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Abstract

Locally decodable codes are a class of error-correcting codes. Error-
correcting codes help ensure reliable transmission of information over
noisy channels. Such codes allow one to add redundancy, or bit strings,
to messages, encoding them into longer bit strings, called codewords, in
a way that the message can still be recovered even if a certain fraction
of the codeword bits are corrupted. In typical applications of error-
correcting codes the message is first partitioned into small blocks, each
of which is then encoded separately. This encoding strategy allows effi-
cient random-access retrieval of the information, since one must decode
only the portion of data in which one is interested. Unfortunately, this
strategy yields poor noise resilience, since, when even a single block
is completely corrupted, some information is lost. In view of this lim-
itation it would seem preferable to encode the whole message into a
single codeword of an error-correcting code. Such a solution improves
the robustness to noise but is hardly satisfactory, since one needs to
look at the whole codeword in order to recover any particular bit of
the message.
Locally decodable codes are codes that simultaneously provide efficient
random-access retrieval and high noise resilience by allowing reliable



reconstruction of an arbitrary bit of the message from looking at only
a small number of randomly chosen codeword bits. Local decodability
comes at the price of certain loss in terms of code efficiency. Specif-
ically, locally decodable codes require longer codeword lengths than
their classical counterparts. This book introduces and motivates locally
decodable codes, and discusses the central results of the subject.
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1

Introduction

Locally Decodable Codes (LDCs) are a special kind of error-correcting
codes. Error-correcting codes are used to ensure reliable transmission
of information over noisy channels as well as to ensure reliable storage
of information on a medium that may be partially corrupted over time
(or whose reading device is subject to errors). In both of these appli-
cations the message is typically partitioned into small blocks and then
each block is encoded separately. Such encoding strategy allows efficient
random-access retrieval of the information, since one needs to decode
only the portion of data one is interested in. Unfortunately, this strat-
egy yields very poor noise resilience, since in case even a single block
(out of possibly tens of thousands) is completely corrupted some infor-
mation is lost. In view of this limitation it would seem preferable to
encode the whole message into a single codeword of an error-correcting
code. Such solution clearly improves the robustness to noise, but is
also hardly satisfactory, since one now needs to look at the whole code-
word in order to recover any particular bit of the message (at least in
the case when classical error-correcting codes are used). Such decoding
complexity is prohibitive for modern massive data-sets.

Locally decodable codes are error-correcting codes that avoid the
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2 Introduction

problem mentioned above by having extremely efficient sublinear-time
decoding algorithms. More formally, an r-query locally decodable code
C encodes k-bit messages x in such a way that one can probabilistically
recover any bit x(i) of the message by querying only r bits of the
(possibly corrupted) codeword C(x), where r can be as small as 2.

Example. The classical Hadamard code encoding k-bit messages to
2k-bit codewords provides the simplest nontrivial example of locally
decodable codes. In what follows, let [k] denote the set {1, . . . , k}.
Every coordinate in the Hadamard code corresponds to one (of 2k)
subsets of [k] and stores the XOR of the corresponding bits of the
message x. Let y be an (adversarially corrupted) encoding of x. Given
an index i ∈ [k] and y, the Hadamard decoder picks a set S in [k]
uniformly at random and outputs the XOR of the two coordinates
of y corresponding to sets S and S 4 {i}. (Here, 4 denotes the
symmetric difference of sets such as {1, 4, 5} 4 {4} = {1, 5}, and
{1, 4, 5}4{2} = {1, 2, 4, 5}). It is not difficult to verify that if y differs
from the correct encoding of x in at most δ fraction of coordinates
than with probability 1−2δ both decoder’s queries go to uncorrupted
locations. In such case, the decoder correctly recovers the i-th bit
of x. The Hadamard code allows for a super-fast recovery of the
message bits (such as, given a codeword corrupted in 0.1 fraction
of coordinates, one is able to recover any bit of the message with
probability 0.8 by reading only two codeword bits).

The main parameters of interest in locally decodable codes are the
codeword length and the query complexity. The length of the code
measures the amount of redundancy that is introduced into the message
by the encoder. The query complexity counts the number of bits that
need to be read from the (corrupted) codeword in order to recover a
single bit of the message. Ideally, one would like to have both of these
parameters as small as possible. One however can not minimize the
length and the query complexity simultaneously. There is a trade-off.
On one end of the spectrum we have classical error correcting codes
that have both query complexity and codeword length proportional to
the message length. On the other end we have the Hadamard code
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that has query complexity 2 and codeword length exponential in the
message length. Establishing the optimal trade-off between the length
and the query complexity is the major goal of research in the area of
locally decodable codes.

Interestingly, the natural application of locally decodable codes to
data transmission and storage described above is neither the histori-
cally earliest nor the most important. LDCs have a host of applications
in other areas of theoretical computer science.

1.1 Families of locally decodable codes

One can informally classify the known families of locally decodable
codes into three broad categories based on the relation between the
message length k and the query complexity r.

1. Low query complexity. Here we look at codes where r is a constant
independent of k or some very slowly growing function of k. Such codes
have important applications in cryptography to constructions of private
information retrieval schemes. Early examples of such codes are the
Hadamard code and the Reed Muller (RM) code that is sketched below.

Reed Muller code. The code is specified by three integer parame-
ters, a prime power (alphabet size) q, a number of variables n, and a
degree d < q − 1. The code encodes k =

(
n+d
d

)
-long q-ary messages

to qn-long codewords. Let w1, . . . ,wk be a certain fixed collection
of vectors in Fnq . A message (x1, . . . ,xk) is encoded by a complete
Fnq -evaluation of a polynomial F ∈ Fq[z1, . . . , zn] of degree up to d,

such that for all i ∈ [k], xi = F (wi). Given i ∈ [k] and a δ-corrupted
evaluation of F the Reed Muller decoder needs to recover the value of
F at wi. To do this the decoder picks a random affine line L through
wi and reads the (corrupted) values of F at d+ 1 points of L \ {wi}.
Next, the decoder uses univariate polynomial interpolation to recover
the restriction of F to L. Each query of the decoder samples a ran-
dom location, thus with probability at least 1 − (d + 1)δ, it never
queries a corrupted coordinate and decodes correctly. Setting d and
q to be constant and letting n grow one gets r-query codes of length
N = exp

(
k1/(r−1)

)
.
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Other families of codes in this category are the recursive codes of
Beimel et al. and the Matching Vector (MV) codes. MV codes offer the
best-known trade-off between the query complexity and the codeword
length of locally decodable codes for small values of query complex-
ity. In particular they give three-query codes of length N(k) where N
grows slower than any function of the form exp(kε).1 The construction
of matching vector codes is considerably more involved than the earlier
constructions of LDCs. In this book we cover it in full detail.

2. Medium query complexity. Here we look at codes with r = logc k,
for some c > 1. Such codes have been used in constructions of proba-
bilistically checkable proofs. They also have applications to worst-case
to average-case reductions in computational complexity theory. Setting
d = nc, q = Θ(d) in the definition of Reed Muller codes, and letting
the number of variables n grow to infinity yields codes of query com-
plexity logc k and codeword length N = k1+1/(c−1)+o(1). These are the
best-known locally decodable codes in this regime.

3. High query complexity. Here we look at codes with r = kε, for
some ε > 0. This is the only regime where we (so far) have locally
decodable codes of positive rate, i.e., codeword length proportional to
message length. Such codes are potentially useful for data transmission
and storage applications. The early examples of such codes are the Reed
Muller codes with the number of variables n = 1/ε, growing d, and
q = Θ(d). Such setting of parameters yields codes of query complexity
r = kε and rate εΘ(1/ε). The rate is always below 1/2. Another family
of codes in the high query complexity category is the family of mul-
tiplicity codes. Multiplicity codes are based on evaluating high degree
multivariate polynomials together with their partial derivatives. Mul-
tiplicity codes extend Reed Muller codes; inherit the local-decodability
of these codes, and at the same time achieve better tradeoffs and flex-
ibility in their rate and query complexity. In particular for all α, ε > 0
they yield locally decodable codes of query complexity r = kε and rate
1− α. In this book we cover multiplicity codes in full detail.

1 Throughout the book we use the standard notation exp(x) = 2O(x).
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1.2 Organization

The goal of this survey is to summarize the state of the art in locally de-
codable codes. Our main focus is on multiplicity codes and on matching
vector codes. The book is organized into eight chapters.

In chapter 2 we formally define locally decodable codes and give a
detailed treatment of Reed Muller codes. In chapter 3 we study multi-
plicity codes. We show how multiplicity codes generalize Reed Muller
codes and obtain bounds on their rate and query complexity.

In Chapter 4 we introduce the concept of matching vectors and
present a transformation that turns an arbitrary family of such vectors
into a family of locally decodable (matching vector) codes. We pro-
vide a detailed comparison between the parameters of matching vec-
tor codes based on the currently largest known matching families and
Reed Muller codes. Chapter 5 contains a systematic study of families
of matching vectors. We cover several constructions as well as impos-
sibility results.

In chapter 6 we deal with lower bounds for the codeword length
of locally decodable codes. In chapter 7 we discuss some prominent
applications of locally decodable codes, namely, applications to private
information retrieval schemes, secure multi party computation, and av-
erage case complexity. Finally, in the last chapter we list (and comment
on) the most exciting open questions relating to locally decodable codes
and private information retrieval schemes.

1.3 Notes

We now review the history of locally decodable codes. Ideas behind the
early constructions of LDCs go back to classical codes [75, chapter 10],
named after their discoverers, Reed and Muller. Muller discovered the
codes [68] in the 1950s, and Reed proposed the majority logic decod-
ing [79]. Since then, local decodability of these codes has been exploited
extensively. In particular, in the early 1990s a number of theoretical
computer science papers developed and used local decoding algorithms
for some variants of these codes [11, 65, 23, 42, 43, 5, 76]. The first
formal definition of locally decodable codes was given however only in
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2000 by Katz and Trevisan [58], who cited Leonid Levin for inspiration.
See also [87].

Today there are three families of locally decodable codes that sur-
pass Reed Muller codes in terms of query complexity vs. codeword
length trade-off. These are the recursive codes of Beimel et al. [15] (see
also [94]), the matching vector codes [96, 77, 59, 37, 57, 34, 18, 67, 19,
82], and the multiplicity codes [61]. Matching vector codes offer the
best-known trade-off between the query complexity and the codeword
length of locally decodable codes for small values of query complexity.
Multiplicity codes are the best-known locally decodable codes for large
values of query complexity.

The first lower bounds for the codeword length of locally decod-
able codes were obtained in [58]. Further work on lower bounds in-
cludes [47, 30, 72, 60, 91, 92, 93, 40]. It is known that 1-query LDCs do
not exist [58]. The length of optimal 2-query LDCs was settled in [60]
and is exponential in the message length. However for values of query
complexity r ≥ 3 we are still very far from closing the gap between
lower and upper bounds. Specifically, the best lower bounds to date
are of the form Ω̃

(
k1+1/(dr/2e−1)

)
due to [92], while the best upper

bounds are super-polynomial in k when r is a constant [37, 67].
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Preliminaries

In this chapter we formally define locally decodable and locally cor-
rectable codes, and study parameters of Reed Muller locally decodable
codes. We start by setting up the notation and terminology used in the
remainder of the book.

• [k] = {1, . . . , k};
• Fq is a finite field of q elements;
• F∗q is the multiplicative group of Fq;
• (x,y) stands for the dot product of vectors x and y;
• ∆(x,y) denotes the relative Hamming distance between x

and y, i.e., the fraction of coordinates where x and y differ;
• For a vector w ∈ Fnq and an integer l ∈ [n], w(l) denotes the
l-th coordinate of w;
• A D-evaluation of a function h defined over a domain D, is

a vector of values of h at all points of D;
• With a slight abuse of terminology we often refer to a dimen-

sion n of a vector x ∈ Fnq as its length.

We now proceed to define locally decodable codes.

7



8 Preliminaries

2.1 Locally decodable and locally correctable codes

A q-ary LDC encoding k-long messages to N -long codewords has three
parameters: r, δ, and ε. Informally an (r, δ, ε)-locally decodable code
encodes k-long messages x to N -long codewords C(x), such that for
every i ∈ [k], the coordinate value xi can be recovered with probability
1− ε, by a randomized decoding procedure that makes only r queries,
even if the codeword C(x) is corrupted in up to δN locations. Formally,

Definition 2.1. A q-ary code C : Fkq → FNq is said to be (r, δ, ε)-locally
decodable if there exists a randomized decoding algorithm A such that

(1) For all x ∈ Fkq , i ∈ [k] and all vectors y ∈ FNq such that
∆(C(x),y) ≤ δ :

Pr[Ay(i) = x(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses
of the algorithm A.

(2) A makes at most r queries to y.

We would like to have LDCs that for a given message length k and
alphabet size q have small values of r,N and ε and a large value of δ.
However typically the parameters are not regarded as equally impor-
tant. In applications of locally decodable codes to data transmission
and storage one wants δ to be a large constant, (ideally, close to 1/4
for binary codes), and the codeword length N to be small. At the same
time the exact number of queries r is not very important provided that
it is much smaller than k. Similarly the exact value of ε < 1/2 is not
important since one can easily amplify ε to be close to 0, by running
the decoding procedure few times and taking a majority vote. At the
same time in applications of locally decodable codes in cryptography
one thinks of δ > 0 and ε < 1/2 as constants whose values are of
low significance and focuses on the trade-off between r and N, with
emphasis on very small values of r such as r = 3 or r = 4.

A locally decodable code is called linear if C is a linear transforma-
tion over Fq. All constructions of locally decodable codes considered in
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the book yield linear codes. While our main interest is in binary codes
we deal with codes over larger alphabets as well.

A locally decodable code allows to probabilistically decode any co-
ordinate of a message by probing only few coordinates of its corrupted
encoding. A stronger property that is desirable in certain applications
is that of local correctability allowing to efficiently recover not only
coordinates of the message but also arbitrary coordinates of the encod-
ing. Reed Muller locally decodable codes that we discuss in the next
sections are locally correctable.

Definition 2.2. A code (set) C in the space FNq is (r, δ, ε)-locally cor-
rectable if there exists a randomized correcting algorithm A such that

(1) For all c ∈ C, i ∈ [N ] and all vectors y ∈ FNq such that
∆(c,y) ≤ δ :

Pr[Ay(i) = c(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses
of the algorithm A.

(2) A makes at most r queries to y.

The next lemma shows how one can obtain a locally decodable code
from any locally correctable code that is a linear subspace of FNq .

Lemma 2.3. Let q be a prime power. Suppose C ⊆ FNq is a (r, δ, ε)-
locally correctable code that is linear subspace; then there exists a q-ary
(r, δ, ε)-locally decodable linear code C ′ encoding messages of length
dimC to codewords of length N.

Proof. Let I ⊆ [N ] be a set of k = dimC information coordinates of C,
(i.e., a set of coordinates whose values uniquely determine an element
of C.) For c ∈ C let c|I ∈ Fkq denote the restriction of c to coordinates
in I. Given a message x ∈ Fkq we define C ′(x) to be the unique element
c ∈ C such that c|I = x. It is easy to see that local correctability of C
yields local decodability of C ′.
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In what follows we often implicitly assume the translation between
locally correctable linear codes and locally decodable codes. Specifi-
cally, we sometimes talk about message length (rather than dimension)
of such codes.

2.2 Reed Muller locally decodable codes

The key idea behind early locally decodable codes is that of polyno-
mial interpolation. Messages are encoded by complete evaluations of
low degree multivariate polynomials over a finite field. Local decod-
ability is achieved through reliance on the rich structure of short local
dependencies between such evaluations at multiple points.

Recall that a Reed Muller locally decodable code is specified by
three integer parameters. Namely, a prime power (alphabet size) q,
number of variables n, and a degree d < q− 1. The q-ary code consists
of Fnq -evaluations of all polynomials of total degree at most d in the

ring Fq[z1, . . . , zn]. Such code encodes k =
(
n+d
d

)
-long messages over

Fq to qn-long codewords. In sections 2.2.1–2.2.3 we consider three local
correctors (decoders) for RM codes of increasing level of sophistication.
Finally, in section 2.2.4 we show how one can turn non-binary RM LDCs
into binary.

2.2.1 Basic decoding on lines

In this section we present the simplest local corrector for Reed Muller
codes. To recover the value of a degree d polynomial F ∈ Fq[z1, . . . , zn]
at a point w ∈ Fnq it shoots a random affine line through w and then
relies on the local dependency between the values of F at some d + 1
points along the line.

Proposition 2.4. Let n and d be positive integers. Let q be a prime
power, d < q−1; then there exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that is (d+ 1, δ, (d+ 1)δ)-locally correctable for all δ.

Proof. The code consists of Fnq -evaluations of all polynomials of total
degree at most d in the ring Fq[z1, . . . , zn]. The local correction proce-
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dure is the following. Given an evaluation of a polynomial F corrupted
in up to δ fraction of coordinates and a point w ∈ Fnq the local corrector
picks a vector v ∈ Fnq uniformly at random and considers a line

L = {w + λv | λ ∈ Fq}

through w. Let S be an arbitrary subset of F∗q , |S| = d+1. The corrector
queries coordinates of the evaluation vector corresponding to points
w + λv, λ ∈ S to obtain values {eλ}. Next, it recovers the unique
univariate polynomial h, deg h ≤ d, such that h(λ) = eλ, for all λ ∈ S,
and outputs h(0).

Note that in case all queries of our corrector go to uncorrupted
locations h is the restriction of F to L, and h(0) = F (w). It remains
to note that since each individual query of the corrector samples a
uniformly random location, with probability at least 1 − (d + 1)δ, it
never query a corrupted coordinate.

We say that an r-query code C tolerates a δ fraction of errors if
C is (r, δ, ε)-locally correctable (decodable) for some ε < 1/2. Observe
that codes given by proposition 2.4 can only tolerate δ < 1/2(d + 1).
Thus the fraction tolerable noise rapidly deteriorates with an increase
in the query complexity. In the following section we present a better
local corrector for RM codes that tolerates δ close to 1/4 independent
of the number of queries.

2.2.2 Improved decoding on lines

In contrast to the setting of proposition 2.4 here we require that d is
substantially smaller than q. To recover the value of a degree d poly-
nomial F ∈ Fq[z1, . . . , zn] at a point w ∈ Fnq the corrector shoots a
random affine line through w and then relies on the high redundancy
among the values of F along the line.

Proposition 2.5. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q be a prime power such that d ≤ σ(q− 1)− 1; then there
exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that is

(q − 1, δ, 2δ/(1− σ))-locally correctable for all δ.
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Proof. The code is exactly the same as in proposition 2.4, and the
correction procedure is related to the procedure above. Given a δ-
corrupted evaluation of a degree d polynomial F and a point w ∈ Fnq
the corrector picks a vector v ∈ Fnq uniformly at random and considers
a line

L = {w + λv | λ ∈ Fq}

through w. The corrector queries coordinates of the evaluation vector
corresponding to points w + λv, λ ∈ F∗q to obtain values {eλ}. Next,
it recovers the unique univariate polynomial h, deg h ≤ d, such that
h(λ) = eλ, for all but at most b(1− σ)(q − 1)/2c values of λ ∈ F∗q , and
outputs h(0). If such a polynomial h does not exist the corrector outputs
zero. The search for h can be done efficiently using the Berlekamp-
Welch algorithm [66] for decoding Reed Solomon codes.

