus on the design
of multimodal systems with performance advantages over unimodal ones in the context of
different types of human-computer interaction [Oviatt 2002]. The technical issue here is
multimodal integration – how to integrate signals in different modalities. There are two
types of multimodal integration, one is to merge signals at the sensory level and the other
at a semantic level. The first approach is most often used in such applications that the data
is closely coupled in time, such as speech and lip movements. At each timestamp, sev-
eral features extracted from different modalities are merged to form a higher-dimensional
representation, which is then used as input of the classification system usually based on
multiple HMMs or temporal neural networks. Multimodal systems using semantic fusion
include individual recognizers and a sequential integration process. These individual rec-
ognizers can be trained using unimodal data, which can then be integrated directly without
re-training. Integration is thus an assembling process that occurs after each unimodal pro-
cessing system has already made decisions based on the individual inputs. However, no
matter based on feature or semantic fusion, most systems do not have learning ability in
the sense that developers need to encode knowledge into some symbolic representations or
probabilistic models during the training phase. Once the systems are trained, they are not

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



� 3

able to automatically gain additional knowledge even though they are situated in physical
environments and can obtain multisensory information.

We argue that the shortcomings described above lie in the fact that sensory perception
and knowledge acquisition of machine are quite different from those of human counter-
parts. For instance, humans learn language based on their sensorimotor experiences with
the physical environment. We learn words by sensing the environment through our per-
ceptual systems, which do not provide the labeled or preprocessed data. Different levels
of abstraction are necessary to efficiently encode those sensorimotor experiences, and one
vital role of human brain is to map those embodied experiences with linguistic labels (sym-
bolic representations). Therefore, to communicate with humans in daily life, a challenge in
machine intelligence is how to acquire the semantics of words in a language from cognitive
and perceptual experiences. This challenge is relevant to the symbol grounding problem
[Harnad 1990]: establishing correspondences between internal symbolic representations in
an intelligent system situated in the physical world (e.g., a robot or an embodied agent) and
sensory data collected from the environment. We believe that computationally modeling
how humans ground semantics is a key to understanding our own minds and ultimately
creating embodied learning machines.

This paper describes a multimodal learning system that is able to learn perceptually
grounded meanings of words from users’ everyday activities. The only requirement is that
users need to describe their behaviors verbally while performing those day-to-day tasks.
To learn a word (shown in Figure 1), the system needs to discover its sound pattern from
continuous speech, recognize its meaning from non-speech context, and associate these
two. Since no manually labeled data is involved in the learning process, the range of
problems we need to address in this kind of word learning is substantial. To make concrete
progress, this paper focuses on how to associate visual representations of objects with their
spoken names and map body movements to action verbs.

In our system, perceptual representations are extracted from sensory data and used as
perceptually grounded meanings of spoken words. This is based on evidence that from an
early age, human language learners are able to form perceptually-based categorical rep-
resentations [Quinn et al. 1993]. Those categories are highlighted by the use of common
words to refer to them. Thus, the meaning of the word “dog” corresponds to the category
of dogs, which is a mental representation in the brain. Furthermore, [Schyns and Rodet]
argued that the representations of object categories emerge from the features that are per-
ceptually learned from visual input during the developmental course of object recognition
and categorization. In this way, object naming by young children is essentially about map-
ping words to selected perceptual properties. Most researchers agree that young language
learners generalize names to new instances on the basis of some similarity but there are
many debates about the nature of similarity (see a review in Landau et al. 1998). It has
been shown that shape is generally attended to for solid rigid objects, and children attend
to other specific properties, such as texture,size or color, of the objects that have eyes or
are not rigid [Smith et al. 1996]. In light of the perceptual nature of human categorization,
our system represents object meanings as perceptual features consisting of shape, color
and texture features extracted from the visual appearances of objects. The categories of
objects are formed by clustering those perceptual features into groups. Our system then
chooses the centroid of each category in the perceptual feature space as a representation
of the meaning of this category, and associate this feature representation with linguistic
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labels. The meanings of actions verbs are described in terms of motion profiles in our sys-
tem, which do not encapsulate inferences about causality ,function and force dynamics (see
[Siskind 2001] for an good example). We understand that those meanings for object names
and action verbs (mental representations in our computational system) are simplified and
may not be the exact same with the concepts in the brain (mental representations in the
user’s brain) because it depends on how machines judge the content of the user’s mental
states when he/she utters the speech. In addition, many human concepts cannot be simply
characterized in easy perceptual terms (see further discussions about concepts from differ-
ent views in [Gopnik and Meltzoof 1997; Keil 1989]). However, as long as we agree that
meanings are some mental entities in the user’s brain and that the cognitive structures in the
user’s brain are connected to his/her perceptual mechanisms, then it follows that meanings
should be at least partially perceptually grounded. Since we focus on automatic language
learning but not concept learning in this work, a hypothesis here is that the form we store
perceptions has the same form as the meanings of words [Gardenfors 1999]. Therefore,
we use the form of perceptual representation that can be directly extracted from sensory
data to represent meanings.

To learn perceptually grounded semantics, the essential ideas of our system are to iden-
tify the sound patterns of individual words from continuous speech using non-linguistic
contextual information and employ body movements as deictic references to discover
word-meaning associations. Our work suggests a new trend in developing human-computer
interfaces that can automatically learn spoken language by sharing user-centric multisen-
sory information. This advent represents the beginning of an ongoing progression toward
computational systems capable of human-like sensory perception [Weng et al. 2001].

ay eh m r iy hh ch in ng uh
ow v axr eh n d pcl p iy kcl k
ih ng ah hh p ae h iy sh iy s
ow f p ey pcl p hh er eh n  em
pcl p uh dcl d ih ng th eh p ay
p er l ay m d uh p s t ey p l in
ng eh p ey pcl p er eh hh gcl
g ow ih ux hh f ow l d dh eh p
ey p er r z p l ey z  ch eh m eh
t th eh s b ow t h ih er ih.

f ow l d

p iy kcl k
ih ng ah hh p

s t ey p l in
ng

p l ey z

l ay m d uh p

ay eh m r iy hh ch in ng uh
ow v axr eh n d pcl p iy kcl k
ih ng ah hh p ae h iy sh iy s
ow f p ey pcl p hh er eh n  em
pcl p uh dcl d ih ng th eh p ay
p er l ay m d uh p s t ey p l in
ng eh p ey pcl p er eh hh gcl
g ow ih ux hh f ow l d dh eh p
ey p er r z p l ey z ch eh m eh
t th eh s b ow t h ih er ih.