It remains to note that since each individual query of the correc-
tor samples a uniformly random location, by Markov’s inequality the
probability that (1−σ)(q−1)/2 or more of the queries go to corrupted
locations is at most 2δ/(1 − σ). Therefore with probability at least
1− 2δ/(1− σ), h is the restriction of F to L, and h(0) = F (w).

When σ is small the local corrector given by proposition 2.5 tolerates
a nearly 1/4 fraction of errors. In the following section we present an
even better corrector that tolerates a nearly 1/2 fraction of errors,
which is optimal for unique decoding.

2.2.3 Decoding on curves

In what follows we again require that d is substantially smaller than
q. To recover the value of a degree d polynomial F ∈ Fq[z1, . . . , zn]
at a point w ∈ Fnq the corrector shoots a random parametric degree
two curve through w and then relies on the high redundancy among
the values of F along the curve. The advantage upon the decoder of
proposition 2.5 comes from the fact that points on a random curve
(in contrast to points on a random line) constitute a two-independent
sample from the underlying space.
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Proposition 2.6. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q be a prime power such that d ≤ σ(q− 1)− 1; then there
exists a linear code of dimension k =

(
n+d
d

)
in FNq , N = qn, that for

all positive δ < 1/2− σ is (q − 1, δ, Oσ,δ(1/q))-locally correctable.

Proof. The code is exactly the same as in propositions 2.4 and 2.5, and
the correction procedure is related to the procedures above. Given a δ-
corrupted evaluation of a degree d polynomial F and a point w ∈ Fnq the
corrector picks vectors v1,v2 ∈ Fnq uniformly at random and considers
a degree two curve

χ = {w + λv1 + λ2v2 | λ ∈ Fq}

through w. The corrector tries to reconstruct a restriction of F to χ,
which is a polynomial of degree up to 2d. To this end the corrector
queries coordinates of the evaluation vector corresponding to points
χ(λ) = w +λv1 +λ2v2, λ ∈ F∗q to obtain values {eλ}. Next, it recovers
the unique univariate polynomial h, deg h ≤ 2d, such that h(λ) = eλ,

for all but at most b(1 − 2σ)(q − 1)/2c values of λ ∈ F∗q , and outputs
h(0). If such a polynomial h does not exist the corrector outputs 0. It is
not hard to verify that the corrector succeeds if the number of queries
that go to corrupted locations is at most b(1− 2σ)(q − 1)/2c.

Below we analyze the success probability of the corrector. For a ∈
Fnq and λ ∈ F∗q consider a random variable xλa, which is the indicator
variable of the event χ(λ) = a. Let E ⊆ Fnq , |E| ≤ δN be the set of
a ∈ Fnq such that the values of F at a are corrupted. For every λ ∈ F∗q
consider a random variable

xλ =
∑
a∈E

xλa.

Note that variables
{
xλ
}
, λ ∈ F∗q are pairwise independent. For every

λ ∈ F∗q we have

E
[
xλ
]
≤ δ and D

[
xλ
]
≤ δ − δ2.

Finally consider a random variable

x =
∑
λ∈F∗q

xλ,
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that counts the number of corrector’s queries that go to corrupted
locations. By pairwise independence we have

E[x] ≤ (q − 1)δ and D[x] ≤ (q − 1)(δ − δ2).

By Chebyshev’s inequality [2] we have

Pr
[
x ≥

⌊
(1− 2σ)(q − 1)

2

⌋]
≤ 4(δ − δ2)

(q − 1)(1− 2(σ + δ))2
= Oσ,δ

(
1
q

)
.

This concludes the proof.

2.2.4 Binary codes

Propositions 2.4, 2.5, and 2.6 yield non-binary codes. As we stated
earlier our main interest is in binary codes. The next lemma extends
proposition 2.6 to produce binary codes that tolerate a nearly 1/4 frac-
tion of errors, which is optimal for unique decoding over F2. The idea
behind the proof is fairly standard and involves concatenation.

Proposition 2.7. Let σ < 1 be a positive real. Let n and d be positive
integers. Let q = 2b be a power of two such that d ≤ σ(q−1)−1. Suppose
that there exists a binary linear code Cinner of distance µB encoding
b-bit messages to B-bit codewords; then there exists a linear code C
of dimension k =

(
n+d
d

)
· b in FN2 , N = qn · B, that for all positive

δ < (1/2− σ)µ is ((q − 1)B, δ,Oσ,µ,δ(1/q))-locally correctable.

Proof. We define the code C to be the concatenation [39] of the q-ary
code Couter used in propositions 2.4–2.6 and the binary code Cinner. In
order to recover a single bit, the local corrector recovers the symbol
of the q-ary alphabet that the bit falls into. Given a δ-corrupted con-
catenated evaluation of a degree d polynomial F and a point w ∈ Fnq
the corrector acts similarly to the corrector from the proposition 2.6.
Specifically, it picks vectors v1,v2 ∈ Fnq uniformly at random and con-
siders a degree two curve

χ = {w + λv1 + λ2v2 | λ ∈ Fq}

through w. To recover F (w) the corrector attempts to reconstruct
a restriction of F to χ, which is a polynomial of degree up to 2d.



2.2. Reed Muller locally decodable codes 15

To this end the corrector queries all (q − 1)B codeword coordinates
corresponding to encodings of values of F at points χ(λ) = w + λv1 +
λ2v2, λ ∈ F∗q and then recovers the unique univariate polynomial h ∈
Fq[λ], deg h ≤ 2d, such that Cinner-encodings of values of h along F∗q
agree with all but at most b(1−2σ)µ(q−1)B/2c observed binary values.
If such a polynomial h does not exist the corrector outputs 0. It is not
hard to verify that the corrector succeeds if the number of queries that
go to corrupted locations is at most b(1− 2σ)µ(q − 1)B/2c. Decoding
can be done efficiently provided that Cinner has an efficient decoder.

Below we analyze the success probability of the corrector. For every
a ∈ Fnq let ta denote the number of corrupted coordinates in the Cinner-
encoding of the value of F at a. We have∑

a∈Fn
q

ta ≤ δqnB.

For a ∈ Fnq and λ ∈ F∗q consider a random variable xλa, which is the
indicator variable of the event χ(λ) = a. For every λ ∈ F∗q consider a
random variable

xλ =
∑
a∈Fn

q

tax
λ
a.

Note that variables
{
xλ
}
, λ ∈ F∗q are pairwise independent. For every

λ ∈ F∗q we have

E
[
xλ
]
≤ δB and D

[
xλ
]
≤ (δ − δ2)B2.

Finally consider a random variable

x =
∑
λ∈F∗q

xλ,

that counts the number of corrector’s queries that go to corrupted
locations. By pairwise independence we have

E[x] ≤ δ(q − 1)B and D[x] ≤ (δ − δ2)(q − 1)B2.
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By Chebyshev’s inequality [2] we have

Pr
[
x ≥

⌊
(1− 2σ)µ(q − 1)B

2

⌋]
≤

≤ 4(δ − δ2)
(q − 1)((1− 2σ)µ− 2δ)2

= Oσ,µ,δ

(
1
q

)
.

This concludes the proof.

2.3 Summary of parameters

In the previous section we gave a detailed treatment of Reed Muller
locally decodable codes. These codes yield the shortest known LDCs in
the medium query complexity regime (r = logc k, c > 1).

The method behind Reed Muller codes is simple and general. It
yields codes for all possible values of query complexity r, i.e., one can
set r to be an arbitrary function of the message length k by specifying
an appropriate relation between n and d in propositions 2.5–2.7 and
letting these parameters grow to infinity. Increasing d relative to n

yields shorter codes of larger query complexity.
Below we present asymptotic parameters of several families of bi-

nary locally decodable codes based on Reed Muller codes.

• r = O(1). Proposition 2.4 yields r-query LDCs of length
exp

(
k1/(r−1)

)
over an alphabet of size O(r).

• r = O(log k log log k). In proposition 2.7 set d = n, q = cd

for a large constant c, and let n grow while concatenating
with asymptotically good binary codes of relative distance µ
close to half. This yields a family of r-query binary locally
correctable codes that encode k-bit messages to kO(log log k)-
bit codewords and tolerate a nearly 1/4 fraction of errors
(depending on c and µ).
• r ≤ (log k)t, for constant t > 1. In proposition 2.7 set d = nt,

q = cd and let n grow while concatenating with asymptoti-
cally good binary codes of relative distance close to half. This
yields a family of r-query binary locally correctable codes
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that encode k-bit messages to k1+1/(t−1)+o(1)-bit codewords
and tolerate a nearly 1/4 fraction of errors.
• r = O(k1/t log k), for integer constant t ≥ 1. In proposi-

tion 2.7 set n = t, q = cd and let d grow while concatenating
with asymptotically good binary codes of relative distance
close to half. This yields a family of r-query binary locally
correctable codes that encode k-bit messages to tt+o(t) · k-bit
codewords and tolerate a nearly 1/4 fraction of errors.

We summarize the parameters of binary locally correctable codes
obtained above in the following table.

r N

O(1) exp
(
k1/(r−1)

)
O(log k log log k) kO(log log k)

(log k)t, t > 1 k1+1/(t−1)+o(1)

O(k1/t log k), t ≥ 1 tt+o(t) · k

2.4 Notes

The concept of local correctability originates in [65, 22]. Local cor-
rectors of propositions 2.4, 2.5, and 2.6 come respectively from [11,
65], [42], and [43].

Propositions 2.6 and 2.7 give locally correctable codes that tolerate
the amount of error that is nearly optimal for unique (even non-local)
decoding (1/2 fraction of errors over large alphabets, 1/4 over F2). An
important model of error correction that generalizes unique decoding
is that of list decoding [38, 52]. In that model the decoder is allowed
to output a small list of codewords rather than a single codeword.
Decoding is considered successful if the transmitted codeword appears
in the list. List decoding allows for error-correction beyond the “half
the minimum distance barrier”. One can show that Reed Muller codes
are locally list decodable from the nearly optimal amount of noise [4, 87]
(1− ε fraction of errors over large alphabets, 1/2− ε over F2). However
we are not going to discuss these results in this book.



3

Multiplicity codes

In this chapter we study multiplicity codes. These codes generalize
Reed Muller codes and greatly improve upon them in the regime of
high rate. Recall that with Reed Muller codes, for the code to have
any distance, the degrees of the polynomials used to define the code
need to be smaller than the field size. Multiplicity codes, however, use
much higher degree polynomials and thus have significantly improved
rates, and compensate for the loss in distance by evaluating polynomials
together with their partial derivatives.

In what follows we review the construction of multiplicity codes
in full detail. Our main results give codes that simultaneously have
rate approaching one, and allow for local decoding with arbitrary
polynomially-small number of queries.

In the next section, we state the main theorems on asymptotic pa-
rameters of multiplicity codes. In section 3.2, we formally define multi-
plicity codes, calculate their rate and distance, state a lemma implying
their local decodability, and show how it implies the main theorems. In
section 3.3 we present the local correction algorithms.

18
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3.1 Main results

Below we state the two main theorems regarding the asymptotic pa-
rameters of multiplicity codes. The first theorem gives non-linear codes
over growing alphabets.

Theorem 3.1. For every 0 < ε, α < 1, for infinitely many k, there
is a code C over an alphabet Σ, with |Σ| ≤ kO(1), such that C has
message length k, rate at least 1 − α, relative distance δ ≥ εα/2, and
is (O(kε), εα/20, 0.2)-locally correctable.

The next theorem is the analogue of theorem 3.1 for small alphabets.
It gives linear codes. These codes are obtained by simply concatenat-
ing multiplicity codes with suitable good linear codes over the small
alphabets. In particular by lemma 2.3, it shows the existence of locally
decodable codes with the same parameters.

Theorem 3.2. Let p be a prime power. For every ε, α > 0, there exists
δ > 0, such that for infinitely many k, there is a linear code C over
the alphabet Σ = Fp, such that C has message length k, rate at least
1− α, and is (O (kε) , δ, 0.2)-locally correctable.

The proofs of the theorems above appear in section 3.2.3.

3.2 The code construction

In this section we formally define multiplicity codes, calculate their
rate and distance, and state the main lemma 3.8 implying their local
correctability. We then show how multiplicity codes imply the main
theorems of the previous section.

First, we review some preliminaries on derivatives and multiplicities.
We will define our codes using the Hasse derivative, which is a variant
of the usual notion of derivative of a polynomial, and is more suitable
for use in fields of small characteristic.
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3.2.1 Derivatives and multiplicities

We start with some notation. For a vector i = (i(1), . . . , i(n)) of non-
negative integers, its weight, denoted wt(i), equals

∑n
j=1 i(j).

Let F be a field and F[x1, . . . , xn] = F[x] be the polynomial ring.
For a vector of non-negative integers i = (i(1), . . . , i(n)), let xi denote
the monomial

∏n
j=1 x

i(j)
j ∈ F[x]. Note that the total degree of this

monomial equals wt(i).

Definition 3.3 ((Hasse) Derivative). For F (x) ∈ F[x] and non-
negative vector i, the i-th Hasse derivative of F, denoted F (i)(x), is
the coefficient of zi in the polynomial F̃ (x, z) = F (x + z) ∈ F[x, z].

Thus,
F (x + z) =

∑
i

F (i)(x)zi. (3.1)

Observe that for all F,G ∈ F[x], and λ ∈ F,

(λF )(i)(x) = λF (i)(x) and F (i)(x) +G(i)(x) = (F +G)(i)(x). (3.2)

We are now ready to define the notion of the (zero-)multiplicity of
a polynomial at any given point.

Definition 3.4 (Multiplicity). For F (x) ∈ F[x] and w ∈ Fn, the
multiplicity of F at w ∈ Fn, denoted mult(F,w), is the largest integer
m such that for every non-negative vector i with wt(i) < m, we have
F (i)(w) = 0. (If m may be taken arbitrarily large, mult(F,w) =∞).

Note that mult(F,w) ≥ 0 for every w. The main technical fact
we will need about derivatives and multiplicities is a bound on the
number of points that a low-degree polynomial can vanish on with
high multiplicity. We state this lemma below. For an elementary proof
in our notation, see [35].

Lemma 3.5. Let F ∈ F[x] be a nonzero n-variate polynomial of total
degree at most d. Then for any finite set S ⊆ F,∑

w∈Sn

mult(F,w) ≤ d · |S|n−1.
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In particular, for any integer s > 0,

Pr
w∈Sn

[mult(F,w) ≥ m] ≤ d

m|S|
.

3.2.2 Definition of multiplicity codes

We now come to the definition of multiplicity codes.

Definition 3.6. Let m, d, n be nonnegative integers and let q be a
prime power. Let

Σ = F(n+m−1
n )

q = F{i : wt(i)<m}
q .

For F (x1, . . . , xn) ∈ Fq[x1, . . . , xn], we define the order m evaluation of
F at w, denoted F (<m)(w), to be the vector(

F (i)(w)
)

wt(i)<m
∈ Σ.

We define the multiplicity code C of order m evaluations of degree
d polynomials in n variables over Fq as follows. The code is over the
alphabet Σ, and has length qn. The coordinates are indexed by elements
of Fnq . For each polynomial F (x) ∈ Fq[x1, . . . , xn] with deg(F ) ≤ d,
there is a codeword in C given by:

Encm,d,n,q(F ) =
(
F (<m)(w)

)
w∈Fn

q

∈ (Σ)q
n
.

In the next lemma, we calculate the rate and relative distance of
multiplicity codes. The nice feature of the behavior here is that if we
keep the distance δ fixed and let the multiplicity parameter m grow,
the rate of these codes improves (and approaches (1− δ)n).

Lemma 3.7. Let C be the multiplicity code of order m evaluations
of degree d polynomials in n variables over the field Fq. Then C has

relative distance which is at least δ = 1− d
mq and rate (d+n

n )
(m+n−1

n )qn
, which

is at least (
m

n+m

)n
·
(
d

mq

)n
≥
(

1− n2

m

)
(1− δ)n .



22 Multiplicity codes

Proof. The alphabet size equals q(
n+m−1

n ). The length equals qn. To
calculate the relative distance, consider two arbitrary codewords c1 =
Encm,d,n,q(F1), c2 = Encm,d,n,q(F2), where F1 6= F2. For any coordi-
nate w ∈ Fnq where the codewords c1, c2 agree, we have F (<m)

1 (w) =

F
(<m)
2 (w). Thus for any such w, we have (F1 − F2)(i)(w) = 0 for each

i with wt(i) < m, and hence mult(F1 − F2,w) ≥ m. From the bound
on the number of high-multiplicity zeroes of multivariate polynomials,
Lemma 3.5, the fraction of w ∈ Fnq on which this can happen is at most
d
mq . The minimum distance δ of the multiplicity code is therefore at
least 1− d

mq .

A codeword is specified by giving coefficients to each of the mono-
mials of degree at most d. Thus the number of codewords equals q(

d+n
n ).

Thus the rate equals(
d+n
n

)(
m+n−1

n

)
qn

=

∏n−1
j=0 (d+ n− j)∏n

j=1((m+ n− j)q)

≥
(

1
1 + n

m

)n( d

mq

)n
≥
(

1− n2

m

)
(1− δ)n .

The next lemma, which will be the focus of the rest of this chapter,
shows that multiplicity codes are locally correctable.

Lemma 3.8. Let C be the multiplicity code of order m evaluations
of degree d polynomials in n variables over Fq. Let δ = 1− d

mq be the
lower bound for the relative distance of C. Suppose

q > max
{

10n,
d+ 15m

m
, 12(m+ 1)

}
;

then C is (O(m)n · q, δ/10, 0.2)-locally correctable.

The proof of this lemma appears in section 3.3.



3.2. The code construction 23

3.2.3 Proofs of the main theorems

We now show how to instantiate multiplicity codes to prove our main
asymptotic theorems 3.1 and 3.2 based on lemma 3.8.

Proof. [of theorem 3.1] Recall that we are trying to construct, for every
0 < ε, α < 1, for infinitely many k, a code over an alphabet of size
kO(1), with message length k, rate 1−α, distance δ ≥ εα/2, and locally
correctable with O(kε) queries from δ/10-fraction errors.

Pick n = d1/εe. Observe that

1− α < (1− εα/2)2/ε < (1− εα/2)d1/εe.

Pick m to be the smallest positive integer so that

1− n2

m
>

1− α
(1− εα/2)n

.