I am reaching over
and picking up a few
sheets of paper. I am
putting the paper
lined up. Stapling the
paper. I am going to
fold the papers. Place
them at  the spot
here.

phoneme sequence
picking up lined up paper

stapling

fold

place

p ey pcl p hh er

p ey pcl p er

p ay
p er

p
ey per r z

Fig. 1. The problems in word learning. The raw speech is first converted to phoneme sequences. The goal of
our method is to discover phoneme substrings that correspond to the sound patterns of words and then infer the
grounded meanings of those words from non-speech modalities.
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2. BACKGROUND

Language is about symbols and humans ground those symbols in sensorimotor experiences
during their development [Lakoff and Johnson 1980]. To develop a multimodal learning
interface for word acquisition, it is helpful to make use of our knowledge of human lan-
guage development to guide the design of our approach. English-learning infants first
display some ability to segment words at about 7.5 months [Jusczyk and Aslin 1995]. By
24 months, the speed and accuracy with which infants identify words in fluent speech is
similar to that of native adult listeners. A number of relevant cues have been found that are
correlated with the presence of word boundaries and can potentially signal word bound-
aries in continuous speech (see [Jusczyk 1997] for a review). Around 6 to 12 months is
the stage of grasping the first words. A predominant proportion of most children’s first vo-
cabulary (the first 100 words or so), in various languages and under varying child-rearing
conditions, consist of object names, such as food, clothing and toys. The second large
category is the set of verbs that is mainly limited to action terms. Gillette et al. [Gillette
et al. 1999] showed that learnability of a word is primarily based upon its imageability
or concreteness. Therefore, most object names and action verbs are learned before other
words because they are more observable and concrete. Next, infants move to the stage of
vocabulary spurt or naming explosion, in which they start learning large amounts of words
much more rapidly than before. At the meanwhile, grammar gradually emerges from the
lexicon, both of which share the same mental-neural mechanisms [Bates and Goodman
1999]. Many of the later learned words correspond to abstract notions (e.g., noun:“idea”,
verb:“think”) and are not directly grounded in embodied experiences. However, Lakoff
and Johnson [Lakoff and Johnson 1980] proposed that all human understanding is based
on metaphorical extension of how we perceive our own bodies and their interactions with
the physical world. Thus, the initial and imageable words directly grounded in physical
embodiment serve as a foundation for the acquisition of abstract words and syntax that
become indirectly grounded through their relations to those grounded words. Therefore,
the initial stage of language acquisition, in which infants deal primarily with the grounding
problem, is critical in this semantic bootstrapping procedure because it provides a sensori-
motor basis for further development.

The experimental studies have yielded insights into perceptual abilities of young chil-
dren and provided informative constraints in building computational systems that can ac-
quire language automatically. Recent computational models address the problems of both
speech segmentation and lexical learning. A good survey of the related computational
studies of speech segmentation can be found in [Brent 1999], in which several methods
are explained, their performance in computer simulations is summarized, and behavioral
evidence bearing on them is discussed. Among them, Brent and Cartwright [Brent and
Cartwright 1996] have encoded information of distributional regularity and phonotactic
constraints in their computational model. Distributional regularity means that sound se-
quences occurring frequently and in a variety of contexts are better candidates for the
lexicon than those that occur rarely or in few contexts. The phonotactic constraints include
both the requirement that every word must have a vowel and the observation that languages
impose constraints on word-initial and word-final consonant clusters. Most computational
studies, however, use phonetic transcriptions of text as input and do not deal with raw
speech. From a computational perspective, they simplified the problem by not coping with
the acoustic variability of spoken words in different contexts and by various talkers. As
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a result, their methods cannot be directly applied to develop computational systems that
acquire lexicons from raw speech.

Siskind [Siskind 1995] developed a mathematical model of lexical learning based on
cross-situational learning and the principle of contrast, which learned word-meaning as-
sociations when presented with paired sequences of pre-segmented tokens and semantic
representations. Regier’s work [Regier 1996] was about modeling how some lexical items
describing spatial relations might develop in different languages. Bailey [Bailey 1997]
proposed a computational model that learns to not only produce verb labels for actions
but also carry out actions specified by verbs that it has learned. A good review of word
learning models can be found in [Regier 2003]. Different from most other symbolic mod-
els of vocabulary acquisition, physical embodiment has been appreciated by the works of
[Roy 2002; Roy and Pentland 2002] and [Steels and Vogt 1997]. Steels and Vogt showed
how a coherent lexicon may spontaneously emerge in a group of robots engaged in lan-
guage games and how a lexicon may adapt to cope with new meanings that arise. Roy
and Pentland [Roy and Pentland 2002] implemented a model of early language learning
which can learn words and their semantics from raw sensory input. They used the tem-
poral correlation of speech and vision to associate spoken utterances with a corresponding
object’s visual appearance. However, the associated visual and audio corpses are collected
separately from different experimental setups in Roy’s system. Specifically, audio data are
gathered from infant-caregiver interactions while visual data of individual objects are cap-
tured by a CCD camera on a robot. Thus, audio and visual inputs are manually correlated
based on the co-occurrence assumption, which claims that words are always uttered when
their referents are perceived. Roy’s work is groundbreaking but leaves two important areas
for improvement. The first is that the co-occurrence assumption has not been verified by
experimental studies of human language learners (e.g., infants learning their native lan-
guage [Bloom 2000]). We argue that this assumption is not reliable and appropriate for
modeling human language acquisition and statistical learning of audio-visual data is un-
likely to be the whole story for automatic language acquisition. The second issue is that
Roy’s work does not include the intentional signals of the speaker when he/she utters the
speech. We show that they can provide pivotal constraints to improve performance.

3. A MULTIMODAL LEARNING INTERFACE

Recent psycholinguistic studies (e.g., [Baldwin et al. 1996]; [Bloom 2000]; [Tomasello
2000]) have shown that a major source of constraint in language acquisition involves so-
cial cognitive skills, such as children’s ability to infer the intentions of adults as adults act
and speak to them. These kinds of social cognition are called mind reading by [Baron-
Cohen 1995]. Bloom [Bloom 2000] argued that children’s word learning actually draws
extensively on their understanding of the thoughts of speakers. His claim has been sup-
ported by the experiments in which young children were able to figure out what adults were
intending to refer to by speech. In a complementary study of embodied cognition, Ballard
and colleagues [Ballard et al. 1997] proposed that orienting movements of the body play
a crucial role in cognition and form a useful computational level, termed the embodiment
level. At this level, the constraints of the body determine the nature of cognitive opera-
tions, and the body’s pointing movements are used as deictic references to bind objects
in the physical environment to cognitive programs of our brains. Also, in the studies of
speech production, Meyer et al. [Meyer et al. 1998] showed that the speakers’ eye move-
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ments are tightly linked to their speech output. They found that when speakers were asked
to describe a set of objects from a picture, they usually looked at each new object before
mentioning it, and their gazes remained on the object until they are about to say the last
word about it.

By putting together the findings from these cognitive studies, we propose that speak-
ers’ body movements, such as eye movements, head movements and hand movements, can
reveal their referential intentions in verbal utterances, which could play a significant role
in automatic language acquisition in both computational systems and human counterparts
[Yu et al. 2003; Yu and Ballard 2003]. To support this idea, we provide an implemented
system to demonstrate how inferences of speaker’s referential intentions from their body
movements, which we term embodied intention, can facilitate acquiring grounded lexical
items. In our multimodal learning interface, a speaker’s referential intentions are estimated
and utilized to facilitate lexical learning in two ways. First, possible referential objects in
time provide cues for word spotting from a continuous speech stream. Speech segmenta-
tion without prior language knowledge is a challenging problem and has been addressed by
solely using linguistic information. In contrast, our method emphasizes the importance of
non-linguistic contexts in which spoken words are uttered. We propose that the sound pat-
terns frequently appearing in the same context are likely to have grounded meanings related
to this context. Thus, by finding frequently uttered sound patterns in a specific context (e.g.,
an object that users intentionally attend to), the system discovers word-like sound units as
candidates for building lexicons. Second, a difficult task of word learning is to figure out
which entities specific words refer to from a multitude of co-occurrences between spoken
words (from auditory perception) and things in the world (from non-auditory modalities,
such as visual perception). This is accomplished in our system by utilizing speakers’ in-
tentional body movements as deictic references to establish associations between spoken
words and their perceptually grounded meanings.

To ground language, the computational system needs to have sensorimotor experiences
by interacting with the physical world. Our solution is to attach different kinds of sensors
to a real person to share his/her sensorimotor experiences as shown in Figure 2. Those
sensors include a head-mounted CCD camera to capture a first-person point of view, a mi-
crophone to sense acoustic signals, an eye tracker to track the course of eye movements
that indicate the agent’s attention, and position sensors attached to the head and hands of
the agent to simulate proprioception in the sense of motion. The functions of those sensors
are similar to human sensory systems and they allow the computational system to collect
user-centric multisensory data to simulate the development of human-like perceptual ca-
pabilities. In the learning phase, the human agent performs some everyday tasks, such
as making a sandwich, pouring some drinks or stapling a letter, while describing his/her
actions verbally. We collect acoustic signals in concert with user-centric multisensory in-
formation from non-speech modalities, such as user’s perspective video, gaze positions,
head directions and hand movements. A multimodal learning algorithm is developed that
first spots words from continuous speech and then builds the grounded semantics by as-
sociating object names and action verbs with visual perception and body movements. To
learn words from user’s spoken descriptions, three fundamental problems needed to be ad-
dressed are: (1) action recognition and object recognition to provide grounded meanings of
words encoded in non-speech contextual information, (2) speech segmentation and word
spotting to extract the sound patterns that correspond to words, (3) association between
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spoken words and their perceptually grounded meanings.

Fig. 2. The learning system shares multisensory information with a real agent in a first-person sense. This allows
the association of coincident signals in different modalities.

4. REPRESENTING AND CLUSTERING NON-SPEECH PERCEPTUAL INPUTS

The non-speech inputs of the system consist of visual data from a head-mounted camera,
head and hand positions in concert with gaze-in-head data. Those data provide contexts
in which spoken utterances are produced. Thus, the possible meanings of spoken words
that users utter are encoded in those contexts, and we need to extract those meanings from
raw sensory inputs. Specifically, the system should spot and recognize actions from user’s
body movements, and discover the objects of user interest. In implementation, we observe
that in accomplishing well-learned tasks, the user’s focus of attention is linked with body
movements. In light of this, our method first uses eye and head movements as cues to
estimate the user’s focus of attention. Attention, as represented by gaze fixation, is then
utilized for spotting the target objects of user interest. Attention switches are calculated
and used to segment a sequence of hand movements into action units which are then cat-
egorized by Hidden Markov Models (HMMs). The results are two temporal sequences
of perceptually grounded meanings (objects and actions) as depicted by the box labeled
“contextual information” in Figure 9.

4.1 Estimating focus of attention

Eye movements are closely linked with visual attention. This gives rise to the idea of utiliz-
ing eye gaze and head direction to detect the speaker’s focus of attention. We developed a
velocity-based method to model eye movements using a hidden Markov model representa-
tion that has been widely used in speech recognition with great success [Rabiner and Juang
1989]. A hidden Markov model consists of a set of

�
states �������	��
����
�����
������
������ , the

transition probability matrix ��������� , where ����� is the transition probability of taking
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the transition from state ��� to state � � , prior probabilities for the initial state � � , and out-
put probabilities of each state

� �������	��
�
 �� �����	��
�� ������
 � �� � . Salvucci et al.[Salvucci
and Anderson 1998] first proposed a HMM-based fixation identification method that uses
probabilistic analysis to determine the most likely identifications of a given protocol. Our
approach is different from his in two ways. First, we use training data to estimate the tran-
sition probabilities instead of setting pre-determined values. Second, we notice that head
movements provide valuable cues to model focus of attention. This is because when users
look toward an object, they always orient their heads toward the object of interest so as to
make it in the center of their visual fields. As a result of the above analysis, head positions
are integrated with eye positions as the observations of HMM.

A 2-state HMM is used in our system for eye fixation finding. One state corresponds
to saccade and the other represents fixation. The observations of HMM are 2-dimensional
vectors consisting of the magnitudes of the velocities of head rotations in three dimensions
and the magnitudes of velocities of eye movements. We model the probability densities of
the observations using a two-dimensional Gaussian. The parameters of HMMs needing to
be estimated comprise the observation and transition probabilities. Specifically, we need
to compute the means ( � ����
�� ��� ) and variances ( ������
�� ��� ) of two-dimensional Gaussian for
� � state and the transition probabilities between two states. The estimation problem con-
cerns how to adjust the model � to maximize ����������
 given an observation sequence
� of gaze and head motions. We can initialize the model with flat probabilities, then the
forward-backward algorithm [Rabiner and Juang 1989] allows us to evaluate this proba-
bility. Using the actual evidence from the training data, a new estimate for the respective
output probability can be assigned:

 � � �
!#"$	% �'& $ �)(*
�� $!+"$	% �'& $ �)(*


(1)

and

 � � �
!+"$	% �'& $ �)(*
,��� $.-  � �/
,��� $0-  � �/
 "! "$	% �'& $ �)(*


(2)

where & $ �)(*
 is defined as the posterior probability of being in state �� at time � given the
observation sequence and the model.

As learning results, the saccade state contains an observation distribution centered around
high velocities and the fixation state represents the data whose distribution is centered
around low velocities. The transition probabilities for each state represent the likelihood
of remaining in that state or making a transition to another state. An example of the results
of eye data analysis is shown in Figure 3.

4.2 Attentional Object Spotting

Knowing attentional states allows for automatic object spotting by integrating visual infor-
mation with eye gaze data. For each attentional point in time, the object of user interest
is discovered from the snapshot of the scene. Multiple visual features are then extracted
from the visual appearance of the object which are used for object categorization. Figure 4
shows an overview of our approach [Yu et al. 2002] .

4.2.1 Object Spotting. Attentional object spotting consists of two steps. First, the
snapshots of the scene are segmented into blobs using ratio-cut [Wang and Siskind 2003].
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Fig. 3. Eye fixation finding. The top plot: The speed profile of head movements. The middle plot: Point-to-
point magnitude of velocities of eye positions. The bottom plot: A temporal state sequence of HMM (the label
“fixation” indicates the fixation state and the label “movement” represents the saccade state).
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Fig. 4. The overview of attentional object spotting

The result of image segmentation is illustrated in Figure 6(b) and only blobs larger than
a threshold are used. Next, we group those blobs into several semantic objects. Our ap-
proach starts with the original image, uses gaze positions as seeds and repeatly merges the
most similar regions to form new groups until all the blobs are labeled. Eye gaze in each
attentional time is then utilized as a cue to extract the object of user interest from all the
detected objects.