Observe that n and m are constants. For every large enough prime
power q, we will construct a code with codeword length N = qn. Let
δ ≥ εα/2 be such that d = (1− δ) ·m · q is an integer and

1− n2

m
>

1− α
(1− δ)n

.

Let C be the multiplicity code of order m evaluations of degree
d polynomials in n variables over Fq. Observe that C has codeword
length N and is over an alphabet of size q(

n+m−1
n ) = NO(1) = kO(1). By

Lemma 3.7, C has relative distance at least δ ≥ εα/2 and rate at least(
1− n2

m

)
· (1− δ)n > 1− α.

By lemma 3.8, C can be locally corrected from δ/10-fraction errors
using O(N1/n) = O(N ε) = O(kε) queries. This completes the proof of
theorem 3.1.

Finally, we complete the proof of theorem 3.2, by concatenating
suitable multiplicity codes with good linear codes over small alphabets.

Proof. [of theorem 3.2] Set α1 = α/2 and ε1 = ε/2. As in the proof
of theorem 3.1, there are constants n and m such that for every large



24 Multiplicity codes

enough prime power q, there is a multiplicity code with codeword length
N1 = qn, rate 1 − α1, relative distance at least δ1 = ε1α1/2, over an
alphabet Σ1 of size q(

n+m−1
n ), and locally correctable from δ1/10 fraction

of errors with O(N ε1
1 ) queries. We will take such codes C1 where q = pt

for integers t > 0.
We now pick another code C2 of message length

(
n+m−1

n

)
· t that

is Fp-linear and has rate 1 − α1 and use it to encode the symbols of
C1. The resulting concatenated code C is Fp-linear (this follows from
the linearity of C2 and additivity of C1 coming from equation (3.2)),
and has distance δ and rate R that are at least the products of the
corresponding parameters of C1 and C2. In particular, if we take C2 to
be a code of constant relative distance δ2 > 0; then C has codeword
length

N = qn ·
(
n+m− 1

n

)
· t · 1

1− α1
,

rate at least 1− α and constant relative distance (as N grows) δ > 0.
We now argue that the code C is locally correctable. To locally

correct some coordinate of a codeword of C given access to a corrupted
codeword of C, we first run the local corrector for C1 to decode the
coordinate of C1 that contains that coordinate of C. Whenever this
local corrector wants to query a certain coordinate of C1, we recover
that symbol by decoding the corresponding codeword of C2. The query
complexity of the local corrector for C is clearly O(N ε1 logN) = O(kε).
It remains to note that in case the total fraction of errors is below
δ1δ2/20, all but δ1/10 fraction of the C2 blocks will have less than
δ2/2-fraction errors, and can be correctly recovered by the decoder for
C2. Thus the local corrector for C1 will run correctly, and this yields
the desired corrected coordinate of C.

3.3 Local correction

In this section, we prove that multiplicity codes are locally correctable.
Suppose we are dealing with the multiplicity code of order m evalu-
ations of degree d polynomials in n variables over Fq. Let Σ be the
alphabet for this code. Let y : Fnq → Σ be a received word. Suppose
F is a polynomial over Fq in n variables of degree at most d such that
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∆(y,Encm,d,n,q(F )) is small. Let w ∈ Fnq . Let us show how to locally
recover F (<m)(w) given oracle access to y.

The main idea behind the local corrector is to pick many random
affine lines containing w, and to consider the restriction of y to those
lines. With high probability over a random direction v ∈ Fnq , by looking
at the restriction of y to the line {w + λv | λ ∈ Fq} and “decoding” it,
we will be able to recover the univariate polynomial F (w + λv) =
f(λ). Knowing this univariate polynomial will tell us a certain linear
combination of the various derivatives of F at the point w. Combining
this information for various directions v, we will know a system of
various linear combinations of the numbers

{
F (i)(w)

}
wt(i)<m

. Solving

this linear system, we get F (i)(w) for each i, as desired.
To implement this strategy we need to relate the derivatives of the

restriction of a multivariate polynomial F to a line to the derivatives
of the polynomial F itself. Fix w,v ∈ Fnq , and consider the polynomial
f(λ) = F (w + λv) ∈ Fq[λ].

• f(λ) and the derivatives of F at w:
By the definition of Hasse derivatives,

f(λ) =
∑

i

F (i)(w)viλwt(i).

Grouping terms, we see that:∑
i|wt(i)=e

F (i)(w)vi = coefficient of λe in f(λ). (3.3)

• Derivatives of f at λ0 and derivatives of F at w+λ0v:
Let λ0 be a point in Fq. By the definition of Hasse derivatives,
we get the following two identities:

F (w + (λ0 + λ)v) = f(λ0 + λ) =
∑
j

f (j)(λ0)λj .

F (w + (λ0 + λ)v) =
∑

i

F (i)(w + λ0v)(λv)i.

Thus,

f (j)(λ0) =
∑

i|wt(i)=j

F (i)(w + λ0v)vi. (3.4)
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In particular, f (j)(λ0) is simply a linear combination of the
various F (i)(w + λ0v) (over different i).

We are now in a position to describe our local correction algorithm.
Before describing the main algorithm for correcting from Ω(δ)-fraction
errors in section 3.3.2, we informally present a simpler version of the
algorithm which corrects from a much smaller fraction of errors. The
analysis of this algorithm will contain many of the ideas. In the de-
scription of both algorithms, the query-efficiency will be clear, and we
do not focus on how to make them run time-efficiently.

3.3.1 Simplified local correction from few errors

Let C be the multiplicity code with parameters m, d, n, q, δ = 1− d
mq .

Let t =
(
n+m−1

n

)
. Below we present a local corrector for the code C

that corrects δ
100t -fraction of errors.

Our input is a received word y : Fnq → Σ and a point w ∈ Fnq . We
are trying to recover F (<m)(w), where F (x) ∈ F[x] is a polynomial of
degree up to d such that Encm,d,n,q(F ) is δ/100t-close to y. With a
slight abuse of notation, we write y(i)(w) to denote the i-th coordinate
of y(w). We call the points in Fnq where y and Encm,d,n,q(F ) differ the
“errors”. The algorithm has three steps.

(1) Pick a set V of directions: Choose V ⊆ Fnq , a uniformly
random subset of size t.

(2) Recover f(λ) = F (w+λv) for directions v ∈ V : For each
v ∈ V, consider the map `v : Fq → F{0,...,m−1}

q such that for
all λ0 ∈ Fq and j ∈ {0, . . . ,m− 1},

(`v(λ0))(j) =
∑

i|wt(i)=j

y(i)(w + λ0v)vi.

Find the polynomial hv(λ) ∈ Fq[λ] of degree at most d (if
any), such that ∆(Encm,d,1,q(hv), `v) < δ/2.
Assuming q is large enough compared to m,n, and 1/δ, one
can show that with probability at least 0.9 over the choice
of the set V, all v ∈ V are such that the line through w
in direction v has fewer than δ/2 errors on it. We omit the



3.3. Local correction 27

proof. In such case by formula (3.4) for all v ∈ V, for all j
we get

(`v(λ0))(j) = f (j)(λ0),

for all but less than δ/2 values of λ0. This yields hv(λ) = f(λ)
since by lemma 3.7 order-m evaluations of degree-d polyno-
mials on a line form a code of distance δ.

(3) Solve a linear system to recover F (<s)(w): For each e

with 0 ≤ e < m, consider the following system of equations in
the variables {ui}wt(i)=e (with one equation for each v ∈ V ):∑

i|wt(i)=e

viui = coefficient of λe in hv(λ). (3.5)

Find all {ui}wt(i)=e which satisfy at all these equations. If
the solution is not unique output FAIL; otherwise output
the vector {ui}wt(i)<m .

Formula (3.3) shows that coordinates of F (<m)(w) give a
solution to (3.5). It is possible to prove that with probability
at least 0.9 over the choice of the set V, this solution is unique.
We omit the proof.
Thus with probability at least 0.8, our algorithm outputs
F (i)(w), as desired.

3.3.2 Local correction from Ω(δ)-fraction errors

We now come to the main local correcting algorithm and the proof of
lemma 3.8. As above, to decode at a point w, we pick several affine
lines {w + λv | λ ∈ Fq} through w, and try to recover the univariate
polynomial F (w + λv). However, unlike the above algorithm, we do
not count on the event that all these lines have less than δ/2-fraction
errors. Instead, we pick a larger number of lines than the bare-minimum
required for the next step, and hope that most (but not necessarily all)
of these lines will have fewer than δ/2-fraction errors. Counting on this
weakened event allows us to correct from a significantly larger fraction
of errors. To compensate for the weakening, we need to make the next
step of the algorithm, that of solving a linear system, more robust; we
have to solve a noisy system of linear equations.
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Let us elaborate on the method by which we pick the lines in the
new algorithm. In the previous algorithm, we picked exactly

(
n+m−1

n

)
random lines through w and used them to decode from Ω

(
δ/
(
n+m−1

n

))
-

fraction errors. By picking a larger number of lines, we can decode all
the way up to Ω(δ)-fraction errors. There are several ways of picking
this larger number of lines. One way is to pick Θ

((
n+m−1

n

))
independent

and uniformly random lines through the point w. The algorithm we
present below picks these lines differently; the directions of these lines
come from a random affinely transformed grid. This way of choosing
lines admits a simpler analysis.

Let C be the multiplicity code with parametersm, d, n, q, δ = 1− d
mq ,

satisfying the condition of lemma 3.8. Below we present a local correc-
tor for C that corrects δ

10 -fraction of errors. Our input is a received
word y : Fnq → Σ and a point w ∈ Fnq . We are trying to recover
F (<m)(w), where F (x) ∈ F[x] is a polynomial of degree up to d such
that Encm,d,n,q(F ) is δ/10-close to y. As before, we write y(i)(w) to
denote the i-th coordinate of y(w). The algorithm has three steps.

(1) Pick a set V of directions: Pick z,b1,b2, . . . ,bn ∈ Fnq
independently and uniformly at random. Let M ⊂ Fq be an
arbitrary set of size 12(m+ 1). Let

V =

{
z +

n∑
i=1

αibi | αi ∈M

}
.

(2) Recover f(λ) = F (w + λv) for directions v ∈ V : For
each v ∈ V, consider the map `v : Fq → F{0,...,m−1}

q given by

(`v(λ0))(j) =
∑

i|wt(i)=j

y(i)(w + λ0v)vi.

Find the polynomial hv(λ) ∈ Fq[λ] of degree at most d (if
any), such that ∆(Encm,d,1,q(hv), `v) < δ/2.

(3) Solve a noisy linear system to recover F (<m)(w): For
each e with 0 ≤ e < m, consider the following system of linear
equations in the variables {ui}wt(i)=e (with one equation for
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each v ∈ V ):∑
i|wt(i)=e

viui = coefficient of λe in hv(λ). (3.6)

Find all {ui}wt(i)=e which satisfy at least 3/5 of these equa-
tions. If the solution is not unique, output FAIL.

(4) Output the vector {ui}wt(i)<m .

We now proceed to analyze the above algorithm (and thus complete
the proof of lemma 3.8).

Proof. [of lemma 3.8] For n = 1 the lemma is trivial, so we assume
n ≥ 2. Recall that we have q > 10n, q > d+15m

m (so that q > 15
δ )

and that q > 12(m + 1). We show that the above algorithm is a local
corrector from a δ

10 -fraction of errors.
Fix a received word y : Fnq → Σ and w ∈ Fnq . Let F ∈ F[x] be

a polynomial such that ∆(Encm,d,n,q(F ),y) ≤ δ
10 . We call the set of

points where y and Encm,d,n,q(F ) differ the “errors”.
Step 1: Many v ∈ V are “good”. If we sample a direction v ∈ Fnq
uniformly at random; then the expected number of errors on the line
{w + λv | λ ∈ Fq} through w is at most

1 + (q − 1)δ/10 ≤ 1 + qδ/10.

Therefore, by Markov’s inequality the probability that the number of
errors on a line is qδ/2 or more is at most

1 + qδ/10
qδ/2

=
2
qδ

+
1
5
<

1
3
.

Thus at least 2/3 fraction of all possible directions v yield “good” lines,
i.e., lines that carry less than δ/2 fraction errors. In the claim below,
we show that the set V samples the set of good directions well.

Claim 3.9. Let n be a positive integer. Let M ⊆ Fq be an arbitrary set
such that |M |n ≥ 500. Pick z,b1,b2, . . . ,bn ∈ Fnq independently and
uniformly at random. Let V = {z +

∑n
i=1 αibi | αi ∈M} be a multi-

set. Then for every set G ⊆ Fnq of size at least 2qn/3, the probability
that fewer than 3/5 of the points of V lie in G is at most 0.1.
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Proof. The claim follows from a standard application of Chebyshev’s
inequality, using the fact that the collection of random variables
{z +

∑n
i=1 αibi | αi ∈M} is pairwise independent. The argument is as

follows. Let E = Fnq \G, |E| = τqn, τ < 1/3. Let t = |M |n. For α ∈Mn

consider a random variable xα, which is the indicator variable of the
event z +

∑n
i=1α(i)bi ∈ E. Clearly E [xα] = τ and D [xα] = τ − τ2.

Now consider a random variable

x =
∑

α∈Mn

xα = |V ∩ E|,

Note that x is a sum of t pairwise independent variables. Thus

E[x] = tτ and D[x] = t(τ − τ2).

By Chebyshev’s inequality we have

Pr
[
x ≥ 2

5
t

]
≤ τ − τ2

(2/5− τ)2t
.

It remains to note that the RHS is less than 0.1 when t ≥ 500.

Now recall that in the setting of lemma 3.8 we have n ≥ 2, and so
(12(m+ 1))n > 500. Thus with probability at least 0.9 over the choice
of V, 3/5-fraction of the v ∈ V are good.
Step 2: hv(λ) = F (w +λv) for each good v ∈ V. By equation (3.4),
for each good v ∈ V, the corresponding function `v is such that

∆(Encm,d,1,q(F (w + λv)), `v) < δ/2.

Thus for each good v, the algorithm finds hv(λ) = F (w + λv).
(Note that at most one polynomial g(λ), deg g ≤ d is such that
∆(Encm,d,1,q(g), `v) < δ/2, since for distinct g1, g2 ∈ Fq[λ], of degree at
most d, by lemma 3.7 we have ∆(Encm,d,1,q(g1),Encm,d,1,q(g2)) ≥ δ.)
Step 3: ui = F (i)(w) for each i. Since hv(λ) = F (w + λv) for each
good v ∈ V, equation (3.3) now implies that with probability 0.9, for
each 0 ≤ e < m, the values {ui}wt(i)=e with ui = F (i)(w) satisfy at
least 3/5 of the equations in the system (3.6).

Finally, we observe that this solution {ui} is unique with probability
at least 0.9. Indeed, with probability at least 0.9 over the choice of V, the
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vectors b1, . . . ,bn are linearly independent (since q ≥ 10n). In this case,
there is an Fq-affine map which gives a bijection between Mn and V.

Via this affine map, we get a degree preserving correspondence between
polynomials evaluated on the set Mn and polynomials evaluated on the
set V. Now by lemma 3.5 (and recalling that |M | > 5(m + 1)), there
is no nonzero polynomial of degree below m that vanishes on more
that 1/5-fraction of the points of Mn. Hence no nonzero polynomial of
degree below m vanishes on more that 1/5-fraction of the points of V.

Hence for each e, the collection of values {ui}wt(i)=e that satisfies
3/5 of the equations in the system (3.6) is unique; if not, then the dif-
ference {ui − u′i}wt(i)=e of two such collections {ui}wt(i)=e , {u′i}wt(i)=e

gives the coefficients of a polynomial of degree below m that vanishes
on at least 1/5 fraction of vectors in V ; for any v ∈ V such that
both {ui}wt(i)=e and {u′i}wt(i)=e satisfy the equation (3.6), we have:∑

i|wt(i)=e(ui − u′i)(v
i) = 0, contradicting the fact that there is no

nonzero polynomial of degree below m that vanishes on more that
1/5-fraction of the points of V.

Thus overall, with probability at least 0.8, the algorithm will output
F (i)(w), as desired.

3.4 Notes

Results presented in this chapter are due to Kopparty et al. [61].
Multiplicity codes improve upon Reed Muller codes by evaluating

multivariate polynomials together with their partial derivatives. The
notions of partial derivatives and multiplicities have played an im-
portant role in several other works in coding theory and theoretical
computer science. The “method of multiplicities” is a powerful com-
binatorial/algorithmic technique which has been developed and used
in a number of contexts in recent years [51, 74, 53, 83, 35]. It is a
method for analyzing subsets of Fnq by interpolating a polynomial that
vanishes at each point of that subset with high multiplicity; this often
yields a strengthening of the “polynomial method”, which would ana-
lyze such a subset by interpolating a polynomial that simply vanishes
at each point of that subset. Rozenbloom and Tsfasman [81] consider
extensions of Reed-Solomon codes where the polynomial is evaluated
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together with its derivatives (basically, univariate multiplicity codes)
to obtain codes for some metrics generalizing the usual Hamming met-
ric. Xing [95] considers the space of differentials on an algebraic curve
to prove the existence of error-correcting codes above the Tsfasman-
Vladut-Zink bound. Woodruff et al. [94] use evaluations of polynomials
and their derivatives to construct private information retrieval schemes
with improved communication complexity (section 7.1.2). Multiplicity
codes add to this body of work, which follows the general theme that
wherever polynomials and their zeroes are useful, also considering their
derivatives and high-multiplicity zeroes can be even more useful.

Codes of theorems 3.1 and 3.2 are efficiently constructible. Fur-
thermore, the local correction algorithms can be made to run in time
O(k2ε). See [61] for details.



4

Matching vector codes

In this chapter we give a detailed treatment of locally decodable codes
that arise from families of matching vectors. Any construction of such
codes naturally falls into two parts: the design of a matching vector
family, and the actual code construction. Here we focus on the sec-
ond part and defer an in-depth study of matching vector families to
chapter 5.

The chapter is organized into seven sections. In section 4.1 we
explain the intuition behind matching vector codes and setup the
language that is used later. Our presentation follows the latest
“polynomial-centric” view of MV codes that flashes out some intrinsic
similarity between MV codes and Reed Muller codes. In sections 4.2–4.4
we discuss three local decoders for matching vector codes of increas-
ing level of sophistication. In section 4.5 we show how one can turn
non-binary matching vector codes into binary. Finally, in sections 4.6
and 4.7 we summarize asymptotic parameters of MV codes and pro-
vide a detailed comparison between matching vector locally decodable
codes and Reed Muller locally decodable codes.

33
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4.1 The framework

Our constructions are centered around a “polynomial-centric” view of
MV codes that flashes out some intrinsic similarity between matching
vector codes and Reed Muller codes. In this view a MV code consists
of a linear subspace of polynomials in Fq[z1, . . . , zn], evaluated at all
points of Cn

m, where Cm is a certain multiplicative subgroup of F∗q . The
decoding algorithm is similar to traditional local decoders for RM codes
given by propositions 2.4–2.5. The decoder shoots a line in a certain
direction and decodes along it. The difference is that the monomials
which are used are not of low-degree, they are chosen according to a
matching family of vectors. Further, the lines for decoding are multi-
plicative, a notion that we define shortly. In what follows let Zm denote
the ring of integers modulo an integer m.