We use color as the similarity feature for merging regions. ��������� color space is
adopted to overcome undesirable effects caused by varied lighting conditions and achieve
more robust illumination-invariant segmentation. �����	�
� color consists of a luminance or
lightness component (L*) and two chromatic components: the a* component (from green
to red) and the b* component (from blue to yellow). To this effect, we compute in the�������� color space the similarity distance between two blobs and employ the histogram
intersection method proposed by [Swain and Ballard 1991]. If ��� and �	� denote the color
histograms of two regions � and � , their histogram intersection is defined as:

��� ���������
��� "!�#%$'&)( � �

 
� �*�

 
� �� � "!�# � �

 
�,+ �

 
� � (3)

where n is the number of bin in color histogram, and -/. ��� �����0��.�-21 3 . Two neighboring
regions are merged into a new region if the histogram intersection

�4� ������� is between a
threshold 5�6 � -7.8596:.;-<1=3>� and -21 3 . While this similarity measure is fairly simple, it
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Algorithm: object segmentation based on gaze fixations
Initialization:

Compute the color histogram of each region.
Label seed regions according to the positions of gaze fixations.
Merge seed regions that are neighbors to each other and are close with respect to their similarity.
Put neighboring regions of seed regions in the SSL.

Merging:
While the SSL is not empty

Remove the top region � from SSL.
Compare the similarity between � and all the regions in ��� and find the closest seed region � .
Merge the regions � and � and compute the color histogram of new region �����
	�� .
Test each neighboring region �� of � :

If ��� is labeled as a seed region
Merge the region with � if they are similar.

Otherwise
Add the region to the SSL according to its color similarity with � , ������������ .

Fig. 5. The algorithm for merging blobs

is remarkably effective in determining color similarity between regions of multi-colored
objects.

The approach of merging blobs is based on a set of regions selected by a user’s gaze
fixations, termed seed regions. We start with a number of seed regions � � 
�� � 
������
���� , in
which n is the number of regions that the user was attending to. Given those seed regions,
the merging process then finds a grouping of the blobs into semantic objects with the
constraint that the regions of a visual object are chosen to be as homogeneous as possible.
The process evolves inductively from the seed regions. Each step involves the addition of
one blob to one of the seed regions and the merging of neighbor regions based on their
similarities.

In the implementation, we make use of a Sequentially Sorted List (SSL) [Adams and
Bischof 1994] that is a linked list of blobs ordered according to some attribute. In each
step of our method, we consider the blob at the beginning of the list. When adding a new
blob to the list, we place it according to its value of the ordering attribute so that the list is
always sorted based on the attribute. Let ����� ��� �� 
�� �� 
 ������
�� �� � be the set of immediate
neighbors of the blob � , which are seed regions. For all the regions in ��� , the seed region
that is closest to � is defined as:

� ���! #"�$%�'&�
( � ��
�� �� 
*),+.-0/1-32 (4)

where
( � ��
�� �� 
 is the similarity distance between region � and � �� based on the selected

similarity feature. The ordering attribute of region � is then defined as
( � ��
 � 
 . The

merging procedure is illustrated in Figure 5. Figure 6 shows how these steps are combined
to get an attentional object.

4.2.2 Object Representation and Categorization. The visual representation of the ex-
tracted object contains color, shape and texture features. Based on the works of [Mel 1997],
we construct the visual features of objects which are large in number, invariant to different
viewpoints, and driven by multiple visual cues. Specifically, 64-dimensional color features
are extracted by a color indexing method [Swain and Ballard 1991], and 48-dimensional
shape features are represented by calculating histograms of local shape properties [Schiele
and Crowley 2000]. The Gabor filters with three scales and five orientations are applied
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(a) (b) (c)

Fig. 6. Left: The snapshot image with eye positions (black crosses). Middle: The results of low-level image
segmentation. Right: Combining eye position data with the segmentation to extract an attended object.

to the segmented image. It is assumed that the local texture regions are spatially homo-
geneous, and the mean and the standard deviation of the magnitude of the transform co-
efficients are used to represent an object in a 48-dimensional texture feature vector. The
feature representations consisting of a total of 160 dimensions are formed by combining
color, shape and texture features, which provide fundamental advantages for fast, inexpen-
sive recognition. Most pattern recognition algorithms, however, do not work efficiently in
high dimensional spaces because of the inherent sparsity of the data. This problem has
been traditionally referred to as the dimensionality curse. In our system, we reduced the
160-dimensional feature vectors into the vectors of dimensionality 15 by principle compo-
nent analysis (PCA), which represents the data in a lower dimensional subspace by pruning
away those dimensions with the least variance. Next, since the feature vectors extracted
from visual appearances of attentional objects do not occupy a discrete space, we vector
quantize them into clusters by applying a hierarchical agglomerative clustering algorithm
[Hartigan 1975]. Finally, we select a prototype to represent perceptual features of each
cluster.

4.3 Segmenting and Clustering Motion Sequences

Recent results in visual psychophysics [Land et al. 1999; Hayhoe 2000; Land and Hayhoe
2001] indicate that in natural circumstances, the eyes, the head, and hands are in contin-
ual motion in the context of ongoing behavior. This requires the coordination of these
movements in both time and space. Land et al. [Land et al. 1999] found that during the
performance of a well-learned task (making tea), the eyes closely monitor every step of
the process although the actions proceed with little conscious involvement. Hayhoe [Hay-
hoe 2000] has shown that eye and head movements are closely related to the requirements
of motor tasks and almost every action in an action sequence is guided and checked by
vision, with eye and head movements usually preceding motor actions. Moreover, their
studies suggested that the eyes always look directly at the objects being manipulated. In
our experiments, we confirm the conclusions by Hayhoe and Land. For example, in the
action of “picking up a cup”, the subject first moves the eyes and rotates the head to look
toward the cup while keeping the eye gaze at the center of view. The hand then begins to
move toward the cup. Driven by the upper body movement, the head also moves toward
the location while the hand is moving. When the arm reaches the target place, the eyes are
fixating on it to guide the action of grasping.

Despite the recent discoveries of the coordination of eye, head and hand movements in
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cognitive studies, little work has been done in utilizing these results for machine under-
standing of human behavior. In this work, our hypothesis is that eye and head movements,
as an integral part of the motor program of humans, provide important information for ac-
tion recognition of human activities. We test this hypothesis by developing a method that
segments action sequences based on the dynamic properties of eye gaze and head direction,
and applies Dynamic Time Warping (DTW) and HMM to cluster temporal sequences of
human motion [Yu and Ballard 2002a; 2002b].

Humans perceive an action sequence as several action units [Kuniyoshi and Inoue 1993].
This gives rise to the idea that the segmentation of a continuous action stream into action
primitives is the first step toward understanding human behaviors. With the ability to
track the course of gaze and head movements, our approach uses gaze and head cues to
detect user-centric attention switches that can then be utilized to segment human action
sequences.

We observe that actions can occur in two situations: during eye fixations and during
head fixations. For example, in a “picking up” action, the performer focuses on the object
first firstly, then the motor system moves a hand to approach it. During the procedure
of approaching and grasping, the head moves toward the object as the result of upper
body movements, but eye gaze remains stationary on the target object. The second case
includes such actions as “pouring water” in which the head fixates on the object involved
in the action. During the head fixation, eye-movement recordings show that there can be a
number of eye fixations. For example, when the performer is pouring water, he spends five
fixations on the different parts of the cup and one look-ahead fixation to the location where
he will place the waterpot after pouring. In this situation, the head fixation is a better cue
than eye fixations to segment the actions.

Based on the above analysis, we develop an algorithm for action segmentation, which
consists of the following three steps:

(1) Head fixation finding is based on the orientations of the head. We use 3D orientations
to calculate the speed profile of the head, as shown in the first two rows of Figure 7.