Definition 4.1. Let S ⊆ Zm \ {0}. We say that families U =
{u1, . . . ,uk} and V = {v1, . . . ,vk} of vectors in Znm form an S-matching
family if the following two conditions are satisfied:

• For all i ∈ [k], (ui,vi) = 0;
• For all i, j ∈ [k] such that i 6= j, (uj ,vi) ∈ S.

We now show how one can obtain an matching vector locally de-
codable code out of a matching family. We start with some notation.

• We assume that q is a prime power, m divides q − 1, and
denote the unique subgroup of F∗q of order m by Cm;

• We fix some generator g of Cm;
• For w ∈ Znm, we define gw ∈ Cn

m by
(
gw(1), . . . , gw(n)

)
;

• For w,v ∈ Znm we define the multiplicative lineMw,v through
w in direction v to be the multi-set

Mw,v =
{
gw+λv | λ ∈ Zm

}
; (4.1)

• For u ∈ Znm, we define the monomial

monu ∈ Fq[z1, . . . , zn]/(zm1 = 1, . . . , zmn = 1)
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by
monu(z1, . . . , zn) =

∏
`∈[n]

z
u(`)
` . (4.2)

Observe that for any w,u,v ∈ Znm and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (4.3)

The formula above implies that the Mw,v-evaluation of a monomial
monu is a Cm-evaluation of a (univariate) monomial

g(u,w)y(u,v) ∈ Fq[y]. (4.4)

This observation is the foundation of our decoding algorithms. We now
specify the encoding procedure and outline the main steps taken by all
decoding procedures described later on (propositions 4.2, 4.4, and 4.5).
Let U ,V be an S-matching family in Znm, where |U| = |V| = k.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fkq by the Cn
m-

evaluation of the polynomial

F (z1, . . . , zn) =
k∑
j=1

x(j) ·monuj (z1, . . . , zn). (4.5)

Notice that F = Fx is a function of the message x (we will omit the
subscript and treat x as fixed throughout this section).

Abstract decoding: The input to the decoder is a corrupted Cn
m-

evaluation of F and an index i ∈ [k].

(1) The decoder picks w ∈ Znm uniformly at random;
(2) The decoder recovers the noiseless restriction of F to Mw,vi .

To accomplish this the decoder may query the corrupted
Mw,vi-evaluation of F at m or fewer locations.

To see that noiseless Mw,vi-evaluation of F uniquely determines
x(i) note that by formulas (4.3), (4.4) and (4.5) the Mw,vi-evaluation
of F is a Cm-evaluation of a polynomial

f(y) =
k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (4.6)
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Further observe that the properties of the S-matching family U ,V
and (4.6) yield

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys. (4.7)

For a polynomial h ∈ Fq[y] we denote by supp(h) the set of monomials
with non zero coefficients in h, where a monomial ye is identified with
the integer e. It is evident from formula (4.7) that supp(f) ⊆ S ∪ {0}
and

x(i) = f(0)/g(ui,w). (4.8)

In sections 4.2–4.4 we describe several local decoders that follow the
general paradigm outlined above.

4.2 Basic decoding on lines

The proposition below gives the simplest local decoder for MV codes.

Proposition 4.2. Let U ,V be a family of S-matching vectors in Znm,
|U| = |V| = k, |S| = s. Suppose m | q−1, where q is a prime power; then
there exists a q-ary linear code encoding k-long messages to mn-long
codewords that is (s+ 1, δ, (s+ 1)δ)-locally decodable for all δ.

Proof. The encoding procedure has already been specified by for-
mula (4.5). To recover the value x(i)

(1) The decoder picks w ∈ Znm at random, and queries the (cor-
rupted) Mw,vi-evaluation of F at (s+1) consecutive locations{
gw+λvi | λ ∈ {0, . . . , s}

}
to obtain values c0, . . . , cs.

(2) The decoder recovers the unique sparse univariate polyno-
mial h(y) ∈ Fq[y] with supp(h) ⊆ S ∪ {0} such that for all
λ ∈ {0, . . . , s}, h(gλ) = cλ. (The uniqueness of h(y) follows
from standard properties of Vandermonde matrices. [63])

(3) Following the formula (4.8) the decoder returns h(0)/g(ui,w).

The discussion in section 4.1 implies that if all (s + 1) locations
queried by the decoder are not corrupted then h(y) is indeed the noise-
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less restriction of F to Mw,vi , and decoder’s output is correct. It re-
mains to note that each individual query of the decoder samples a
uniformly random location and apply the union bound.

4.3 Improved decoding on lines

The local decoder for MV codes given in section 4.2 is similar to the
local decoder for RM codes given in section 2.2.1 in that it can only
tolerate δ < 1/2r fraction of errors. Thus the fraction of tolerable noise
rapidly deteriorates with an increase in query complexity r. Below we
introduce the concept of a bounded matching family of vectors and
show how matching vector codes based on bounded matching families
can be decoded from a nearly 1/4 fraction of errors independent of r.

In what follows we identify Zm with the subset {0, . . . ,m − 1} of
real numbers. This imposes a total ordering on Zm, 0 < 1 < . . . < m−1
and allows us to compare elements of Zm with reals. We say that a set
S ⊆ Zm is b-bounded if for all s ∈ S, s < b.

Definition 4.3. Let b be a positive real. An S-matching family U ,V
in Znm is b-bounded if the set S is b-bounded.

Below is the main result of this section.

Proposition 4.4. Let 0 < σ < 1. Let U ,V be a σm-bounded family
of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1, where
q is a prime power; then there exists a q-ary linear code encoding k-
long messages to mn-long codewords that is (m, δ, 2δ/(1 − σ))-locally
decodable for all δ.

Proof. The encoding procedure has already been specified by (4.5). To
recover the value x(i),

(1) The decoder picks w ∈ Znm at random, and queries every
point of the (corrupted) Mw,vi-evaluation of F at all m lo-
cations

{
gw+λvi | λ ∈ Zm

}
to obtain values c0, . . . , cm−1.

(2) The decoder recovers the univariate polynomial h(y) ∈ Fq[y]
of degree less than σm such that for all but at most (m −
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σm)/2 values of λ ∈ Zm, h(gλ) = cλ. If such an h does not
exist the decoder encounters a failure, and returns 0. Note
that deg h < σm implies that h(y) is unique, if it exists. The
search for h(y) can be done efficiently using the Berlekamp-
Welch algorithm [66].

(3) Following the formula (4.8) the decoder returns h(0)/g(ui,w).

The discussion in section 4.1 implies that if the Mw,vi-evaluation of
F is corrupted in at most (m − σm)/2 locations, then h(y) is indeed
the noiseless restriction of F to Mw,vi , and the decoder’s output is
correct. It remains to note that each individual query of the decoder
samples a uniformly random location and thus by Markov’s inequality
the probability that more than (m− σm)/2 of decoder’s queries go to
corrupted locations is at most 2δ/(1− σ).

4.4 Decoding on collections of lines

The local decoder for MV codes given in section 4.3 is similar to the
local decoder for RM codes given in section 2.2.2 in that it can only
tolerate δ < 1/4 fraction of errors (be setting σ close to zero). Below we
present an even better local decoder that tolerates a nearly 1/2 fraction
of errors, which is optimal for unique decoding.

The idea behind the improved local decoder is different from the
idea behind the Reed Muller decoder of proposition 2.6. There we ex-
ploited restrictions of RM codewords to parametric degree two curves.
It is however not clear how to utilize similar restrictions in the set-
ting of matching vector codes. Instead, we randomly pick a sufficiently
large (but constant) number of multiplicative lines. We assign weights
to candidate values of the desired message symbol based on the number
of errors along the collection of lines. We argue that the symbol with
the largest weight is with high probability the correct symbol.

Proposition 4.5. Let 0 < σ < 1. Let U ,V be a σm-bounded family
of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1, where
q is a prime power; then for every positive integer l there exists a q-ary
linear code encoding k-long messages to mn-long codewords that for
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all δ < (1− σ)/2 is (lm, δ, expσ,δ(−l))-locally decodable.

Proof. The encoding procedure has already been specified by (4.5). We
setup the notation needed to describe the decoder. Given a polynomial
h(y) ∈ Fq[y], supp(h) ⊆ S ∪ {0} and a multiplicative line M we denote
the number of coordinates where Cm-evaluation of h agrees with the M -
evaluation of F by agr(h,M). For a symbol e ∈ Fq and a multiplicative
line M we define

weight(e,M) = max
h:h(0)=e

agr(h,M),

where the maximum is taken over all h(y) ∈ Fq[y], supp(h) ⊆ S ∪ {0}.
We now proceed to the local decoder. To recover the value x(i),

(1) The decoder picks vectors w1, . . . ,wl ∈ Znm uniformly at ran-
dom, and queries values of the corrupted evaluation of F
along each of l multiplicative lines

{
Mwj ,vi

}
, j ∈ [l].

(2) For every symbol e ∈ Fq the decoder computes its weight,

weight(e) =
l∑

j=1

weight
(
e,Mwj ,vi

)
.

The weight measures the likelihood that x(i) = e given the
observed values of the corrupted evaluation of F.

(3) The decoder outputs the symbol that has the largest weight.
If such a symbol is not unique the decoder outputs 0.

Below we analyze the success probability of the decoder. Firstly,
note that there cannot be two symbols e1 6= e2 that both have weight
above lm(1+σ)/2. Otherwise one of the multiplicative lines would give
us two distinct polynomials h1(y), h2(y) ∈ Fq[y] of degree less than
σm whose Cm-evaluations agree in at least σm locations. Secondly,
note that by Chernoff bound the probability that the total number of
corrupted locations on lines

{
Mwj ,vi

}
, j ∈ [l] exceeds lm(1 − σ)/2 is

at most expσ,δ(−l), provided that δ < (1− σ)/2.
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4.5 Binary codes

In cases when query complexity r is super-constant proposi-
tions 4.2, 4.4, and 4.5 yield codes over growing alphabets. As we stated
earlier our main interest is in binary codes. The next lemma extends
proposition 4.5 to produce binary codes that tolerate a nearly 1/4 frac-
tion of errors, which is optimal for unique decoding over F2. The proof
uses standard concatenation.

Proposition 4.6. Let 0 < σ < 1. Let U ,V be a σm-bounded family
of S-matching vectors in Znm, |U| = |V| = k. Suppose m | q − 1, where
q = 2b. Further suppose that there exists a binary linear code Cinner

of distance µB encoding b-bit messages to B-bit codewords; then for
every positive integer l there exists a binary linear code C encoding
kb-bit messages to (mn ·B)-bit codewords that for all δ < (1 − σ)µ/2
is (lmB, δ, expσ,µ,δ(−l))-locally decodable.

Proof. We define the code C to be the concatenation of the q-ary code
Couter used in propositions 4.2–4.5 and the binary code Cinner. In order
to recover a single bit, the local decoder recovers the symbol of the q-
ary alphabet that the bit falls into. Given a δ-corrupted concatenated
evaluation of a polynomial F the decoder acts similarly to the decoder
from the proposition 4.5.

We setup the notation needed to describe the decoder formally.
Given a polynomial h(y) ∈ Fq[y], supp(h) ⊆ S∪{0} and a multiplicative
line M we denote the number of coordinates where Cinner-concatenated
Cm-evaluation of h agrees with corrupted Cinner-concatenated M -
evaluation of F by agr(h,M). For a symbol e ∈ Fq and a multiplicative
line M we define

weight(e,M) = max
h:h(0)=e

agr(h,M),

where the maximum is taken over all h(y) ∈ Fq[y], supp(h) ⊆ S ∪ {0}.
To recover the i-th symbol of the outer code,

(1) The decoder picks vectors w1, . . . ,wl ∈ Znm uniformly at ran-
dom, and queries the coordinates corresponding to encodings
of values of F along each of l lines

{
Mwj ,vi

}
, j ∈ [l].
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(2) For every symbol e ∈ Fq the decoder computes its weight,

weight(e) =
l∑

j=1

weight
(
e,Mwj ,vi

)
.

The weight measures the likelihood that the i-the symbol
of the outer code equals e given the observed values of the
corrupted evaluation of F.

(3) The decoder outputs the required bit of the symbol that has
the largest weight. If such a symbol is not unique the decoder
outputs 0.

Below we analyze the success probability of the decoder. Firstly,
note that there cannot be two symbols e1 6= e2 that both have weight
above lmB(1 − (1 − σ)µ/2). Otherwise one of the multiplicative lines
would give us two distinct polynomials h1(y), h2(y) ∈ Fq[y] of degree
less than σm whose concatenated Cm-evaluations agree in at least
(1 − (1 − σ)µ)mB locations. Secondly, note that by Chernoff bound
the probability that the total number of corrupted locations on lines{
Mwj ,vi

}
, j ∈ [l] exceeds lmB(1− σ)µ/2 is at most expσ,µ,δ(−l), pro-

vided that δ < (1− σ)µ/2.

4.6 Summary of parameters

Parameters of matching vector codes (propositions 4.2–4.6) are deter-
mined by parameters of the underlying family of matching vectors. In
section 4.6.1 we apply proposition 4.6 to Grolmusz’s family of match-
ing vectors to obtain some explicit trade-offs between query complexity
and codeword length of MV codes. In section 4.6.2 we use existing up-
per bounds on the size of matching vector families to establish lower
bounds on the codeword length of MV codes.

4.6.1 Upper bounds

The largest currently known families of matching vectors are closely
based on Grolmusz’s construction of set systems with restricted inter-
sections modulo composites (section 5.1). The following lemma cap-
tures the parameters of these families. We defer the proof to chapter 5.
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Lemma 5.8. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Let {ei}, i ∈ [t] be integers such that for all i,
we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary. Then

there exists an
(
h
w

)
-sized σm-bounded family of matching vectors in

Znm, where n =
(
h
≤d

)
and σ is an arbitrary real larger than

∑
i∈[t] 1/pi.

A combination of proposition 4.6 and lemma 5.8 yields

Lemma 4.7. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Suppose integers {ei}, i ∈ [t] are such that for
all i, we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary.

Let σ be an arbitrary real number larger than
∑

i∈[t] 1/pi. Suppose
m | q−1, where q = 2b. Further suppose that there exists a binary linear
code Cinner of distance µB encoding b-bit messages to B-bit codewords;
then for every positive integer l there exists a binary linear code C

encoding
((

h
w

)
· b
)

-bit messages to
(
m

(
h
≤d

)
·B
)

-bit codewords that

for all δ < (1− σ)µ/2 is (lmB, δ, expσ,µ,δ(−l))-locally decodable.

In what follows we estimate asymptotic parameters of our codes.

Lemma 4.8. For all integers t ≥ 2, k ≥ 2t there exists a binary linear
code encoding k-bit messages to

N = exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is (r, δ, exp(−t))-locally decodable for r = tO(t) and
δ = 1/4−O(1/ ln t).

Proof. The proof follows by setting parameters in lemma 4.7.

(1) By [85, theorem 5.7] there exists a universal constant c′ such
that the range [(c/2)t ln t, ct ln t] contains at least t distinct
odd primes p1, . . . , pt;
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(2) Note that
∑

i∈[t] 1/pi = O(1/ ln t);
(3) Set m =

∏
i∈[t] pi. Clearly, m = tΘ(t);

(4) Set b to be the smallest positive integer such that m
∣∣2b − 1

Clearly, b ≤ m− 1 = tO(t). Set q = 2b;
(5) A standard greedy argument (that is used to prove the clas-

sical Gilbert-Varshamov bound [66]) implies that there is a
universal constant c′ such that for all integers s ≥ 1, there ex-
ists a binary linear code of distance (1/2−c′/

√
s)s2 encoding

s-bit messages to s2-bit codewords. We set Cinner to be a bi-
nary linear code that encodes b-bit messages to B = tΘ(t)-bit
codewords and has distance µB, for µ ≥

(
1/2− c′/tΘ(t)

)
;

(6) We now assume that there exists a positive integer w which
is a multiple of t such that k = ww/t. Clearly, we have w =
Θ(t log k/ log log k);

(7) Following lemma 4.7 for every i ∈ [t], let ei be the smallest
integer such that pei

i > w1/t. Let d = maxi pei
i . Clearly, d =

O(w1/tt ln t);
(8) Set h = c′′

⌈
w1+1/t

⌉
, where c′′ is an appropriately chosen

(constant) positive integer ensuring that h ≥ d;
(9) Observe that

(
h
w

)
· b ≥ (h/w)w ≥ k;

(10) Note that
(
h
≤d

)
≤ d(eh/d)d;

(11) Set N = m

(
h
≤d

)
·B ≤ tx, where x = O(t)(ew)O(w1/tt ln t);

(12) Set l = t;
(13) We combine lemma 4.7 with inequalities that we proved

above and make basic manipulations to obtain a binary lin-
ear code encoding k-bit messages to

exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is (r, δ, exp(−t))-locally decodable for
r = tO(t) and δ = 1/4−O(1/ ln t);

(14) Finally, we note that the assumption about k = ww/t, for
some w can be safely dropped. If k does not have the required
shape, we pad k-bit messages with zeros to get messages of
length k′, where k′ has the shape ww/t and then apply the
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procedure above. One can easily check that such padding
requires at most a quadratic blow up in the message length
and therefore does not affect asymptotic parameters.

This completes the proof.

The following theorem gives asymptotic parameters of matching
vector codes in terms of the query complexity and the message length.

Theorem 4.9. For every large enough integer r and every k ≥ r there
exists a binary linear r-query locally decodable code encoding k-bit
messages to

exp exp
(

(log k)O(log log r/ log r)(log log k)1−Ω(log log r/ log r) log r
)

(4.9)

bit codewords and tolerating δ = 1/4−O(1/ ln ln r) fraction of errors.

Proof. The proof follows by setting parameters in lemma 4.8. Set t to
be the largest integer such that tO(t) ≤ r, where the constant in O-
notation is the same as the one in lemma 4.8. Assuming r is sufficiently
large we have t = Θ(log r/ log log r). One can also check that k ≥ r

implies that the condition of lemma 4.8 is satisfied. An application of
the lemma concludes the proof.

Theorem 4.9 presents a trade-off between the query complexity and
the codeword length of matching vector codes that tolerate a nearly
optimal fraction of errors. In section 2.1 we mentioned that not all ap-
plications of LDCs require codes of such a high error tolerance. Specif-
ically, applications of locally decodable codes in cryptography need
short codes of constant query complexity r = O(1), that tolerate some
constant fraction of errors that is low significance.

It is possible to get a small saving in terms of codeword length
in theorem 4.9 if one disregards the fraction of tolerable noise. Below
we give two theorems that apply in that setting. The next theorem is
from [57]. We omit the proof that slightly improves on what one gets
by a simple combination of proposition 4.2 and lemma 5.8.