(2) Eye fixation finding is accomplished by a velocity-threshold-based algorithm. A sam-
ple of the results of eye data analysis is shown in the third and fourth rows of Figure 7.

(3) Action Segmentation is achieved by analyzing head and eye fixations, and partition-
ing the sequence of hand positions into action segments (shown in the bottom row of
Figure 7) based on the following three cases:
—A head fixation may contain one or multiple eye fixations. This corresponds to

actions, such as “unscrewing”. “Action 3” in the bottom row of Figure 7 represents
this kind of action.

—During the head movement, the performer fixates on the specific object. This situa-
tion corresponds to actions, such as “picking up”. “Action 1” and “Action 2” in the
bottom row of Figure 7 represent this class of actions.

—During the head movement, eyes are also moving. It is most probable that the
performer is switching attention after the completion of the current action.

We collect the raw position ��� 
�� 
���
 and the rotation � ( 
�� 
	� 
 data of each action unit
from which feature vectors are extracted for recognition. We want to recognize the types of
motion not the accurate trajectory of the hand because the same action performed by differ-
ent people varies. Even in different instances of a simple action of “picking up” performed
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Head rotation
speed (degree)

Head fixation

Eye fixation

Eye speed
(degree)

action 1 action 2 action 3hand movement

Fig. 7. Segmenting actions based on head and eye fixations. The first two rows: point-to-point speeds of head
data and the corresponding fixation groups (1–fixating, 0–moving).The third and fourth rows: eye movement
speeds and the eye fixation groups (1–fixating, 0–moving) after removing saccade points. The bottom row: the
results of action segmentation by integrating eye and head fixations.

by the same person, the hand goes roughly in different trajectories. This indicates that we
can not directly use the raw position data to be the features of the actions. As pointed out
by Campbell et al. [Campbell et al. 1996], features designed to be invariant to shift and
rotation perform better in the presence of shifted and rotated input. The feature vectors
should be chosen so that large changes in the action trajectory produce relatively small
excursions in the feature space, while the different types of motion produce relatively large
excursions. In the context of our experiment, we calculated three element feature vectors
consisting of the hand’s speed on the table plane ( �

�
� ��� � � ), the speed in the z-axis, and

the speed of rotation in the 3 dimensions ( �
� ( ��� � ��� � � ).

Let � denote a hand motion trajectory that is a multivariate time series spanning n time
steps such that � � � � $ ��+ - �
- 2 � . � $ is a vector of values containing one element
for the value of each of the component univariate time series at time � . Given a set of �
multivariate time series of hand motion, we want to obtain in an unsupervised manner a
partition of these time series into subsets such that each cluster corresponds to a quali-
tatively different regime. Our clustering approach is based on the combination of HMM
(described briefly in Section 4.1) and Dynamic Time Warping [Oates et al. 1999]. Given
two time series � � and � � , DTW finds the warping of the time dimension in � � , which
minimizes the difference between two series.

We model the probability of individual observation (a time series S) as generated by a
finite mixture model of � component HMMs [Smyth 1997]:

� � � 
 �
�
	

 % �

� 
 � � � � 
 
 �0��� 
 
 (5)

where � ��� 
 
 is the prior probability of  th HMM and � 
 � � � � 
 
 is the generative probability
given the  th HMM with its transition matrix, observation density parameters, and initial
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state probabilities. � 
 � � � � 
 
 can be computed via the forward part of the forward-backward
procedure. Assume that the number of clusters � is known, the algorithm for clustering
sequences into � groups can be described in terms of three steps:

—given � time series, construct a complete pairwise distance matrix by invoking DTW
� ��� - +�
���� times. Use the distance matrix to cluster the sequences into � groups by
employing a hierarchical agglomerative clustering algorithm [Hartigan 1975].

—fit one HMM for each individual group and train the parameters of the HMM. � � � 
 
 is
initialized to � 
 ��� where � 
 is the number of sequences which belong to cluster  .

—iteratively reestimate the parameters of all the  HMMs in the Baum-welch fashion
using all of the sequences [Rabiner and Juang 1989]. The weight that a sequence �
has in the reestimation of  th HMM is proportional to the log-likelihood probability of
the sequence given that model ���!" � 
 � � � � 
 
 . Thus, sequences with bigger generative
probabilities for a HMM have greater influence in reestimating the parameters of that
HMM.

The intuition of the procedure is as follows: since the Baum-Welch algorithm is hill-
climbing the likelihood surface, the initial conditions critically influence the final results.
Therefore, DTW-based clustering is used to get a better estimate of the initial parameters
of HMMs so that the Baum-Welch procedure will not converge to a local maximum only.
In the reestimation, sequences that are more likely generated by a specific model cause the
parameters of that HMM to change in such a way that it further fits for modeling a specific
group of sequences.

5. SPEECH PROCESSING

This section presents the methods of phoneme recognition and phoneme string comparison
[Ballard and Yu 2003], which provide a basis for word-meaning association.

5.1 Phoneme Recognition

An endpoint detection algorithm was implemented to segment a speech stream into several
spoken utterances. Then the speaker-independent phoneme recognition system developed
by Robinson [Robinson 1994] is employed to convert spoken utterances into phoneme se-
quences. The method is based on Recurrent Neural Networks (RNN) that perform the
mapping from a sequence of the acoustic features extracted from raw speech to a sequence
of phonemes. The training data of RNN are from the TIMIT database — phonetically
transcribed American English speech — which consists of read sentences spoken by 630
speakers from eight dialect regions of the United States. To train the networks, each sen-
tence is presented to the recurrent back-propagation procedure. The target outputs are
set using the phoneme transcriptions provided in the TIMIT database. Once trained, a
dynamic programming match is made to find the most probable phoneme sequence of a
spoken utterance (e.g. the boxes labeled with “phoneme strings” in Figure 9).

5.2 Comparing Phoneme Sequences

The comparison of phoneme sequences has two purposes in our system: one is to find the
longest similar substrings of two phonetic sequences (word-like units spotting described in
Subsection 6.1), and the other is to cluster segmented utterances represented by phoneme
sequences into groups (word-like units clustering presented in Subsection 6.2). In both
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Algorithm: phonetic string comparison
for � ��� to � do� ������
end for
for � ��� to 	 do� ��
1���
end for
for � ��� to � do

for �1������ to ����� do
�!� 
 ����������� ������� 
�� �!�#"%$ �,� �&�'
��)('*+� �( ",$ �����.-�
�����*/� �( "%$ �,� �&-�
�*

� ������� 
��)(0��",$ �����&-�
�����*+� �( ",$ �����&-�
�* �
� ������� 
1�2"��43+5/$ ����* �
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�* �
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�* �

end for
end for

Fig. 8. The algorithm for computing the similarity of two phonetic strings

cases, an algorithm of the alignment of phoneme sequences is a necessary step. Given raw
speech input, the specific requirement here is to cope with the acoustic variability of spoken
words in different contexts and by various talkers. Due to this variation, the outputs of the
phoneme recognizer described above are noisy phoneme strings that are different from
phonetic transcriptions of text. In this context, the goal of phonetic string matching is to
identify sequences that might be different actual strings, but have similar pronunciations.

5.2.1 Similarity between individual phonemes. To align phonetic sequences, we first
need a metric for measuring distances between phonemes. We represent a phoneme by
a 12-dimensional binary vector in which every entry stands for a single articulatory fea-
ture called a distinctive feature. Those distinctive features are indispensable attributes of
a phoneme that are required to differentiate one phoneme from another in English [Lade-
foged 1993]. In a feature vector, the number one represents the presence of a feature in a
phoneme and zero represents the absence of that feature. When two phonemes differ by
only one distinctive feature, they are known as being minimally distinct from each other.
For instance, phonemes /p/ and /b/ are minimally distinct because the only feature that
distinguishes them is “voicing”. We compute the distance ��� /�
�(*
 between two individual
phonemes as the Hamming distance which sums up all value differences for each of the
12 features in two vectors. The underlying assumption of this metric is that the number of
binary features in which two given sounds differ is a good indication of their proximity.
Moreover, phonological rules can often be expressed as a modification of a limited number
of feature values. Therefore, sounds that differ in a small number of features are more
likely to be related.

We compute the similarity matrix that consists of 2�@ 2 elements where 2 is the number
of phonemes. Each element is assigned to a score which represents the similarity of two
phonemes. The diagonal elements are set to a positive value � as the rewards of matching
(with the same phoneme). The other elements in the matrix are assigned to negative values- ��� /�
�(*
 which correspond to the distances of distinctive features between two phonemes.
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5.2.2 Alignment of two phonetic sequences. The outputs of the phoneme recognizer
are phonetic strings with timestamps of the beginning and the end of each phoneme. We
subsample the phonetic strings so that symbols in the resulting strings contain the same
duration. The concept of similarity is then applied to compare phonetic strings. A simi-
larity scoring scheme assigns positive scores to pairs of matching segments and negative
scores to pairs of dissimilar segments. The optimal alignment is the one that maximizes
the overall score. The advantage of the similarity approach is that it implicitly includes the
length information in comparing the segments. Fundamental to the algorithm is the notion
of string-changing operations of Dynamic Programming (DP). To determine the extent to
which two phonetic strings differ from each other, we define a set of primitive string op-
erations, such as insertion and deletion. By applying those string operations, one phonetic
string is aligned with the other. Also, the cost of each operation allows the measurement of
the similarity of two phonetic strings as the sum of the cost of individual string operations
in alignment and the reward of matching symbols. To identify the phonetic strings that
may be of similar pronunciation, the method needs to consider both the duration and the
similarity of phonemes. Thus, each phonetic string is subject not only to alternation by the
usual additive random error but also to variations in speed (the duration of the phoneme be-
ing uttered). Such variations can be considered as compression and expansion of phoneme
with respect to the time axis. In addition, additive random error may also be introduced
by interpolating or deleting original sounds. One step toward dealing with such additional
difficulties is to perform the comparison in a way that allows for deletion and insertion
operations as well as compression and expansion ones. In the case of an extraneous sound
that does not delay the normal speech but merely conceals a bit of it, deletion and insertion
operations permit the concealed bit to be deleted and the extraneous sound to be inserted,
which is a more realistic and perhaps more desirable explanation than that permitted by
additive random error.

The details of the phoneme comparison method are as follows: given two phoneme
sequences � � 
�� � 
 ������������
 ��� and

� � 
 � � 
 ������������
 � � , of length � and 2 respectively, to find the
optimal alignment of two sequences using dynamic programming, we construct an � -by-
2 matrix where the ( /

$�� 
�( $�� ) element of the matrix contains the similarity score � � � � 
 � � 

that corresponds to the shortest possible time-warping between the initial subsequences of
� and

�
containing / and ( elements, respectively. � � � � 
 � �/
 can be recurrently calculated

in an ascending order with respect to coordinates / and ( , starting from the initial condition
at � +�
�+�
 up to � � 
 2 
 . One additional restriction is applied on the warping process:

( - � - / - ( � � (6)

where r is an appropriate positive integer called window length. This adjustment window
condition avoids undesirable alignment caused by a too excessive timing difference.

Let � be the metric of the similarity score and �����
	 � � ��� � � / 2 �� � � � 
�� ��� ��� 
�� � � � 
�� ��� ��� 

and � � ��� � � � � � � / 2 �� � � ��
 � ��� � � 
�� � � ��
 � ��� � � 
 . Figure 8 contains our DP algorithm to
compute the similarity score of two phonetic strings.

6. WORD LEARNING

At this point, we can describe our approach to integrating multimodal data for word acqui-
sition [Ballard and Yu 2003]. The system comprises two basic steps: speech segmentation
shown in Figure 9 and lexical acquisition illustrated in Figure 11.
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Fig. 9. Word-like unit segmentation. Spoken utterances are categorized into several bins that correspond to
temporally co-occurring actions and attentional objects. Then we compare any pair of spoken utterances in each
bin to find the similar subsequences that are treated as word-like units.

6.1 Word-like Unit Spotting

Figure 9 illustrates our approach to spotting word-like units in which the central idea is to
utilize non-speech contextual information to facilitate word spotting. The reason for using
the term “word-like units” is that some actions are verbally described by verb phrases (e.g.
“line up”) but not single action verbs. The inputs shown in Figure 9 are phoneme sequences
( � ��
�� ��
�� ��
���� ) and possible meanings of words (objects and actions) extracted from non-
speech perceptual inputs, which are temporally co-occurring with speech. First, those
phoneme utterances are categorized into several bins based on their possible associated
meanings. For each meaning, we find the corresponding phoneme sequences uttered in
temporal proximity, and then categorize them into the same bin labeled by that meaning.
For instance, � � and � � are temporally correlated with the action “stapling”, so they are
grouped in the same bin labeled by the action “stapling”. Note that, since one utterance
could be temporally correlated with multiple meanings grounded in different modalities, it
is possible that an utterance is selected and classified in different bins. For example, the
utterance “stapling a few sheets of paper” is produced when a user performs the action of
“stapling” and looks toward the object “paper”. In this case, the utterance is put into two
bins: one corresponding to the object “paper” and the other labeled by the action “stapling”.
Next, based on the method described in Subsection 5.2, we compute the similar substrings
between any two phoneme sequences in each bin to obtain word-like units. Figure 10
shows an example of extracting word-like units from the utterances � � and ��� that are in
the bin of the action “folding”.

6.2 Word-like Unit Clustering

Extracted phoneme substrings of word-like units are clustered by a hierarchical agglomer-
ative clustering algorithm that is implemented based on the method described in Subsec-
tion 5.2. The centroid of each cluster is then found and adopted as a prototype to repre-
sent this cluster. Those prototype strings are mapped back to continuous speech stream
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eh m hh gcl g ow in ng m t uh f ow l d th hh pcl p ey p er

f l ow dcl d ih ng t eh pcl p ay p hh er ih l ay kcl k th ix

u2: I am going to fold the paper

u4: folding the paper like this

Fig. 10. An example of word-like unit spotting. The similar substrings of two sequences are /f ow l d/ (fold), /f
l ow dcl d/ (fold), /pcl p ey p er/ (paper) and /pcl p ay p hh er/ (paper).

as shown in Figure 11, which are associated with their possible meanings to build hy-
pothesized lexical items. Among them, some are correct ones, such as /s t ei hh p l in
ng/ (stapling) associated the action of “stapling”, and some are incorrect, such as /s t ei
hh p l in ng/ (stapling) paired with the object “paper”. Now that we have hypothesized
word-meaning pairs, the next step is to select reliable and correct lexical items.