4.6. Summary of parameters 45

Theorem 4.10. For every integer t ≥ 2, and for all k ≥ 2, there exists
an r = 3 · 2t−2-query linear locally decodable code over F2t encoding
k-long messages to

exp expt
(

(log k)1/t(log log k)1−1/t
)

-long codewords and tolerating δ = O(1/r) fraction of errors.

Theorem 4.10 yields non-binary codes. One can turn these codes
into binary without an increase in the number of queries using the
technique from [37, section 4]. Again we omit the proof.

Theorem 4.11. For every integer t ≥ 2, and for all k ≥ 2, there exists
a r = 3 ·2t−2-query binary linear locally decodable code encoding k-bit
messages to

exp expt
(

(log k)1/t(log log k)1−1/t
)

-bit codewords and tolerating δ = O(1/r) fraction of errors.

Locally decodable codes given by propositions 4.2–4.6 and theo-
rems 4.9 and 4.10 are perfectly smooth, i.e., on an arbitrary input each
individual query of the decoder is distributed perfectly uniformly over
the codeword coordinates. Binary codes given by theorem 4.11 are not
perfectly smooth.

4.6.2 Lower bounds

Let k(m,n) denote the size of the largest family of S-matching vectors
in Znm where we allow S to be an arbitrary subset of Zm \ {0}. It is
easy to see that the rate of any locally decodable code obtained via
propositions 4.2– 4.6 is at most k(m,n)/mn.

In this section we use existing upper bounds on the size of matching
vector families to establish lower bounds on the codeword length of
matching vector codes. The codeword length lower bounds we get are
very general. In particular they apply to all matching vector codes,
irrespective of their query complexity.
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We defer the proofs of the following upper bounds on k(m,n) to
chapter 5.

Theorem 5.23. Let m and n be arbitrary positive integers. Suppose
p is a prime divisor of m; then

k(m,n) ≤ 5mn

p(n−1)/2
.

Theorem 5.25. Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).

We now translate upper bounds on matching vector families to lower
bounds on the encoding length of matching vector codes. We first argue
that any family of (non-binary) matching vector codes, (i.e., codes that
for somem and n, encode k(m,n)-long messages tomn-long codewords)
has a multiplicative encoding blow-up (stretch) of at least 2Ω(

√
log k).

Theorem 4.12. Consider an infinite family of matching vector codes
C` : Fkq → FNq for ` ∈ N, where k = k(`) and N = N(`) go to infinity
with `. For large enough `, we have

N ≥ k2Ω(
√

log k).

Proof. For each `, we have a family of matching vectors in Znm where
m,n depend on `. We have N = mn while k ≤ k(m,n). First assume
that n >

√
logN . Then by theorem 5.23 with p a prime divisor of m,

we have
k ≤ 5mn

p(n−1)/2
≤ 5N

20.5
√

logN−1/2
≤ N

20.4
√

logN
,

where the last inequality holds for large enough N , and hence for all
large `. Hence assume that n ≤

√
logN so that m ≥ 2

√
logN . As `
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goes to infinity, N and hence m go to infinity. So for large enough `,
theorem 5.25 gives k(m,n) ≤ mn−1+om(1) ≤ mn−0.9. Hence

k ≤ mn

m0.9
≤ N

20.9
√

logN
.

Thus k ≤ N

2Ω(
√

log N) for large enough `. This implies that N ≥

k2Ω(
√

log k) for large enough `.

One can generalize theorem 4.12 to get a similar statement for bi-
nary matching vector codes, i.e., codes obtained by a concatenation of
a non-binary MV code with an asymptotically good binary code.

Theorem 4.13. Let {m`} and {n`}, ` ∈ N be two arbitrary sequences
of positive integers, such that m`

n` monotonically grows to infinity.
Consider an infinite family of binary codes C` : Fk`

2 → FN`
2 for ` ∈ N,

where each code C` is obtained via a concatenation of a MV code en-
coding k(m`, n`)-long messages to mn`

` -long codewords over Fq` , (here
q` = 2t is the smallest integer such that m` | 2t− 1) with an asymptot-
ically good binary code of some fixed rate; then for large enough ` the
stretch of C` is at least 2Ω(

√
log k`).

Proof. Pick a sufficiently large value of `. Consider two cases

• n` 6= 1. First observe that k(m`, n`) ≥ m`, e.g., take U =
{uα}α∈Zm , V = {vβ}β∈Zm , where

uα = (1, α, 0, . . . , 0) and vβ = (β,−1, 0, . . . , 0).

Next note that by theorem 4.12 the stretch of the non-binary

code is at least 2Ω
(√

log k(m`,n`)
)
, and the concatenation with

a binary code can only increase the stretch. Finally note that
the dimension k` of the binary code satisfies

k` ≤ k(m`, n`)m` ≤ k2(m`, n`).

Thus 2Ω
(√

log k(m`,n`)
)
≥ 2Ω(

√
log k`), for an appropriately

chosen constant in Ω-notation.



48 Matching vector codes

• n` = 1. Set k′ = k(m`, n`). Be theorem 5.25, k′ = m
o(1)
` . Note

that k` = k′t and N` = Ω(m` · t), for some t ≤ m`. These
conditions yield N` ≥ Ω

(
k

3/2
`

)
.

This completes the proof.

4.7 MV codes vs. RM codes

In this section we provide a comparison between matching vector codes
and Reed Muller codes. We show that matching vector codes given by
theorems 4.9, 4.11 have shorter codeword lengths than Reed Muller
codes when the query complexity is low,

r ≤ log k/(log log k)c,

for some constant c. We also show that all matching vector codes have
longer codeword lengths than Reed Muller codes when the query com-
plexity is high,

r ≥ (log k)c(
√

log k),

for some constant c.
Recall that a Reed Muller locally decodable code (section 2.2) is

specified by three integer parameters. Namely, a prime power (alphabet
size) q, a number of variables n, and a degree d < q−1. The q-ary code
consists of Fnq -evaluations of all polynomials in Fq[z1, . . . , zn] of total

degree at most d. Such code encodes k =
(
n+d
d

)
-long messages to qn-

long codewords and has query complexity r = q − 1. If d < σ(q − 1),
the code tolerates δ = 1/2 − σ fraction of errors. When q is a power
of 2 non-binary RM LDCs can be turned into binary via concatenation.
Concatenation with an asymptotically good code of relative distance µ
yields an r-query binary linear code encoding k-bit messages to N -bit
codewords and tolerating δ = (1/2− σ)µ fraction of errors, where

k =
(
n+ d

d

)
log q, N = Θ(qn log q), r = Θ(q log q). (4.10)
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4.7.1 Low query complexity regime

We now argue that RM LDCs are inferior to codes of theorems 4.9, 4.11
for all r ≤ log k/(log log k)c, where c is a universal constant. To arrive
at such a conclusion we need a lower bound on the codeword length of
Reed Muller locally decodable codes.

Let d, n, and q be such that formulas (4.10) yield an r-query LDC,
where r belongs to the range of our interest. We necessarily have d ≤ n
(otherwise r > log k). Thus

k =
(
n+ d

d

)
log q ≤ (en/d)d log q ≤ nO(d), (4.11)

and n ≥ kΩ(1/d). Therefore writing exp(x) to denote 2Ω(x), we have

N ≥ exp exp (log k/d) ≥ exp exp (log k/r) . (4.12)

Note that when r is a constant then already 3-query codes of theo-
rem 4.11 improve substantially upon (4.12). To conclude the argument
one needs to verify that there exists a constant c such that for every
nondecreasing function r(k), where r(k) grows to infinity, and satisfies
r(k) ≤ log k/(log log k)c, for all sufficiently large k the right hand side
of (4.12) evaluates to a larger value than (4.9).

4.7.2 High query complexity regime

Here we argue that all matching vector codes have longer codeword
lengths than Reed Muller codes when r ≥ (log k)c(

√
log k), where c is a

universal constant. Given the theorem 4.13 all we need to do is for ev-
ery constant c′ construct binary Reed Muller LDCs that have a stretch
of less than 2c

′√log k and query complexity of (log k)O(
√

log k). By for-
mula (4.10) the rate of an RM LDC specified by parameters n and
d = q/2 is given by

k/N ≥ Ω
((

n+ d

d

)
/qn
)
.

Combining this with
(
n+d
d

)
≥ (d/n)n, and using d = q/2 we get

k/N ≥ Ω((1/2n)n).
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Thus in order to have rate above 1/2O(
√

log k) it suffices to have

n = O
(√

log k/ log log k
)
. (4.13)

Given k we choose n to be the largest integer satisfying (4.13). Next we
choose d to be the smallest integer satisfying k ≤

(
n+d
d

)
log q. One can

easily check that this yields d = (log k)O(
√

log k), giving an RM LDC
with desired parameters.

4.8 Notes

The study of matching vector codes has been initiated in [96] and
developed further in [77, 59, 37, 57, 34, 18, 67, 19, 82]. An important
progress in constructions of such codes has been accomplished in [37]
where the first constructions of codes from matching vectors modulo
composites (rather than primes) were considered.

Propositions 4.2, 4.4, and 4.5 are due to [37], [34, 18], and [18].
In proposition 4.2 above we interpolated the restriction polynomial

h(y) to recover its free coefficient. In certain cases (relying on special
properties of the integer m and the set S) it may be possible to recover
the free coefficient in ways that do not require complete interpolation
and thus save on the number of queries. This general idea has been used
in [96] under the name of “algebraic niceness”, in [37] for the case of
three-query codes, and in [57, 67] to obtain the shortest currently know
LDCs in the regime of r = O(1). Currently the quantitative improve-
ments one gets through the use of “algebraic niceness” are relatively
small. Therefore we do not go into detail on them in this book.

Recently in [82] it was shown that the query complexity of codes
from proposition 4.4 can be reduced from m to O(|S|).

Propositions 4.5 and 4.6 give matching vector codes that tolerate
the amount of error that is nearly optimal for unique (even non-local)
decoding (1/2 fraction of errors over large alphabets, 1/4 over F2).
In [18] local decoders for MV codes are designed that correct the nearly
optimal amount of noise in the list decoding model [4, 87] (1−ε fraction
of errors over large alphabets, 1/2− ε over F2).

A slight improvement on theorems 4.10 and 4.11 has been recently
obtained in [67].
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The entire construction and analysis of matching vector codes
(apart from the parts dealing with reduction to the binary case) work
also if the underlying field, Fq, is replaced with the complex number
field C. The only property we used in Fq is that it contains an element
of order m, which trivially holds over C for every m. This implies the
existence of linear locally decodable codes with essentially the same
parameters as above also over the complex numbers (the definition of
locally decodable codes over an arbitrary field is the same as for finite
fields, we simply allow the decoder to preform field arithmetic oper-
ations on its inputs). Once one has a linear code over the complex
numbers, it is straightforward to get a code over the reals by writing
each complex number as a pair of real numbers. Interestingly, other
than matching vector codes (and trivial 2-query codes of exponential
stretch), there are no known constructions of locally decodable codes
neither over C nor over R. LDCs over characteristic zero have applica-
tions in arithmetic circuit complexity [36, 33, 7].

Upper bounds on k(m,n) that are quoted in section 4.6.2 are
from [34].
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Matching vectors

In the previous chapter we have seen how parameters of matching vec-
tor locally decodable codes are governed by the parameters of the un-
derlying families of matching vectors. This chapter contains a system-
atic study of such families.

In the first three sections we deal with constructions. In section 5.1
we present a bounded family of matching vectors based on the Grol-
musz’s construction of set systems with restricted intersections modulo
composites. This family underlies the main families of matching vec-
tor codes (theorems 4.9–4.11). In section 5.2 we present an elementary
construction of a bounded family of matching vectors. This family im-
proves upon the Grolmusz’s family for large values of the modulus m.
Finally, in section 5.3 we obtain an algebraic construction of an asymp-
totically optimal matching family in the narrow case of 4-dimensional
vectors modulo a prime. This result has not been published previously.

In sections 5.4–5.6 we deal with upper bounds on the size of match-
ing families. We gradually build up the necessary machinery and in
section 5.6 prove theorems 5.23 and 5.25 that have been used in the
previous chapter to establish lower bounds on the codeword length of
matching vector codes (theorems 4.12 and 4.13).

52
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5.1 The Grolmusz family

The construction of the matching family presented below is modeled
along the lines of Grolmusz’s construction of set systems with restricted
intersections modulo composites. However, we will use lemma 5.2 to
bypass the set system and go directly to the matching family from
polynomials. In addition to being more direct, this also gives a slightly
larger collection of vectors. We first show how to get a family of match-
ing vectors that is not bounded, and then in section 5.1.1 show how to
turn this family into a bounded one.

Definition 5.1. Let S ⊆ Zm \ {0}. We say that a set of polyno-
mials F = {f1, . . . , fk} ⊆ Zm[z1, . . . , zh] and a set of points X =
{x1, . . . ,xk} ⊆ Zhm form a polynomial S-matching family of size k if

• For all i ∈ [k], fi(xi) = 0;
• For all i, j ∈ [k] such that i 6= j, fj(xi) ∈ S.

Let F ,X be a k-sized polynomial matching family. For i ∈ [k], let
supp(fi) denote the set of monomials in the support of the polynomial
fi. We define supp(F) =

⋃k
i=1 supp(fi) and dim(F) = |supp(F)|. The

following lemma was observed by Sudan [86].

Lemma 5.2. An k-sized polynomial S-matching family F ,X over Zm
yields a k-sized S-matching family U ,V in Znm, where n = dim(F).

Proof. Let mon1, . . . ,monn be the set of monomials in supp(F). For
every j ∈ [k] we have

fj(z1 . . . , zh) =
n∑
l=1

cjlmonl.

We define the vector uj to be the n-dimensional vector of coefficients
of the polynomial fj . Similarly, for i ∈ [k], we define the vector vi to
be the vector of evaluations of monomials mon1, . . . ,monn at the point
xi. It is easy to check that for all i, j ∈ [k], (uj ,vi) = fj(xi) and hence
the sets U ,V indeed form an S-matching family.
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Definition 5.3 (Canonical set). Let m =
∏t
i=1 pi be a product of

distinct primes. The canonical set in Zm is the set of all non-zero s

such that for every i ∈ [t], s ∈ {0, 1} mod pi.

Our goal now is to prove the following

Lemma 5.4. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Let {ei}, i ∈ [t] be integers such that for all i, we
have pei

i > w1/t. Let d = maxi pei
i and h ≥ w be arbitrary. Let S be

the canonical set; then there exists an
(
h
w

)
-sized family of S-matching

vectors in Znm, where n =
(
h
≤d

)
.

We assume that parameters m, t, {pi}i∈[t], {ei}i∈[t], w, h, and the set
S satisfy the condition of lemma 5.4 whose proof we defer.

Lemma 5.5. For every i ∈ [t], there is an explicit multilinear polyno-
mial fi(z1, . . . , zh) ∈ Zpi [z1, . . . , zh] where deg(fi) ≤ pei

i − 1 such that
for x ∈ {0, 1}h, we have

fi(x) ≡

{
0 mod pi, if

∑h
l=1 x(l) ≡ w mod pei

i ,

1 mod pi, otherwise.

Proof. Our proof relies on the classical Lucas theorem [25, p. 28], stat-
ing that for all primes p and all integers

b =
∑
j≥0

bj · pj , 0 ≤ bj < p

s =
∑
j≥0

sj · pj , 0 ≤ sj < p,

we have (
b

s

)
≡
∏
j

(
bj
sj

)
mod p.
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Let x ∈ {0, 1}h be an arbitrary vector of Hamming weight b. Let
(b0, b1, . . .) be a p-ary expansion of b. Further, let ` be an arbitrary
positive integer, and let Sp` be the h-variate multilinear symmetric
polynomial of degree p`. By the Lucas theorem we have

Sp`(x) =
(
b

p`

)
≡
(
b`
1

)∏
j 6=`

(
bj
0

)
≡ b` mod p.

To prove the lemma we need to write the function fi as a polynomial
of degree less than pei

i . Observe that fi : {0, 1}h → {0, 1} is a symmetric
function, i.e., its value stays the same under an arbitrary permutation
of coordinates of an input vector x. Moreover note that the value of
fi(x) depends only on ei least significant digits b0, . . . , bei−1 of the pi-
ary expansion of the Hamming weight b of x.

Using the fact that every function from Zei
pi
→ Zpi is computed by

some polynomial, fi can be written as a polynomial g(b0, . . . , bei−1)
over Zpi with the degree of each bj ≤ p − 1. But Spj (x) ≡ bj mod pi.
Hence the polynomial

g
(
S1(x), . . . , S

p
ei−1
i

(x)
)
∈ Zpi [z1, . . . , zh]

computes the function f on binary inputs. It is a symmetric polynomial
whose degree is bounded by

∑ei−1
j=0 pji (pi − 1) = pei

i − 1.

Corollary 5.6. There is an explicit multilinear polynomial
f(z1, . . . , zh) ∈ Zm[z1, . . . , zn] such that for all x ∈ {0, 1}h, we
have

f(x) =

{
0 mod m, if

∑h
l=1 x(l) = w,

s mod m, for s ∈ S, if
∑h

l=1 x(l) < w,

where coordinates of x are summed as integers.

Proof. Define the polynomial f so that for all i ∈ [t],

f(z1, . . . , zh) ≡ fi(z1, . . . , zh) mod pi.
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Clearly, deg(f) ≤ maxi∈[t] deg fi. We claim that it satisfies the above
requirement. Observe that by the Chinese remainder theorem and
lemma 5.5

f(x) = 0 mod m iff for all i ∈ [t],
h∑
l=1

x(l) ≡ w mod pei
i .

The right hand side can be equivalently written as
h∑
l=1

x(l) ≡ w mod
∏
i

pei
i .

Note that for all i ∈ [t], pei
i > w1/t. Hence m =

∏
i p
ei
i > w. Thus

whenever the integer sum
∑h

l=1 x(l) < w, we have
∑h

l=1 x(l) 6≡ w mod
m, which proves the claim.

Proof. [of lemma 5.4] For every T ⊆ [h] of size w, define the polynomial
fT wherein the polynomial f from corollary 5.6, we set zj = 0 for
j 6∈ T (but zj stays untouched for j ∈ T ). Define xT ∈ {0, 1}h to be
the indicator of the set T . Viewing vectors x ∈ {0, 1}h as indicator
vectors xL for sets L ⊆ [h], it is easy to check that for all T, L ∈ [h],
fT (xL) = f(xL∩T ). Combining this with Corollary 5.6 gives

• For all T ⊆ [h], where |T | = w, fT (xT ) = f(xT ) ≡ 0 mod m,
• For all T 6= L ⊆ [h], where |T | = |L| = w, fT (xL) =
f(xL∩T ) ∈ S mod m,

where the second bullet follows from the observation that |L ∩ T | ≤
w − 1. Thus the set of polynomials F = {fT }T⊆[h],|T |=w and points
X = {xT }T⊆[h],|T |=w form a polynomial S-matching family.