6.3 Multimodal Integration

In the final step, the co-occurrence of multimodal data selects meaningful semantics that
associate spoken words with their grounded meanings. We take a novel view of this prob-
lem as being analogous to the word alignment problem in machine translation. For that
problem, given texts in two languages (e.g. English and French), computational linguistic
techniques can estimate the probability that an English word will be translated into any
particular French word and then align the words in an English sentence with the words
in its French translation. Similarly, for our problem, if different meanings can be looked
as elements of a “meaning language”, associating meanings with object names and action
verbs can be viewed as the problem of identifying word correspondences between English
and “meaning language”. In light of this, a technique from machine translation can address
this problem. The probability of each word is expressed as a mixture model that consists
of the conditional probabilities of each word given its possible meanings. In this way,
an Expectation-Maximization (EM) algorithm can find the reliable associations of spoken
words and their grounded meanings that will maximize the probabilities.

phoneme
strings

s t ei hh p l in ng
th eh p ey p er r

eh m hh gcl g ow in ng
m t uh f ow l d th eh pcl
p ey p er

s l t ei p l in hh
g th eh m

f l ow dcl d th eh pcl p
ay p hh er ih l ay kcl k
th ix

meanings
stapling staplingpaper foldingpaperpaperpaper folding

u1 u2 u3 u4

s t ei hh p l in ng
p ey p er r

p ey p er
pclf ow l d

f l ow dcl d pcl p
ay p hh erth eh m

s l t ei p l in hh
g

gcl g ow in ng

Fig. 11. Word learning. The word-like units in each spoken utterance and co-occurring meanings are temporally
associated to build possible lexical items.

The general setting is as follows: suppose we have a word set
� � � � � 
�� � 
������
�� � �

and a meaning set � � � � � 
 � ��
 ������
 ��� � , where
�

is the number of word-like units
and � is the number of perceptually grounded meanings. Let � be the number of spoken
utterance and all data are in a set ��� ��� �

� ���� 
��
� ���� 
 
�+ - � - � � , where each spoken

utterance �
� ���� consists of � words �
	 � � � 
���	 � � � 
 ������
���	 �� � , and �.� / 
 can be selected from 1

to
�

. Similarly, the corresponding contextual information �
� ���� include � possible meanings
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��� � � � 
 ��� � � � 
������
 ��� � 	 � and the value of � � (*
 is from 1 to � . We assume that every word
� � can be associated with a meaning � � . Given a data set � , we want to maximize the
likelihood of generating the “meaning” corpus given English descriptions:

��� � � � �� 
��
� � �� 
������
��

��� �� � � � � �� 
��
� � �� 
 ������
��

��� �� 
 �
��
� % �

��� � � ���� � � � ���� 
 (7)

We use the model similar to that of Brown et al. [Brown et al. 1993]. The joint likelihood
of meanings and an alignment given spoken utterances:

��� � � ���� � � � ���� 
 �
	
� ��� � � ���� 
�� � � � ���� 


� �� � � +�
 	
�
	
� �

�
	
� � �����

�
	
�
	

	�
� % �

�,����� � � � � � �
�� ��� 


� �� � � +�
 	
	�

� % �

�
	

� %�� �,�����
� � � � ��	 � � � 
 (8)

where the alignment ��� � � � 
�+ - ( - � can taken any value from 0 to � which indicates
which word is aligned with ( � ( meaning. �,� ��� � � � � � 	 � � � 
 is the association probability for
a word-meaning pair and � is a small constant.

We wish to find the association probabilities so as to maximize ��� �
� ���� � �

� ���� 
 subject to
the constraints that for each word � � :

�	
� % �

�,� � � � � � 
 � + (9)

Therefore, we introduce Lagrange multipliers � � and seek an unconstrained maximization:

� �
�
	

� % �
���!" ��� � � ���� � � � ���� 
 �

�	
� % �

� � �
�	

� % �
�,��� � � � � 
 - +�
 (10)

We then compute derivatives of the above objective function with respect to the multi-
pliers � � and the unknown parameters �,��� ��� � � 
 and set them to be zeros. As a result, we
can express:

� � �
�	

� % �

�
	

� % �
� ��� ��� � � 
�� � ���� 
��

� ���� 
 (11)
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 �+� � ��
�
	

� % �
� � � � � � � 
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where

� � � � � � � 
�� � ���� 
��
� ���� 
 � �,� � � � � � 


�,��� ��� ��	 � � � 
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� % ��� � 2 
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 (13)
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The EM-based algorithm sets an initial �,� � � � � � 
 to be flat distribution and performs the

E-step and the M-step successively until convergence. In E-step, we compute � ��� ��� � � 
��
� ���� 
��

� ���� 

by Equation (13). In M-step, we reestimate both the Lagrange multipliers and the associa-
tion probabilities using Equation (11) and (12).

When the association probabilities converge, we obtain a set of �,� � ��� � � 
 and need
to select correct lexical items from many possible word-meaning associations. Compared
with the training corpus in machine translation, our experimental data is sparse and con-
sequently causes some words to have inappropriately high probabilities to associate the
meanings. This is because those words occur very infrequently and are in a few specific
contexts. We therefore use two constraints for selection. First, only words that occur more
than a pre-defined times are considered. Moreover, for each meaning � � , the system se-
lects all the words with the probability �,��� � � � � 
 greater than a pre-defined threshold. In
this way, one meaning can be associated with multiple words. This is because people may
use different names to refer to the same object and the spoken form of an action verb can
be expressed differently. For instance, the phoneme strings of both “staple” and “stapling”
correspond to the action of stapling. In this way, the system is developed to learn all the
spoken words that have high probabilities in association with a meaning.

7. EXPERIMENTAL RESULTS

A Polhemus 3D tracker was utilized to acquire 6-DOF hand and head positions at ����� � .
The performer wore a head-mounted eye tracker from Applied Science Laboratories(ASL).
The headband of the ASL held a miniature “scene-camera” to the left of the performer’s
head that provided the video of the scene from a first-person perspective. The video signals
were sampled at the resolution of 320 columns by 240 rows of pixels at the frequency of
+���� � . The gaze positions on the image plane were reported at the frequency of ����� � .
Before computing feature vectors for HMMs, all position signals passed through a 6th
order Butterworth filter with the cut-off frequency of ��� � . The acoustic signals were
recorded using a headset microphone at a rate of 16 kHz with 16-bit resolution. In this
study, we limited user activities to those on a table. The three activities that users were
performing were: “stapling a letter”, “pouring water” and “unscrewing a jar”. Figure 12
shows snapshots captured from the head-mounted camera when a user performed three
tasks. Six users participated in the experiment. They were asked to perform each task
nine times while describing what they were doing verbally. We collected multisensory
data when they performed the task, which were used as training data for our computational
model. Several examples of verbal transcription and detected meanings are showed in
Appendix A.

The action sequences in the experiments consist of several motion types: “pick up”,
“line up”, “staple”, “fold”, “place”, “unscrew” and “pour”. The objects that are referred
to by speech are: “cup”, “jar”, “waterpot” and “paper”. For the evaluation purpose, we
manually annotated speech data and calculate the frequencies of words. We have collected
963 spoken utterances and on average, a spoken utterance approximately contains 6 words,
which illustrates the necessity of word segmentation from connected speech. Among all
these words, most frequently occurring words, such as “and”, “are”, “going to”, are not
action verbs and object names that we want to spot and associate with their perceptual
grounded meanings. This further demonstrates the difficulty of learning lexical items from
naturally co-occurring data. These annotations were only used for the evaluation purpose
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and our model did not use them as extra information.