It is clear that k = |F| =
(
h
w

)
. To bound n, we note that deg(f) ≤

d and f is multilinear. Thus we can take supp(F) to be the set of
all multilinear monomials in variables z1, . . . , zh of degree at most d.
Clearly, this yields dim(F) =

(
h
≤d

)
.

5.1.1 A bounded family

The following lemma shows that the canonical set can be turned into
a bounded one via scaling by an invertible element. Let Z∗m denote the
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is the set of invertible elements of Zm.

Lemma 5.7. Let m =
∏t
i=1 pi be a product of distinct primes. Let S

be the canonical set in Zm. There exists an α ∈ Z∗m such that the set
αS is σm-bounded for any σ >

∑
i∈[t] 1/pi.

Proof. We start with some notation.

• For every i ∈ [t], define the integer p̂i = m/pi;
• Let α ∈ Z∗m be the unique element such that for all i ∈

[t], α = p̂i mod pi.

Observe that for any i, j ∈ [t],(
α−1p̂i

)
mod pj =

{
1, if i=j;
0, otherwise.

Let s ∈ S be arbitrary. Set I = {i ∈ [t] | pi does not divide s}. Observe
that

s = α−1
∑
i∈I

p̂i,

since the identity above clearly holds modulo each of the {pi}. Therefore

αs =
∑
i∈I

p̂i ≤ m
∑
i∈[t]

1/pi.

This concludes the proof.

The argument above shows that any S-matching family U ,V where
S is the canonical set can be turned into a bounded one by scaling
all vectors in V by an invertible element provided

∑
i∈[t] 1/pi < 1.

Combining lemma 5.7 with lemma 5.4 we obtain

Lemma 5.8. Let m =
∏t
i=1 pi be a product of distinct primes. Let w

be a positive integer. Let {ei}, i ∈ [t] be integers such that for all i,
we have pei

i > w1/t. Let d = maxi pei
i , and h ≥ w be arbitrary. Then

there exists an
(
h
w

)
-sized σm-bounded family of matching vectors in

Znm, where n =
(
h
≤d

)
and σ is an arbitrary real larger than

∑
i∈[t] 1/pi.
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5.2 An elementary family

In this section we give an elementary construction of a bounded fam-
ily of matching vectors. The construction works for both prime and
composite moduli. The family improves upon the family of lemma 5.8
for large values of m. In what follows we use Z≥0 to denote the set of
non-negative integers.

Definition 5.9. Let b(m′, n) denote the number of vectors w ∈ Zn≥0

such that ‖w‖22 = m′.

Thus b(m′, n) counts the number of integer points on the surface of
the n-dimensional ball of radius

√
m′ in the positive orthant.

Lemma 5.10. Let m′ < m and n ≥ 2 be arbitrary positive integers.
There exists a b(m′, n− 1)-sized (m′ + 1)-bounded family of matching
vectors in Znm.

Proof. Let k = b(m′, n− 1) and let w1, . . . ,wk be the vectors in Zn−1
≥0

such that ‖wi‖22 = m′. For each wi, we define vectors in Zn by

ui = (1,−wi), vi = (m′,wi).

We claim that the resulting family of vectors is a {1, . . . ,m′}-matching
family. To prove this, observe that (ui,vj) = m′ − (wi,wj). If i = j,
then (wi,wj) = ‖wi‖22 = m′ whereas if i 6= j; then by Cauchy-Schwartz

(wi,wj) ≤ ‖wi‖2‖wj‖2 = m′.

In fact the inequality must be strict since wi and wj both lie on the
surface of the same ball, hence they are not collinear. But since their
inner product lies in Z≥0, we conclude that

(wi,wj) ∈ {0, . . . ,m′ − 1},

hence (ui,vj) ∈ {1, . . . ,m′}. Now note that since m > m′, the inner
products do not change modulo m.

The lemma below follows by combining lemma 5.10 with some crude
lower bounds for b(m′, n− 1).
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Lemma 5.11. Let m′ < m and n ≥ 2 be arbitrary positive integers.
There exists a k-sized (m′ + 1)-bounded family of matching vectors in
Znm, where

k = 1
m′+1

(
m′

n−1

)(n−1)/2
for m′ ≥ n, (5.1)

k =
(
n−1
m′

)
for m′ < n. (5.2)

Proof. To prove (5.1), we set d =
⌊√

m′/(n− 1)
⌋
. For every vector

w ∈ {0, . . . , d}n−1, we have 0 ≤ ‖w‖2 ≤ (n − 1)d2 ≤ m′. By the
pigeonhole principle, there exists some m′′ ∈ {0, . . . ,m′} such that
b(m′′, n − 1) ≥ (d+ 1)n−1/(m′ + 1), which by lemma 5.10 yields an
(m′ + 1)-bounded matching family of size

k ≥ 1
m′ + 1

(⌊√
m′

n− 1

⌋
+ 1

)n−1

≥ 1
m′ + 1

(
m′

n− 1

)(n−1)/2

.

Note that the condition m′ ≥ n is only needed to ensure that the bound
in meaningful.

To prove (5.2), we observe that b(m′, n − 1) ≥
(
n−1
m′

)
by taking all

vectors in {0, 1}n−1 of Hamming weight exactly m′. The bound follows
from lemma 5.10.

It is interesting to observe that while matching vector codes of
theorem 4.9 improve upon Reed Muller locally decodable codes only
when r ≤ log k/(log log k)c, one can get MV codes that asymptotically
match RM LDCs of query complexity r = Θ(log k log log k) combining
lemma 5.11 (where m has the shape 2b − 1, n = m+ 1 and m′ = n/2)
with proposition 4.6.

5.3 An algebraic family

Below we give a previously unpublished construction of Ω(p2)
four-dimensional F∗p-matching vectors modulo a prime p. Later in
lemma 5.20 we establish its asymptotic optimality. The technique here
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is different from the techniques used in sections 5.1 and 5.2. The result-
ing family however is not bounded, therefore it does not immediately
imply locally decodable codes capable of tolerating a constant fraction
of errors.

Lemma 5.12. Let p be a prime and n be a positive integer. Let π be
an Fp-hyperplane in Fpn and let G be a multiplicative subgroup of F∗pn .

Suppose |π ∩ G| = d; then there exists a k = b|G|/dc-sized family of
F∗p-matching vectors in Fnp .

Proof. Let φ : Fpn → Fp be a linear map such that kerφ = π. Note
that there exist exactly d elements x ∈ G such that φ(x) = 0. Consider
a bilinear map Φ : Fpn × Fpn → Fp, such that for all y, z,

Φ(y, z) = φ(y · z).

Note that for every y ∈ G there exist exactly d elements z ∈ G such
that Φ(y, z) = 0. Fix a basis of Fpn over Fp and represent the map Φ in
the coordinate form Φ : Fnp ×Fnp → Fp. This yields a matrix M ∈ Fn×np

such that for every vector y ∈ G ⊆ Fnp there exist exactly d vectors
z ∈ G such that

y ·M · zt = 0.

For every vector g ∈ G set ug = g and vg = M · gt. Now for every
vector in {ug}g∈G there exist exactly d vectors in {vh}h∈G such that

(ug,uh) = 0.

We apply the greedy procedure to the two families of vectors above to
obtain new families U ,V where for each u ∈ U there exists a unique
v ∈ V such that (u,v) = 0.

Lemma 5.13. Let p be an odd prime. Then the hyperplane

π = {x ∈ Fp4 | x− xp + xp
2 − xp3

= 0}

and the multiplicative group

G = {x ∈ F∗p4 | xp
2+1 = 1}.

share exactly two elements of Fp4 . Namely ±1.
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Proof. First, note that π is indeed a hyperplane. This follows from the
fact that π is a kernel of a linear map, whose image is of size p, (since
for every z in the image of the polynomial x− xp + xp

2 − xp3
we have

zp+z = 0.) Now let x ∈ π∩G. Combining xp
2

= 1/x with the equation
defining π we conclude

(x+ 1/x)− (x+ 1/x)p = 0. (5.3)

Thus x + 1/x ∈ Fp. Therefore x satisfies a quadratic equation with
coefficients in Fp. Thus x ∈ Fp2 , and xp

2
= x. Recall that earlier we

had xp
2

= 1/x. Thus x2 = 1.

Combining lemma 5.12 and lemma 5.13 we get

Theorem 5.14. Let p be an odd prime. There exists a (p2 +1)/2-sized
family of F∗p-matching vectors in F4

p.

5.4 Upper bounds for families modulo primes

We now turn to upper bounds on k(m,n), where k(m,n) denotes the
size of the largest family of (Zm \ {0})-matching vectors in Znm.We start
by bounding k(m,n) in the case when m = p is prime and present two
bounds. The first bound is based on the linear algebra method [6] and
is tight when p is a constant.

Theorem 5.15. For any positive integer n and any prime p, we have

k(p, n) ≤ 1 +
(
n+ p− 2
p− 1

)
. (5.4)

Proof. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-
matching vectors of Fnp , for some S ⊆ F∗p. For each i ∈ [k], we consider
the polynomial

Pi(z1, . . . , zn) = 1−

(
n∑
l=1

vi(l) · zl

)p−1
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in the ring Fp[z1, . . . , zn]. It is easy to see that Pi(ui) = 1, whereas
Pi(uj) = 0 for all j 6= i. This implies that the k polynomials {Pi}ki=1 are
linearly independent. But these polynomials all lie in an Fp vector-space

of dimension 1 +
(
n+p−2
p−1

)
, since they are spanned by the monomial 1

and all monomials of degree exactly p− 1 in z1, . . . , zn.

Note that equation (5.2) shows that for constant p and growing n,
the above bound is asymptotically tight.

Our second bound comes from translating the problem of con-
structing matching vectors into a problem about points and hyper-
planes in projective space. The n− 1 dimensional projective geometry
PG(Fp, n−1) over Fp consist of all points in Fnp \{0n} under the equiv-
alence relation λv ≡ v for λ ∈ F∗p. Projective hyperplanes are specified
by vectors u ∈ Fnp \ {0n} under the equivalence relation λu ≡ u for
λ ∈ F∗p; such a hyperplane contains all points v where (u,v) = 0.

We define a bipartite graph H(U, V ) where the vertices on the left
correspond to all hyperplanes in PG(Fp, n − 1), vertices on the right
correspond to all points in PG(Fp, n − 1) and u and v are adjacent if
(u,v) = 0. For X ⊆ U and Y ⊆ V , we define N(X) and N(Y ) to be
their neighborhoods. We use N(u) for the neighborhood of u.

Definition 5.16. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp, n − 1). We say that a set X ⊆ U

satisfies the unique neighbor property if for every u ∈ X, there exists
v ∈ N(u) such that v is not adjacent to u′ for any u′ ∈ X \ {u}.

Lemma 5.17. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp, n− 1). There exists a set X ⊆ U,

|X| = k satisfying the unique neighbor property if and only if there
exists a k-sized family of Z∗p-matching vectors in Znp .

Proof. Assume that X = {u1, . . . ,uk} satisfies the unique neighbor
property. Let Y = {v1, . . . ,vk} be such that vi is a unique neighbor of
ui. This implies that (ui,vi) = 0 and (uj ,vi) 6= 0 for i 6= j. Thus X,Y
gives a Z∗p-matching vector family in Znp .
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For the converse, let us start with a k-sized matching vector family
U ,V in Znp . In case k = 1 the lemma holds trivially. We claim that if
k ≥ 2 then u ∈ U implies that λu 6∈ U for any λ ∈ F∗p \{1}. This is true
since (u,v) = 0 implies (λu,v) = 0, which would violate the definition
of a matching vector family. Thus we can associate each u ∈ U with a
distinct hyperplane in PG(Fp, n− 1). Similarly, we can associate every
v ∈ V with a distinct point in PG(Fp, n− 1). It is easy to see that vi is
a unique neighbor of ui, hence the set U satisfies the unique neighbor
property.

Corollary 5.18. Let n be a positive integer and p be a prime. Let U
be the set of hyperplanes in PG(Fp, n − 1). The size of the largest set
X ⊆ U that satisfies the unique neighbor property is exactly k(p, n).

The expansion of the graph H(U, V ) was analyzed by Alon using
spectral methods [1, theorem 2.3]. We use the rapid expansion of this
graph to bound the size of the largest matching vector family.

Lemma 5.19. Let n ≥ 2 be an integer and p be a prime. Let U (V )
be the set of hyperplanes (points) in PG(Fp, n − 1). Let u = pn−1

p−1 =
|U | = |V |. For any nonempty set X ⊆ U with |X| = x,

|N(X)| ≥ u− u
n

n−1 /x. (5.5)

Lemma 5.20. Let n be a positive integer and p be a prime; then

k(p, n) ≤ 4pn/2 + 2. (5.6)

Proof. If n = 1, inequality (5.6) holds trivially. We assume n ≥ 2. Let
U ⊆ U , V ⊆ V be a matching family of size k(p, n). Pick X ⊆ U of size
x > 0. By formula (5.5),

|N(X)| ≥ u− u
n

n−1 /x.
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Since every point in U \ X must contain a unique neighbor from the
set V \N(X), we have

|U \X| ≤ |V \N(X)| ≤ u
n

n−1

x
⇒ |U| ≤ u

n
n−1

x
+ x. (5.7)

Note that the inequality in the right hand side of (5.7) holds for all
positive integers x. Picking x =

⌈
u

n
2(n−1)

⌉
gives

|U| ≤ 2
⌈
u

n
2(n−1)

⌉
≤ 2

(
pn

p− 1

) n
2(n−1)

+ 2 =

= 2
(

p

p− 1

) n
2(n−1)

pn/2 + 2 ≤ 4pn/2 + 2,

where the last inequality is a simple calculation.

Equation (5.1) shows that for n = O(1) we have k(p, n) = Ω
(
p(n−3)/2

)
.

Thus lemma 5.20 is nearly tight when n is a constant and p grows to
infinity. Note that for this setting of parameters, the linear-algebra
bound (5.4) only gives k(p, n) ≤ O(pn−1).

5.5 Upper bounds for families modulo prime powers

Bounds for matching families modulo prime powers are obtained via a
reduction to the prime case.

Lemma 5.21. Let n be a positive integer, p be a prime and e ≥ 2. We
have

k(pe, n) ≤ p(e−1)nk(p, n+ 1).

Proof. Assume for contradiction that we have a matching family U =
{u1, . . . ,uk},V = {v1, . . . ,vk} of size k > p(e−1)nk(p, n+1) in Znpe . For
every i ∈ [k], write ui = u′i + pe−1u′′i where u′i ∈ Znpe−1 and u′′i ∈ Znp .
By the pigeonhole principle, there are k′ > k(p, n + 1) values of i
which give the same vector u′i ∈ Znpe−1 , assume for convenience that
the corresponding vectors in U are u1, . . . ,uk′ with matching vectors
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v1, . . . ,vk′ . We will use these vectors to construct a matching vector
family of size k′ > k(p, n+ 1) in Zn+1

p , which gives a contradiction.
For each i ∈ [k′], we extend u′′i to a vector ūi by appending 1 in

the last coordinate. For every i ∈ [k′], write vi = v′i + pv′′i where
v′i ∈ Znp and v′′i ∈ Znpe−1 . We extend v′i to a vector v̄i by appending
(u′i,vi)/p

e−1 ∈ Zp in the last coordinate (we will show that this ratio
is in fact integral).

We claim that for all i ∈ [k′], (ūi, v̄i) = 0 mod p. To see this, observe
that

(ūi, v̄i) = (u′′i ,v
′
i) + (u′i,vi)/p

e−1. (5.8)

But we have

(ui,vi) = (u′i,vi) + pe−1(u′′i ,vi) ≡
≡ (u′i,vi) + pe−1(u′′i ,v

′
i) = 0 mod pe.

From this we conclude that (u′i,vi) ≡ 0 mod pe−1, and that (u′′i ,v
′
i) +

(u′i,vi)/p
e−1 = 0 mod p. From equation (5.8), we conclude that

(ūi, v̄i) = 0 mod p. Next we claim that (ūj , v̄i) 6= 0 mod p for i 6=
j ∈ [k′]. We have

(ūj , v̄i) = (u′′j ,v
′
i) + (u′i,vi)/p

e−1 (5.9)

But, since u′i = u′j , we also have

(uj ,vi) = (u′j ,vi) + pe−1(u′′j ,vi) ≡
≡ (u′i,vi) + pe−1(u′′j ,v

′
i) 6≡ 0 mod pe,

which implies that (u′′j ,v
′
i) + (u′i,vi)/p

e−1 6≡ 0 mod p. This shows that
the vectors {ūj}k

′
j=1, {v̄i}k

′
i=1 give a matching vector family of size k′ >

k(p, n+ 1), which is a contradiction.

5.6 Upper bounds for families modulo composites

Bounds for matching families modulo composites are obtained via re-
ductions to the prime power case.
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Lemma 5.22. Let m,n, and q be arbitrary positive integers such that
q|m and (q,m/q) = 1; then

k(m,n) ≤ (m/q)n k(q, n).

Proof. Let us write m/q = r. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk}
be a family of S-matching vectors of Znm, for some S ⊆ Zm \ {0}. For
each vector u ∈ Znm we can define the vectors u′ ≡ u mod q ∈ Znq and
u′′ ≡ u mod r ∈ Znr . From the definition of a matching vector family,
we have that

• For all i ∈ [k], (u′i,v
′
i) = 0 and (u′′i ,v

′′
i ) = 0;

• For all i, j ∈ [k] such that i 6= j, (u′j ,v
′
i) 6= 0 or (u′′j ,v

′′
i ) 6= 0.

Assume k > (m/q)n k(q, n). By the pigeonhole principle, there exists
a vector u ∈ Znr such that u′′j = u holds for k′ > k(q, n) values of
j ∈ [k]. Let us assume that these values are 1, . . . , k′. Note that for any
i, j ∈ [k′] we have (u′′j ,v

′′
i ) = (u′′i ,v

′′
i ) = 0. Hence, by the definition of

a matching family, we must have

• For all i ∈ [k′], (u′i,v
′
i) = 0;

• For all i, j ∈ [k′] such that i 6= j, (u′j ,v
′
i) 6= 0.

Thus vectors {u′1, . . . ,u′k′} and {v′1, . . . ,v′k′} form a matching family
mod q of size larger than k(q, n) which gives a contradiction.

Theorem 5.23. Let m and n be arbitrary positive integers. Suppose
p is a prime divisor of m; then

k(m,n) ≤ 5
mn

p(n−1)/2
.

Proof. Let pe be the largest power of p which divides m. By lemmas
5.22, 5.21 and 5.20, we get

k(m,n) ≤
(
m

pe

)n
p(e−1)n

(
4p(n+1)/2 + 2

)
≤ 5

mn

p(n−1)/2

This concludes the proof.
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The above bound is weak when n and p are constants, for instance it
is meaningless for n = 1. We give another bound below which handles
the case of small n. We start with the case when n = 1.

Lemma 5.24. Let m ≥ 2 be an arbitrary positive integer; then

k(m, 1) ≤ mO(1/ log logm) = mom(1).

Proof. Let U = {u1, . . . ,uk},V = {v1, . . . ,vk} be a family of Zm \{0}-
matching vectors in Z1

m. We treat every vector u ∈ U as an integer and
observe that for any i 6= j ∈ [k], gcd(ui,m) 6= gcd(uj ,m). (Otherwise
(ui,vi) = 0 would yield (uj ,vi) = 0.) An application of a standard
bound [54], saying the number of distinct divisors of m is at most
mO(1/ log logm) concludes the proof.

We now proceed to the case of general n.

Theorem 5.25. Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).

Proof. Let U = {uj}j∈[k],V = {vi}i∈[k] be a family of Zm \ {0}-
matching vectors in Znm. Given a vector u ∈ Znm, we define the Zm-orbit
of u to be the set of all vectors that can be written as λu for λ ∈ Zm.
The orbits are not disjoint. We claim that all of Znm can be covered by
no more than mn/φ(m) orbits, where φ(·) denotes the Euler function.
Furthermore, we claim that each orbit can contribute at most k(m, 1)
vectors to U .

Let U ⊆ Znm denote the set of all vectors u such that the GCD of
all coordinates of u is in Z∗m. Any vector u′ ∈ Znm can be written as λu
for u ∈ U and λ ∈ Zm. Thus the orbits of vectors in U cover all of Znm.
For u,u′ ∈ U , we say that u′ ≡ u′′ if u′′ lies in the Zm orbit of u′. It
is easy to see that this is indeed an equivalence relation on U , which
divides U into equivalence classes of size φ(m). Here the equivalence
class of a vector u is Z∗m · u. Thus if we pick U ′ ⊆ U which contains
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a single representative of each equivalence class, then the orbits of U ′

contain all of Znm. Thus we have |U ′| = |U |
φ(m) ≤

mn

φ(m) .
Now consider the orbit of a vector u ∈ U . Assume that it contributes

the vectors u1 = λ1u, . . . ,ut = λtu to U where λi ∈ Zm. Assume that
the matching vectors in V are v1, . . . ,vt. Then it is easy to see that
U ′ = {λ1, . . . , λt} and V ′ = {(u,v1), . . . , (u,vt)} are a matching vector
family in one dimension, so that t ≤ k(m, 1). Thus we conclude that

k(m,n) ≤ mn

φ(m)
k(m, 1) ≤ mn−1+om(1)

using a standard lower bound [54], φ(m) ≥ Ω(m/ log logm) and
lemma 5.24.

5.7 Notes

Grolmusz’s original construction of set systems with restricted intersec-
tions modulo composites is given in [49, 50]. An important ingredient
to this construction is the low-degree representation of the OR-function
from [10].

Our proof of lemma 5.5 follows [48, theorem 2.16]. Lemma 5.7 is
from [34, 18]. The construction in section 5.2 and upper bounds in
sections 5.4–5.6 are from [34].

In combinatorics there is a body of work on bounding the size of
set systems with restricted modular intersections. This is related to
our study of the maximal cardinality of a (Zm \ {0})-matching family
of vectors in Znm. The precise problem there is to bound the size of
the largest set family F on [n], where the sets in F have cardinality 0
modulo some integer m, while their intersections have non-zero cardi-
nality modulo m. The classical result in this area shows that when m

is a prime power an upper bound of nO(m) holds [6]. No such bound
applies when m is composite [49]. The best bound for general m is
|F| ≤ 2n/2 [84].



6

Lower bounds

In this chapter we review existing lower bounds for the codeword length
of general locally decodable codes. The proofs of these bounds fit the
following high level strategy. Firstly, one converts a locally decodable
code into a normal form where the decoder is restricted to operate by
outputting a modulo 2 sum of some r codeword coordinates coming
from a family of disjoint r-tuples. Secondly, one argues that any code
presented in a normal form requires a large codeword length.

In section 6.1 we deal with the conversion to the normal form. In
section 6.2 we establish polynomial lower bounds for the codeword
length of r-query codes for general r. The bound rapidly deteriorates
as r increases. In section 6.3 we deal with the narrow case of 2-query
codes and establish tight exponential lower bounds. Throughout the
chapter we restrict our attention to binary codes of constant query
complexity.

6.1 Preliminaries

General locally decodable codes can be quite complex. Decoders may
invoke complicated adaptive procedures to decide which codeword bits

69
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to query. They may also perform arbitrary computation to come up
with the output. In order to prove lower bounds for locally decodable
codes it is convenient to first turn them into the following normal form.

Definition 6.1. A binary code C : Fk2 → FN2 is said to be (r, η, β)-
normally decodable if for each i ∈ [k] there a collection Mi of η · N
disjoint tuples of exactly r indices from [N ] such that for every t ∈Mi

the following holds

Pr
x∈Fn

2

xi =
∑
j∈t

C(x)j

 ≥ 1
2

+ β, (6.1)

where the probability is taken uniformly over x.

Hence to decode xi from C(x), the decoder can just add up the
indices in a randomly chosen tuple t from Mi. Note that normally
decodable codes are somewhat weaker objects than usual locally de-
codable codes. Specifically, normally decodable codes only provide an
“average-case” guarantee of correct decoding. Our main goal in this
section is to prove the following lemma.

Lemma 6.2. Suppose there exists a (r, δ, ε)-locally decodable code en-
coding k-bit messages to N -bit codewords where ε < 1/2; then there
exists a (r, η, β)-normally decodable code encoding k-bit messages to
O(N)-bit codewords where

η ≥ (1/2− ε)δ
3 · r22r−1

and β ≥ 1/2− ε
22r

.

Proof. Our proof proceeds in four steps. On the first step we turn a
potentially adaptive decoder of the code C into a non-adaptive one,
i.e., a one that makes all queries to the codeword simultaneously. On
the second step we turn the locally decodable code into a smooth one,
i.e., a one where no codeword coordinate in queried too often. On the
third step, we ensure that r-tuples of coordinates that may be read by
the decoder interested in the i-th message bit are all disjoint. Finally on
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the fourth step, we ensure that the decoder always returns a modulo 2
sum of the accessed codeword coordinates. On each step we incur a
certain loss in code parameters. Let α = 1/2 − ε be the advantage of
the local decoder of the code C over random guessing.

Step 1: Let A be the potentially adaptive local decoder for C. We
now construct a non-adaptive local decoder A′ for the same code C at
a price of reducing the value of α to α/2r−1. The decoder A′ guesses
the values of the first r−1 coordinates that may be accessed by A, and
submits the set of queries based upon this guess. If A′ guesses correctly
the decoding procedure works with probability 1/2 + α; otherwise, A′
returns a random bit which is correct with probability 1/2.

Step 2: We now adjust the nonadaptive r-query decoding proce-
dure A that we got from the previous step to obtain a new decoding
procedure A′ such that for all x ∈ Fk2 and i ∈ [k], we have

Pr
[
A′(C(x), i) = xi

]
≥ 1/2 + α/2r−1, (6.2)

and for every i ∈ [k] and j ∈ [N ],

Pr
[
A′(·, i) reads index j

]
≤ r/δN. (6.3)

For every i ∈ [k], let Si ⊆ [N ] denote the set of codeword coordinates
that are accessed by A on an input i with probability above r/δN. Since
A reads at most r indices in every invocation, for every i ∈ [k], we have
|Si| ≤ δ · N. We define the new decoder A′ as follows: A′(·, i) runs
A(·, i) in a black-box manner by reading indices from the codeword,
and returning their values to A. The only exception is that if A requests
an index in Si, A′ does not read that index, but instead simply returns
0 to A. Thus the output of A′ on C(x) is the same as the output of A
on a certain string y such that ∆(C(x),y) ≤ δ. It remains to note that
given access to any such string A outputs xi with probability at least
1/2 + α/2r−1.

Step 3: We now modify the decoding procedure A that we got from
the previous step to ensure that for every i, the tuples of coordinates
that may be read by the decoder interested in the i-the message bit are
all disjoint. Fix i ∈ [k]. Let S ⊆ [N ], |S| ≤ r be arbitrary. We say that
S is γ-good if

Pr
x

[A(C(x, i)) = xi | A reads coordinates in S] ≥ 1/2 + γ. (6.4)
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Consider a hypergraph H that contains N vertices labeled by elements
of [N ]. The hyperedges of H, denoted E are defined by

E = {e ⊆ [N ] | e is α/2r-good}.

We now argue that the probability that A(·, i) reads an edge from E

is at least α/2r−1. To see this note that by formula (6.2)

1/2 + α/2r−1 ≤
Pr
x

[A(C(x), i) = xi | A(·, i) reads E] · Pr [A(·, i) reads E] +

Pr
x

[A(C(x), i) = xi | A(·, i) reads Ec] · Pr [A(·, i) reads Ec] ≤

Pr
x

[A(·, i) reads E] + (1/2 + α/2r) · (1− Pr [A(·, i) reads E]).

For each hyperedge e ∈ E let pe denote the probability that A(·, i)
reads e. The argument above implies that∑

e∈E
pe ≥ α/2r−1.

Furthermore, for every j ∈ [N ] formula (6.3) yields∑
e∈E|j∈e

pe ≤ r/δN.

Let V be a vertex cover for the hypergraph H. Since for every e ∈ E
we have e ∩ V 6= 0, it follows that∑

e∈E|e∩V 6=0

pe ≥ α/2r−1.

Therefore

α/2r−1 ≤
∑

e∈E|e∩V 6=0

pe ≤
∑
j∈V

∑
e∈E|j∈e

pe ≤ |V |r/δN,

which implies that the minimum vertex cover for H has size at least
m = αδN/r2r−1. Recall that every hyperedge in H has cardinality at
most r. An application of a standard graph theory result implies that
H contains a matching M , i.e., a collection of disjoint edges of size at
least |M | ≥ m/r = αδN/r22r−1.
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We define the new decoder A′ as follows: on input i, A′ picks one
of the edges in the matching M uniformly at random, reads the corre-
sponding codeword coordinates and runs A(·, i) in a black box manner.

Step 4: We first adjust the code C (by making it sometimes read
some extra coordinates) and the decoding procedure A (by fixing some
randomness) to ensure that for all i ∈ [k], A(·, i) operates by randomly
choosing a tuple t of exactly r codeword coordinates coming from a
matching Mi, and then applying a deterministic function to fi,t(C(x)|t)
to obtain the output. For all i ∈ [k] and t ∈Mi we have

Pr
x∈Fn

2

[xi = fi,t (C(x)|t)] ≥ 1/2 + α/2r. (6.5)

In what follows we modify the decoder A to ensure that for all indices
i and tuples t ∈Mi, the function fi,t is simply a modulo 2 sum.

Fix some i ∈ [k] and t ∈ Mi. Consider a function f = fi,t. Let
(c1, . . . , cr) be the restriction of a codeword C(x) to coordinates in t.

Switching from the {0, 1} notation to the {1,−1} notation allows yields

Ex [f(c1, . . . , cr) · xi] ≥ α/2r−1.

Representing f in the Fourier basis we get

1
2r

Ex

[∑
χ

f̂(χ) · χ(c1, . . . , ct) · xi

]
≥ α/2r−1.

Equivalently,∑
χ

f̂(χ)/2r · Ex [χ(c1, . . . , ct) · xi] ≥ α/2r−1.

Observe that for all χ ∈ F̂k2 we have |f̂(χ)/2r| ≤ 1. Therefore there
exists a character χ ∈ F̂k2 such that

Ex [χ(c1, . . . , ct) · xi] ≥ α/22r−1.

Returning to the {0, 1} notation, for some set S ⊆ [r] we must have
either

Pr
x∈Fk

2

xi =
∑
j∈S

C(x)j

 ≥ 1
2

+ α/2r,
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or

Pr
x∈Fk

2

x̄i =
∑
j∈S

C(x)j

 ≥ 1
2

+ α/2r,

Replacing every coordinate c of C(x) with a triple {0, c, c̄}, we bring the
decoder to the normal form. For each i ∈ [k] the decoder operates by
picking one of r-tuples of coordinates from a matching Mi at random,
and outputting the modulo 2 sum. It is not hard to verify that our
construction yields matchings of size at least (1/2 − ε)δN/3 · r22r−1.

The advantage over random guessing is at least α/22r.

6.2 Polynomial lower bound for r-query codes

In this section we prove an Ω
(
kr/(r−1)

)
lower bound for the codeword

length of an arbitrary r-query locally decodable code. The main idea
of the proof is that of a random restriction. We show that if a locally
decodable code C is short, then a restriction of C to a randomly chosen
small subset of coordinates carries too much information about the
message.

Let H(·) denote the standard entropy function. We need the follow-
ing information theory lemma.

Lemma 6.3. Let C : Fk2 → D be an arbitrary function. Assume there
exists a randomized algorithm A such that for all i ∈ [k],

Pr
x

[A(C(x), i) = xi] ≥
1
2

+ β,

where the probability is taken over the random coins of A as well as
over all strings x; then

log |D| ≥ (1−H(1/2 + β))k.

Proof. Let I(x;C(x)) denote the mutual information between x and
C(x). We have

I(x;C(x)) ≤ H(C(x)) ≤ log |D|.
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Note that we also have

I(x;C(x)) = H(x)−H(x|C(x))

≥ H(x)−
k∑
i

H(xi|C(x))

≥ (1−H(1/2 + β))k.

Combining the inequalities above completes the proof.

We are now ready to establish

Theorem 6.4. Suppose there exists an (r, δ, ε)-locally decodable code
encoding k-bit messages to N -bit codewords; then we necessarily have

N ≥ Ω

((
(1/2− ε)δ

r2

)1/(r−1)((
1−H

(
1
2

+
1/2− ε

22r

))
· k
)r/(r−1)

)
.

provided that k is sufficiently large.

Proof. Assume the contrary. Then for infinitely many k we have codes
violating the inequality from the theorem statement. Consider such a
code C. Apply lemma 6.2 to turn C into a normal form. This yields an
(r, η, β)-normally decodable code, where

η ≥ (1/2− ε)δ
3 · r22r−1

and β ≥ 1/2− ε
22r

.

Let {Mi}, i ∈ [k] be the collection of k matchings used by the decoder of
C. Let α be a constant to be fixed later. Pick a set S ⊆ [N ] at random,
including every element of [N ] into S with probability αk/N. Let y be
the random variable counting the number of matchings {Mi}, i ∈ [k]
that have at least one hyperedge completely contained in S. It is not
hard to verify that

E[y] ≥

[
1−

[
1−

(
αk

N

)r]ηN]
· k ≥

[
1−

(
1
e

)η(αk)r/Nr−1
]
· k.

Since C violates the inequality from the theorem statement we have
N = Or,δ,ε

(
kr/(r−1)

)
. Thus the right hand side of the inequality above
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is at least Ωr,δ,ε(k). Note that the random variable y takes non-negative
integer values up to k. Therefore there is a positive constant probability
that y is larger than E[y]/2. Also note that by the Chernoff bound the
probability that |S| > 2αk is exponentially small in k. Thus there exists
a set S ⊆ [N ] such that |S| ≤ 2αk and S contains a hyperedge from at
least

m = 0.5 ·

[
1−

(
1
e

)η(αk)r/Nr−1
]
· k

distinct matchings {Mi}, i ∈ [k]. This implies that the restriction of C
to coordinates in S allows one to make (1/2 + β)-accurate predictions
about m coordinates of x. By lemma 6.3 we necessarily have[

1−
(

1
e

)η(αk)r/Nr−1
]
· (1−H(1/2 + β)) · k ≤ 4αk

Setting α = (1 − H(1/2 + β)) and making some basic manipulations
we obtain

N ≥ Ω
(
kr/(r−1) · η1/(r−1) · αr/(r−1)

)
.

Expressing η and α in terms of δ and ε we conclude the proof.

6.3 Exponential lower bound for 2-query codes

In this section we prove an asymptotically tight 2Ω(k) lower bound for
the codeword length of an arbitrary 2-query locally decodable code.
The proof uses quantum information theory. We argue that short 2-
query locally decodable codes yield short quantum random access codes
and then apply a theorem of Nayak [70] bounding the length of such
codes. We start with a brief introduction to quantum information the-
ory needed for the proof. A comprehensive treatment of this area can
be found in [71].

6.3.1 Quantum information theory

Let n be a positive integer. For our purposes an n-qubit quantum state
is vector q ∈ R2n

such that
∑

j∈[2n] q
2
j = 1. Let B = {bj}, j ∈ [2n] be

an orthonormal basis of R2n
. Measuring a quantum state q in the basis

B yields an output j ∈ [2n] with probability (y,bj)2.
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A quantum random access code is an encoding x → qx of k-bit
strings x into n-qubit states qx, such that any individual bit xi, i ∈ [k]
can be recovered with some probability p ≥ 1/2 + β from qx, where
the probability is over a uniform choice of x and the measurement
randomness. The following theorem which is a special case of the Holevo
bound [55] is due to Nayak [70].

Theorem 6.5. Any encoding x → qx of k-bit strings into n-qubit
states with recovery probability at least 1/2 + β, necessarily has

n ≥ (1−H(1/2 + β))k.

6.3.2 Lower bound

We are now ready to establish

Theorem 6.6. If there exists an (2, δ, ε)-locally decodable code C en-
coding k-bit messages to N -bit codewords; then

N ≥ 2Ω((1/2−ε)4δ2k).

Proof. Apply lemma 6.2 to turn the code C into a normal form. This
yields an (2, η, β)-normally decodable code, where

η ≥ Ω((1/2− ε)δ) and β ≥ Ω(1/2− ε).

We pad the code with zeros to ensure that the codeword length N is
a power of two, N = 2n. For every x ∈ {0, 1}k consider a n-qubit state
qx, where for all j ∈ [N ],

qj = (−1)C(x)j/
√
N. (6.6)

We claim that the map x→ qx is a quantum random access code. Let
i ∈ [k] be arbitrary. To recover the bit xi from the quantum state qx,

we make a measurement in a suitable basis. Let em denote the m-th
unit vector in RN , and let Mi =

{
(c`1, c

`
2)
}
`∈[ηN ]

be the matching used
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by the normal decoder for C. Consider an orthonormal basis B = {bj}
for RN , where

bj =


ej if j 6∈ supp(Mi);

1√
2

(
ec`1 + ec`2

)
if j = c`1 for some `;

1√
2

(
ec`1 − ec`2

)
if j = c`2 for some `.

Observe that

(bj ,qx)2 =



1/N if j 6∈ supp(Mi);
2/N if j = c`1 for some `, and C(x)c`1 ⊕ C(x)c`2 = 0;
0 if j = c`1 for some `, and C(x)c`1 ⊕ C(x)c`2 = 1;
2/N if j = c`2 for some `, and C(x)c`1 ⊕ C(x)c`2 = 1;
0 if j = c`2 for some `, and C(x)c`1 ⊕ C(x)c`2 = 0.