Fig. 12. The snapshots of three continuous action sequences in our experiments. Top row: pouring water. Middle
row: stapling a letter. Bottom row: unscrewing a jar.

To evaluate the results of the experiments, we define the following measures on word-
like units and grounded lexical items.

—Semantic accuracy measures the recognition accuracy of processing non-linguistic in-
formation, which consists of clustering the feature sequences of human body movements
as well as categorizing visual features of attentional objects.

—Segmentation accuracy measures whether the beginning and the end of phonetic strings
of word-like units are word boundaries. For example, the string /k ah p/ is a positive in-
stance corresponding to the word “cup” while the string /k ah p i/ is negative. The
phrases with correct boundaries are also treated as position instances for two reasons.
One is that those phrases do not break word boundaries but only combine some words
together. The other reason is that some phrases correspond to concrete grounded mean-
ings, which are exactly spoken units we want to extract. For instance, the phrases, such
as “pick up” or “line up”, specify some human actions.

—Word learning accuracy (precision) measures the percentage of successfully segmented
words that are correctly associated with their meanings.

—Lexical spotting accuracy (recall) measures the percentage of word-meaning pairs that
are spotted by the model. This measure provides a quantitive indication about the per-
centage of grounded lexical items that can be successfully found.

Table I shows the results of four measures. The recognition rate of the phoneme rec-
ognizer we used is 75% because it does not encode any language model and word model.
Based on this result, the overall accuracy of speech segmentation is 69.6%. Naturally, an
improved phoneme recognizer based on a language model would improve the overall re-
sults, but the intent here is to study the model-independent learning method. The error in
word learning is mainly caused by a few words (such as ”several” and “here”) that fre-
quently occur in some contexts but do not have grounded meanings. The overall accuracy
of lexical spotting is ��� � ��� , which demonstrates that by inferring speakers’ referential in-
tents, the stable links between words and meanings could be easily spotted and established.
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Table I. Results of word acquisition
detected discovered spoken words semantics speech word lexical
meanings /phoneme string/ [text] segmentation learning spotting
pick up /p ih kcl k ah p/ [pick up] 96.5% 72.5% 87.5% 72.6%

/p ih kcl k ih ng ah p/ [picking up]
/g r ae s pcl p/ [grasp]

place /p l ey s/ [place] 93.9% 66.9% 81.2% 69.2%
/ p l ey s ih ng/ [placing]
/p uh t/ [put]

line up /l ay n ah pcl p/ [line up] 75.6% 70.3% 86.6% 83.5%
/l ay n ih ng ah pcl p/ [lining up]
/l ay n hh m ah pcl p/ [line them up]

staple /s t ey pcl p/ [staple] 86.9% 70.6% 85.3% 90.6%
/s t ey pcl p ih ng/ [stapling]

fold /f ow l d/ [fold] 86.3% 69.8% 89.2% 87.7%
/f ow l d ih ng/ [folding]

unscrew / ah n s kcl k r uw/ [unscrew] 90.6% 73.8% 91.6% 80.6%
/ow p ah n/ [open]

pour /pcl p ao r/ [pour] 86.7% 65.3% 91.9% 85.5%
/pcl p ao r ih ng/ [pouring]

paper pcl p ey p er/ [paper] 96.7% 73.9% 86.6% 82.1%
/sh iy tcl t/sheet

jar /j aa r/ [jar] 91.3% 62.9% 92.1% 76.6%
/pcl p iy n ah t b ah tcl t er / [peanut butter]
/l ih d/ [lid]

cup /k ah p/ [cup] 92.9% 68.3% 87.3% 76.9%
waterpot / w ao tcl t er pcl p aa t / [waterpot] 87.5% 71.9% 85.6% 82.3%

/pcl p aa t/ [pot]
/kcl k ao f iy pcl p aa t/ [coffee pot]

overall 90.2% 69.6% 87.9% 82.6%

Considering that the system processes natural speech and our method works in unsuper-
vised mode without manually encoding labels for multisensory information, the accuracies
for both speech segmentation and word learning are impressive.

8. CONCLUSION

This paper presents a multimodal learning interface for word acquisition. The system is
able to learn the sound patterns of words and their semantics while users perform ev-
eryday tasks and provide spoken descriptions of their behaviors. Compared to previous
works, the novelty of our approach arises from the following aspects. First, our system
shares user-centric multisensory information with a real agent and grounds semantics di-
rectly from egocentric experience without manual transcriptions and human involvement.
Second, both words and their perceptually grounded meanings are acquired from sensory
inputs. Furthermore, grounded meanings are represented by perceptual features but not
abstract symbols, which provides a sensorimotor basis for machines and people to com-

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



24 �

municate with each other through language. From the perspective of machine learning, we
propose a new approach of unsupervised learning using multisensory information. Fur-
thermore, we argue that the solely statistical learning of co-occurring data is less likely
to explain the whole story of language acquisition. The inference of speaker’s referential
intentions from their body movements provides constraints to avoid the large amount of
irrelevant computations and can be directly applied as deictic reference to associate words
with perceptually grounded referents in the physical environment. From an engineering
perspective, our system demonstrates a new approach to developing human-computer in-
terfaces, in which computers seamlessly integrate in our everyday lives and are able to
learn lexical items by sharing user-centric multisensory information.
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Appendix A

The tables II III and IV show several examples of transcripts and contextual information
extracted from visual perception and body movements. Note that our computational system
actually processed continuous speech signals instead of (segmented) transcripts.

Table II. Two sample transcripts of the tasks of stapling papers

transcripts actions attentional objects

first, I reach over and pick up some papers pick up paper
and I line them up line up paper
and I staple them staple paper
push the arm down staple paper, stapler
now I fold the paper fold paper
fold the bottom-up first fold paper
then I fold the top over fold paper
smooth creases fold paper
and I place the paper up here place paper

I am picking up several pieces of papers pick up paper
I am lining up the paper line up paper
now I will staple it staple paper, stapler
now I am going to fold the paper fold paper
fold the bottom an the top fold paper
finally I will place it at its location here place paper
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Table III. Two sample transcripts of the tasks of pouring water

transcripts actions attentional objects

I am going to pick up the cup pick up cup
and put it on its spot place cup
now I am going to pick up the waterpot pick up waterpot
and pour the water into the cup like this pour waterpot, cup
after pouring I am going to none cup
place the waterpot on its spot place waterpot

I will pick up the cup pick up cup
place the white cup down on its spot place cup
pick up the waterpot and move it toward the cup pick up waterpot,cup
pouring myself some water pour waterpot, cup
then placing the waterpot into its target area place waterpot

Table IV. Two sample transcripts of the tasks of unscrewing a jar

transcripts actions attentional objects

I am picking up a peanut butter jar pick up jar
now I am unscrewing the lid unscrew jar
placing the lid on its spot place jar
and placing the jar on its spot which is labeled over there place jar

I pick up a jar of peanut butter pick up jar
open the peanut butter jar unscrew jar
unscrew the lid of the jar unscrew jar
place the lid there and place jar
place the jar at its location here place jar
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