The decoder for the quantum random access code interested in xi mea-
sures the state qx in the basis B. If the output is j 6∈ supp(Mi) it out-
puts a uniformly random bit; otherwise it outputs the modulo two sum
of the two coordinates of C(x) from the matching Mi. Such decoder
has an advantage of ηβ over random guessing. Thus by theorem 6.5 we
must have

n ≥ (1−H(1/2 + ηβ)) · k.
Expressing η and β in terms of δ and ε and using the fact that 1 −
H(1/2 + τ) = Θ(τ2) we conclude the proof.

6.4 Notes

Lemma 6.2 is from [58]. The Ω
(
kr/(r−1)

)
lower bound established

in section 6.2 is also from [58]. Somewhat stronger lower bounds of
Ω̃
(
k1+1/(dr/2e−1)

)
have been obtained in [91, 92].

The exponential lower bound for the length of 2-query codes given
in section 6.3 is due to Kerenidis and de Wolf [60]. Our presentation
follows [32, 89].

The dependence on δ and ε in theorem 6.6 can be improved to
(1/2 − ε)2δ [60]. An alternative proof of this theorem is given [20],
using an extension of the Bonami-Beckner hypercontractive inequality.
However, that proof still follows the outline of the quantum-inspired
proof presented here, albeit in linear-algebraic language.
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Applications

In this chapter we discuss some prominent applications of locally decod-
able codes, namely, applications to private information retrieval (sec-
tion 7.1), secure multiparty computation (section 7.2), and average case
complexity (section 7.3).

7.1 Private information retrieval

Private Information Retrieval (PIR) schemes are cryptographic proto-
cols designed to safeguard the privacy of database users. They allow
clients to retrieve records from public databases while completely hid-
ing the identity of the retrieved records from database owners. The pos-
sibility of retrieving database records without revealing their identities
to the owner of the database may seem beyond hope. Note, however,
that a trivial solution is available: When users want a single record,
they can ask for a copy of the whole database. This solution involves
enormous communication overhead and is likely to be unacceptable. It
turns out that for users who want to keep their privacy fully protected
(in the information-theoretic sense), this trivial solution is optimal.

Fortunately, the negative result applies only to databases stored on

79
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a single server, rather than those replicated across several servers. In
1995, Chor et al. [28] came up with PIR schemes that enable private
retrieval of records from replicated databases, with a nontrivially small
amount of communication. In such protocols, users query each server
holding the database. The protocol ensures that each individual server
(by observing only the query it receives) gets no information about the
identity of the items of user interest.

We now make the notion of private information retrieval schemes
more concrete. We model database as a k-long q-ary string x that is
replicated between r non-communicating servers. The user holds an
index i (which is an integer between 1 and k) and is interested in
obtaining the value of the i-th coordinate of x. To achieve this goal,
the user tosses some random coins, queries each of the r servers and
gets replies from which the desired value can be computed. The query
to each server is distributed independently of i therefore each server
gets no information about what the user is after. Formally,

Definition 7.1. A r-server private information retrieval protocol is
a triplet of non-uniform algorithms P = (Q,A, C). We assume that
each algorithm is given k as an advice. At the beginning of the pro-
tocol, the user U tosses random coins and obtains a random string
rand. Next U invokes Q(i, rand) to generate an r-tuple of queries
(que1, . . . , quer). For j ∈ [r], U sends quej to the server Sj . Each
server Sj , j ∈ [r] responds with an answer ansj = A(j,x, quej). Fi-
nally, U computes its output by applying the reconstruction algorithm
C(ans1, . . . , ansr, i, rand). A protocol as above should satisfy the follow-
ing requirements:

• Correctness : For any k, x ∈ [q]k and i ∈ [k], U outputs the
correct value of xi with probability 1 (where the probability
is over the random strings rand).
• Privacy : Each server individually learns no information

about i. More precisely, we require that for any k and for
any j ∈ [r], the distributions quej(i, rand) are identical for
all values i ∈ [k].
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The communication complexity of a PIR protocol P, is a function
of k measuring the total number of bits communicated between the
user and the servers, maximized over all choices of x ∈ [q]k, i ∈ [k],
and random inputs. The major goal of PIR related research to design
r-server private information retrieval schemes with optimal (i.e., the
smallest possible) amount of communication for every r.

Following the paper of Chor et al. [28] there has been a large a body
of work on private information retrieval [3, 14, 15, 94, 91, 96, 77, 37, 57].
A large number of extensions of the basic PIR model have also been
studied. These include extensions to t-private protocols, in which the
user is protected against collusions of up to t servers [14, 9]; exten-
sions which protect the servers holding the database in addition to
the user, termed symmetric PIR [46, 69]; extensions to computational
schemes [62, 24, 64, 44] that only ensure that a server cannot get any
information about the user’s intensions unless it solves a certain com-
putationally hard problem; and other extensions [16, 17, 31, 45, 73]. In
many of those extensions the protocols are obtained by adding some
extra layers on top of a basic private information retrieval scheme.
Therefore improving parameters of basic private information retrieval
schemes yields improvements for many other problems. See [41, 97] for
surveys of PIR literature.

The gap between upper and lower bounds for communication com-
plexity of private information retrieval schemes is fairly large. Cur-
rently, the most efficient r-server schemes for r ≥ 3 are obtained
through r-query locally decodable codes. Communication complex-
ity of such schemes is roughly logarithmic in the codeword length of
corresponding codes. This, for instance, yields 3-server schemes with
exp

(√
log k log log k

)
communication to access a k-bit database [37].

Two server private information retrieval schemes do not rely on LDCs.
The most efficient such schemes to date require O(k1/3) communica-
tion [28]. The best lower bound for the communication complexity of
two server PIR is 5 log k due to Wehner and de Wolf [91]. Single server
PIR schemes require Θ(k) communication [28].

In what follows we review existing constructions of private informa-
tion retrieval schemes in more detail. In section 7.1.1 we discuss the con-
struction of schemes from locally decodable codes and in section 7.1.2
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we present a two server scheme based on polynomial interpolation.

7.1.1 From codes to schemes

The following lemma obtains an r-server private information retrieval
scheme out of any perfectly smooth r-query locally decodable code, i.e.,
a code where each decoder’s query is distributed perfectly uniformly
over the set of codeword coordinates.

Lemma 7.2. Suppose there exists a perfectly smooth q-ary r-query lo-
cally decodable code C encoding k-long messages to N -long codewords;
then there exists an r-server private information retrieval scheme with
O(r · log2(Nq)) communication to access a q-ary k-long database.

Proof. At the preprocessing stage servers S1, . . . ,Sr encode the k-long
database x with the code C. Next the user U who is interested in
obtaining the value of the i-th coordinate of x, tosses random coins
and generates an r-tuple of queries (que1, . . . , quer), such that xi can
be computed from C(x)que1

, . . . , C(x)quer
. For every j ∈ [r], the user

sends the query quej to the server Sj . Each server Sj responds with a
q-ary value C(x)quej

. The user combines servers’ responses to obtain xi.
It is straightforward to verify that the protocol above is private

since for every j ∈ [r] the query quej is uniformly distributed over
the set of codeword coordinates. The total communication is given by
r · (dlog2Ne+ dlog2 qe).

Combining lemma 7.2 with theorem 4.10 we get

Theorem 7.3. For every integer t ≥ 2, and for all k ≥ 2, there exists
a 3 · 2t−2-server private information retrieval scheme with

expt
(

(log k)1/t(log log k)1−1/t
)
−

bit communication to access a k-bit database.

7.1.2 Two server private information retrieval

Below we present a two-server PIR scheme due to Woodruff et al. [94].
The scheme involves O

(
k1/3

)
communication to access a k-bit database
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and is arguably the most intuitive among existing two server schemes.
The ideas behind the scheme are similar to those behind Reed Muller
locally decodable codes (section 2.2).

Let n be an arbitrary positive integer. Set k =
(
n
3

)
. In what fol-

lows we obtain a 2-server scheme with O(n) bits of communication
to access an k-bit database. Pick γ : [k] → {0, 1}n to be an arbi-
trary bijection between the set [k] and the set of n-dimensional {0, 1}-
vectors of Hamming weight three. For i ∈ [k] and j ∈ {1, 2, 3} let
γ(i)j denote the j-th nonzero coordinate of γ(i). Given a database
x = (x1, . . . ,xk) ∈ Fk2 each server obtains the following polynomial F
in the ring F2[z1, . . . , zn],

F (z1, . . . , zn) =
k∑
i=1

xi · zγ(i)1
· zγ(i)2

· zγ(i)3
.

The key properties of the polynomial F are the following:

• F encodes the database: For every i ∈ [k], F (γ(i)) = xi;
• F has low degree: deg f = 3.

Note that the polynomial F can be naturally treated as a polyno-
mial over F4. The basic idea behind our private information retrieval
scheme is the idea of polynomial interpolation. Suppose the user wants
to retrieve the i-th coordinate of the database. Given i, the user obtains
the vector w = γ(i) ∈ Fn4 . Now the user’s goal is to recover the value
of the polynomial F (held by the servers) at the point w.

Obviously, the user cannot explicitly request the value of F at w
from any of the servers, since such a request would ruin the privacy
of the protocol; that is, some server will get to know which database
bit the user is after. Instead, the user obtains the value of F (w) indi-
rectly, relying on the rich structure of local dependencies between the
evaluations of a cubic polynomial F at multiple points. Specifically, the
user randomly selects an affine line L ∈ Fn4 containing the point w and
discloses certain points on L to the servers. Each server computes and
returns the value of F and the values of partial derivatives of F at the
point that it is given. Finally, the user reconstructs the restriction of
F to L. In particular the user obtains the desired value F (w). Below
is a more formal description.
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We use the standard mathematical notation ∂F
∂zl

∣∣∣
y

to denote the

value of the partial derivative [63] of F with respect to a variable zl at
a point y. Let λ1, λ2 ∈ F4 be distinct and non-zero. Let U denote the
user and S1,S2 denote the servers. The protocol proceeds as follows,

U : Picks v ∈ Fn4 uniformly at random.
U → Sh : w + λhv

U ← Sh : F (w + λhv), ∂F∂z1

∣∣∣
w+λhv

, . . . , ∂F
∂zm

∣∣∣
w+λhv

Note that in the protocol above the input of each server Sh, h ∈
{1, 2} is a uniformly random point in Fn4 . Therefore the protocol is
private. It is also easy to verify that both the queries that the user sends
to servers and the servers’ responses are of length O(n) = O(k1/3).
(Every query is simply a point in Fn4 . Every response is a list of n
values of partial derivatives of F plus the value of F itself.) It remains
to show how the user obtains F (w) from the servers’ responses.

Consider the line L = {w + λv | λ ∈ F4}. Let f(λ) = f(w + λv) ∈
F4[λ] be the restriction of F to L. Clearly, f(λh) = F (w + λhv). Thus
the user knows the values {f(λh)} for h ∈ {1, 2}. This, however, does
not suffice to reconstruct the polynomial f, since the degree of f may
be up to three. The main observation underlying our protocol is that
knowing the values of partial derivatives ∂F

∂z1

∣∣∣
w+λhv

, . . . , ∂F∂zn

∣∣∣
w+λhv

,

the user can reconstruct the value of f ′(λh). The proof is a straightfor-
ward application of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (w + λv)

∂λ

∣∣∣∣
λh

=
n∑
l=1

∂F

∂zl

∣∣∣∣
w+λhv

vl.

Thus the user can reconstruct {f(λh)} and {f ′(λh)} for h ∈ {1, 2}.
Combining this observation with the standard algebraic fact that a
cubic univariate polynomial is uniquely determined by its values and
derivatives at two points [63], we conclude that the user can reconstruct
f and obtain xi = F (w) = f(0).
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7.2 Secure multiparty computation

A fundamental result of Ben-Or et al. [21] and Chaum et al. [26] from
1988 asserts that information-theoretic secure multiparty computation
is feasible. Specifically, in [21, 26] it is shown that r ≥ 3 players that
are allowed to exchange messages over secure channels, can jointly com-
pute any function of their local inputs while hiding the inputs from each
other; i.e., one can always arrange a protocol as to ensure that after per-
forming the joint computation any specific player gets no information
about the inputs of other players (apart from the information contained
in the value of the function).

In all known protocols for secure multiparty computation the com-
munication complexity of the protocol grows linearly with the circuit
size of the function being computed. This results in 2Ω(k) amount of
communication for securely computing most of the functions of k-bit
inputs. A natural question that was explicitly asked in several papers
from the late 1980’s and early 1990’s [13, 12] is whether all functions can
be securely computed with only a polynomial (or at least a subexpo-
nential) amount of communication in the input length. It was observed
by Ishai and Kushilevtiz [56] that this question is closely related to the
complexity of private information retrieval schemes.

The construction of private information retrieval schemes given
in section 7.1 yields quantitative progress on the question mentioned
above (via the reduction of [56]). Specifically, theorem 7.3 implies that
a group of 18 or more players can securely compute any function of
their k-bit inputs with a total communication of exp

(√
k log k

)
, for

all k.

7.3 Average-case complexity

One of the earliest applications of locally decodable codes was to worst-
case to average-case reductions in computational complexity theory.
This application requires LDCs with polynomial length and polyloga-
rithmic query complexity. Such codes can be obtained from Reed Muller
codes. Below we give a sketch of this application. Our presentation fol-
lows [90, Section 3.5].
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Let L be an EXP-complete problem, and for an input length t let
us consider the restriction of L to inputs of length t. We can see L,
restricted to these inputs, as a binary string of length 2t. Let us encode
this string using a polynomial-length locally decodable code C that
has polylogarithmic query complexity and can tolerate some constant
fraction of errors. We get a string of length 2O(t) = 2t

′
, and let us think

of this string as defining a new problem L′ on inputs of length t′. If
L is in EXP, then so is L′. The properties of the code C imply that a
polynomial-time algorithm for L′ that is good on average (i.e., solves
L′ correctly on, say, some fraction 1 − ε of the inputs in polynomial
time) yields a probabilistic algorithm for L that works on all inputs,
and EXP ⊆ BPP. This argument shows that if every problem in EXP
can be solved well on average, then EXP ⊆ BPP. A similar statement
can be proved for PSPACE using a variant of this argument.

7.4 Notes

Locally decodable codes have other applications in complexity the-
ory [33, 7], data structures [29, 27], derandomization [36], and theory
of fault tolerant computation [80].
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Future directions

In this chapter we list and comment on the most exciting open questions
relating to locally decodable codes and private information retrieval
schemes.

8.1 3-query locally decodable codes

It is very interesting to determine the optimal length of 3-query
codes. The best upper bound to date is exp exp

(√
log k · log log k

)
(sec-

tion 4.6.1). The best lower bound is Ω̃(k2) (section 6.2).
A natural approach to improving the upper bound is through the

matching vector codes machinery detailed in chapters 4 and 5. This
calls for constructing families of S-matching vectors in Znm, for small
sets S of size larger than what one gets from the Grolmusz construction.
We remark that improving the Grolmusz construction for constant val-
ues of m will have significant implications other than improved upper
bounds for locally decodable codes, e.g., [49] (if explicit) it will give an
explicit family of Ramsey graphs beyond the Frankl-Wilson bound dif-
ferent from [8]. One approach to improving the Grolmusz construction
is to improve upper bounds for the degree of polynomial representation
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of the OR-function modulo composites [10, 88].

8.2 r-query locally decodable codes

Currently matching vector codes are the best known LDCs in the
regime of low query complexity, Reed Muller codes are the best known
LDCs in the regime of medium query complexity, and multiplicity codes
are the best known LDCs in the regime of high query complexity. The
two natural next benchmarks for code constructions are the following:

• Construct codes with r = ko(1) and positive rate;
• Construct codes with r = O(log k) and polynomial stretch.

Multiplicity codes come very close but fail to achieve the first bench-
mark, i.e., for every ε > 0 they give kε-query codes of positive rate.
Reed Muller codes codes come close to the second benchmark. In
particular the length of RM codes of query complexity log k is only
slightly superpolynomial (section 2.3). Matching vector codes based on
Grolmusz matching families improve upon RM codes for all values of
r < log k/(log log k)c. Is is plausible that further progress on MV codes
may help us achieve the benchmark. This calls for new bounded fam-
ilies of matching vectors in Znm, where m is comparable to (or larger
than) n. This regime has almost not been addressed in the past.

It is also interesting to understand the power of matching vector
codes for values of r > log k. The following conjecture has been made
in this regard in [34]. (Recall that k(m,n) denotes the size of the largest
Zm \ {0}-matching family in Znm.)

Conjecture 8.1. Let m and n be arbitrary positive integers; then

k(m,n) ≤ O
(
mn/2

)
.

By lemma 5.20 the conjecture holds for prime m. If the conjecture holds
in general; then any matching vector code must have length N = Ω(k2),
and thus MV codes are inferior to Reed Muller codes once r ≥ log2 k

by an argument similar to the one in section 4.7.2.
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8.3 Locally correctable codes

To date Reed Muller codes and multiplicity codes constitute the only
known classes of locally correctable codes. It is interesting to see if there
are locally correctable codes in the regime of low query complexity that
are shorter than Reed Muller codes. In particular we do not know if
matching vector codes can be made locally correctable.

8.4 Two server private information retrieval

Unlike PIR schemes involving three or more servers, existing two server
schemes are not based on locally decodable codes. While a number of
different two server schemes are known [28, 3, 14, 15, 94], all of them
have the same asymptotic communication complexity of O

(
k1/3

)
as the

earliest such schemes proposed in [28]. The best lower bound is 5 · log k
from [91].

One approach to improving the bounds for the communication com-
plexity of two server private information retrieval has been proposed
in [78] where it was shown that under some weak technical restriction
two-server schemes with O(c)-communication to access a k-bit database
are equivalent to matrices M of size exp(c)× exp(c) with entries from
the alphabet {x1, . . . , xk, ∗} such that:

(1) Every variable xi, i ∈ [k] appears exactly once in each row
and each column of M ;

(2) For all 2k assignments of F2 values to variables {xi}i∈[k], there
is a completion of the matrix, (i.e., assignment of F2 values
to locations containing stars) such that the F2-rank of the
resulting matrix is O(c).

8.5 Private information retrieval with preprocessing

Our review of the state of the art in private information retrieval has
concentrated on the most studied aspect of PIR schemes, namely, their
communication complexity. Another important aspect of such schemes
is the amount of computation that servers need to perform in order to
respond to user queries. In fact, it is the overwhelming computational
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complexity of PIR schemes, that currently presents the main bottleneck
to their practical deployment.

Computational complexity of early private information retrieval
schemes has been addressed in [16, 94] where it was shown that prepro-
cessing the database can lead to notable savings. It will be interesting
to see further results in this direction as well as address the computa-
tional complexity of private information retrieval schemes arising from
matching vector codes.
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